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Abstract

Saddlepoint Approximations have long been used to approximate densities

and distribution functions of random variables with known cumulant generating

function defined on an open interval about the origin. This approximation has

very desirable asymptotic properties when approximating densities and tail

probabilities for sums of random variables, and also often performs remarkably

well for small sample sizes, including samples of one.

Calculating the saddlepoint approximation requires calculating the Legendre

transform of the log of the cumulant generating function. In some cases this cu-

mulant generating function may be unavailable; in other cases the Legendre

transform is difficult to calculate analytically. This paper discusses modifica-

tions to the saddlepoint approximation necessary when the cumulant generating

function is replaced by a similar but more tractable function whose Legendre

transform can be given explicitly. Calculations for the logistic distribution are

presented to illustrate the case of a known but intractable cumulant generating

function, and an example involving an overdispersed binomial model is present-

ed to illustrate the case of an unavailable cumulant generating function. An ap-

plication to a random effects logistic linear model is discussed.

1. The Problem. Consider the following problem: X l t X^ X3,..., Xn,... are

independent and identically distributed random variables. Assume that their

common distribution is continuous, with probability density function/^*) and

cumulant generating function K(t) = log E[etX], defined on some convex set

icR. Without loss of generality assume further that E[XH = 0. I wish to ap-

proximate the density function/rtCs) and distribution function Fn(s) of

5 = ι

analytically, and am faced with three options:

a. Convolute the density n times.

b. Use the classical Edgeworth series approximation to/rt(x).
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c. Use a saddle point approximation to fn(x).

Option (a) is often too difficult. The Edgeworth series of option (b) often

behaves poorly in the tails. In order to exercise option (c), one must solve the

saddlepoint equation

JriΓ(tJjΓ)=s (1)

The solution te is known as the saddlepoint. The value te is that element of the

domain of K for which the tilted density, described in section 3, has its mean ex-

actly at s. Often this is easy to solve analytically, but in some statistical calcula-

tions this is very difficult (Table 1). In these situations I propose finding a

similar but computationally simpler approximate cumulant generating function

L, performing the computations with the saddlepoint of L rather than that of K>

and substituting it into the derivatives of K as specified in the standard saddle-

point approximation. Below I discuss the modifications to this process needed

to retain good asymptotic properties. Denote the difference between these cu-

mulant generating functions Kit) - Uj) by a(t). Suppose furthermore that

i. 0 is in the interior of/, the domain of K.

ii. L is analytic on ixiR

iii. L(0) = 0andL'(0) = 0.

iv. ά is bounded on /.

v.

Table 1: Examples of Lenendre-Fenchel Calculations

Distribution

Normal

Uniform

Exponential

Double

Exponential

Logistic

Density

1

exp[-x]

\ exp [W]

exp [-x]
(l + exp[-x])2

Domain

R

IP.-)

R

R

Cumulant
Generating
Function

I.'

>,
sinhl-H

lt/2

-log[l-fl (

Domain Saddlepoint

R

- . 1 )

•logii-ή (-1.1)

π/ π
;in(πί)J V -1,1)

intractable

c-iy*

(ΛT? -DA

intractable
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In particular, the cumulant generating functions for the logistic and double expo-

nential distributions satisfy these requirements. Note that although the saddle-

point equation JnlC(t€/Jn) = s need not have a solution for all s [Daniels

(1954)], condition (i) implies that a solution always exists for laige enough n.

One might try to substitute the approximate saddlepoint ta for the exact sad-

dlepoint te in the expression for the saddlepoint approximation to/rt. (Figure 1).

In fact, using knowledge about a, one can improve on this naive approximation.

2. The Edgeworth Series. Let the random variables X{ and Sn be defined as

in Section 1. The cumulant generating function of Sn is Kn(t) = JnK(tlJn).

Note that these functions are defined for at least t pure imaginary. In the present

case, however, we assume that K exists on / + iR for some open interval / con-

taining 0. One may easily show that K is infinitely differentiable at every point

in this domain. Define the cumulant of order r of X, to be κr = κ(r) (0). Then the

cumulant of order r of Sn is κn

r = κrn
ι~r/2.

The density fn(s) and the cumulative distribution function Fn(s) can, for

large n, be well-approximated for moderate values of s, by an Edgeworth series.

This series has the form

r m 3(*-2)

em(s;κ") = φ ( 5 ) | X X yJJζhj(

where the standard Heπnite polynomials hr(s) are given by (-1)Γ4

When m = 2, this reduces to the usual normal approximation, and γOf2 = 1 and

ΛOΞ l. The function φ is the standard normal density, and differentiation is with

respect to s. The coefficients y ^ are sums of products of the first k cumulants.

McCullagh (1987, Chapter 5) gives a thorough description of this series. Feller

(1971, page 535) shows that under Cramer's condition,

lim sup|exp[Jf(ίO]| < 1,
|ί| - * o β

that

/Λ(0 = er(t;κn)+o[n 2 J,



240 KOLASSA

holds uniformly in t. Cramer's condition is always satisfied in cases where the

random variables Xt have a density.

The Edgeworth series for the density can easily be integrated analytically to

give an approximation Er(t;κn) to the cumulative distribution function, valid to

the same order.

3. The Expansion for the Density. Denote the density of S by fn(s).

Embed the density fn(s) in the exponential family tfn(s;t) = exp[te - nK(t/Jn)]

fn(
s): t€l

n}> where / is the domain of the cumulant generating function K(t) of

Xχt and In = Jnl is the domain of the cumulant generating function Kn(t) = nK(tl

Jn) ofSn. Note that /Λ(s;t) has the cumulant generating function

Standard saddlepoint techniques proceed by choosing te to satisfy (1); here as-

sume that a solution to this equation is not available, but that a suitable approxi-

mation L to K exists, with properties as described in section 1, and such that one

can solve

V Cβ l<Jή) = slJn. In what follows, ta is treated as an approximation to te,

and is substituted into K in place of te. Corrections for the difference between ta

and te then enter the approximation through the function N of ta described below.

By construction,

fΛ(s) = exp[nK(ta /Jϊ) -tas]fn(s;ta)

= cxp[nK(ta Ijλ) -

where

a V « (2)
and

N(ta) = (s-JklC(ta lJ~n))ha= *fr(V{tJ*Γn)-K{tal4~n)/

Approximate the density σ/Λ (μβ + oaN; ta) as an Edgeworth series
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r m 3(*-2)

em(N;P) =φ(ΛO Σ Σ \khj
U=2 y = 0

where

a n) )

for 2 < r < m, and β*' = o. Let β* '- denote the collection of these. Denote the

error in this approximation by R" (s). The βΛ> 'e are the cumulants of a variable

with the density fn(s;ta), after normalizing to unit variance. The coefficients γ

are the appropriate coefficients for an Edgeworth series using cumulants βn ' 'β.

Then

fn(s) = exp[nK(ta IJ~n) -tas] 1 [eJNrf") -^R^(s)] (3)

The error term is of order O(nf2~m)/2). The size of this term depends on the

cumulants βrt''β , which depend in turn on s. Daniels (1954) describes condi-

tions on the density of the Xt which in turn imply that β '̂ίβ are of order O(nι'ml2)

uniformly in ta. The appendix of this paper provides a proof that in these cases,

the above bound on the error term is uniform.

In the case where the saddlepoint equation (1) is solvable, then K = L,ta = te>

and N is identically 0. Then the expression (3) simplifies to the usual saddle-

point density, involving the evaluation of an Edgeworth series at 0. Note that in

an Edgeworth series for a density, all odd powers of 1/7* are multiplied by odd-

ordered Hermite polynomials, which are 0 when evaluated at 0. Hence, an

Edgeworth series evaluated at 0 has only terms in integer powers of 1/Λ. The

leading term of this approximation,

[2πK(2) (tg IJΪ) ]"1/2exp[nK(te /*fc)-tes), (4)

is accurate to order O(l/ri) rather than O(\/Jn). Note also that this first-order

approximation is always positive. Daniels (1954) provides an early account of

these developments.

4. The Expansion for the Tail Probabilities. I now desire an approxima-

tion to tail probabilities Qn(s) = P[Sn>s] for the random variable Sn described
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earlier.and proceed as follows:

Denote the density of S by/„($). Again embed the density fn(s) in the expo-

nential family {fH(s;ή = exp[ts-nK(t l*[n) ]/„(*) : te /„}, and chose ta such

that &L' (tJJIΓ) = s. Let zβ = tjtr (ta Jλ). Then,

= exp[nK(tjJι)-t.JϊlC (ίβljn) ]£exp[-ίβ(y- JnK'

= exp[nίΓ(ίβ

where

ξ = { y - m Λ

σa, μa, and N arc defined as in (2). Approximate the density a/, (μfl + σβξ;tβ) as

an Edgeworth series

m 3(*-2)

;β") =Φ(ξ)
m 3 ( t - 2 ) -I

Σ Σ ϊAA«>
jt = 2 y = 0 J

where the βΛf ί- are as before. Then

(2(5)

where tte remainder term R™ (s) will be discussed later,

m 3(*-2)

= *xψ[nK(tΛ Ijk) -tmJnΓ(tΛ/JΪ) ] ^ X T A ^ ( ^ - ^ ( g ) +ΛJW , (5)

wtere /̂ (α, fr) = JĴ  xp [-βξ] φ (ξ) Ay (ξ) rfξ. Integration by parts shows that

IQ(a,b) = e

Ij(α, ^) = alj_λ(a,b)-exp [-β« φ (b) h^χ ( ξ ) ,

whence by induction we find that

ι=o
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Hence we can in principle evaluate this series to any order desired; however, cal-

culations beyond the first order approximation are very messy. The second ap-

pendix contains a proof that the error R" (s) is of order o ί n 2 I uniformly in s.

The approximation in the case when m = 2, accurate to order O(\/Jn), is

(6)

Here za = ta*]K" (ta Jή). This is the main result of this paper.

Note that if m = 2, the Berry-Esseen theorem [Feller (1971), p. 542] implies

that the result (5) does not depend onX, having a density, but only on the exist-

ence of a finite third moment, which in turn is guaranteed by condition i of sec-

tion 1. Hence the result (6) holds whether or not the Xt have a density.

Note also that the difference between nK(tJ*Jn) - taJnK(tj\fn) +

\ (ta)
2κ" (!tj4n) and this quantity with K replaced by L is na(tj<jn) - ta 4na% (ta)

+ ^a)2"" (*a) = (tjSΫ<P\&)l6, for some 0 e [0, ta) , through a judicious use

of Taylor's theorem. If the third derivatives of a is uniformly bounded, then, this

difference is of order 0(1/ Jn). The same argument shows that substituting L"

for K" in the definitions of N and za introduces an error of order 0(1/ Jn).

Hence (6) can be changed to

i (7)

while remaining accurate to O(\/Jn) uniformly in s, and once again the require-

ment that the X/ have a density can be dropped.

Note that in the case where the saddlepoint equation (1) is solvable, and

hence K = L, ta = te% and N is identically 0, expression (6) agrees with the usual

saddlepoint approximation given by Robinson (1982),

[ i - Φ ( z m ) ] [ i - - i ^ J + φ ( z m ) ^ - ( 2 ^ i ) | , (8)

to order 0(1/Jn). Note that the coefficient β^ has a factor of \/Jn included.

Daniels (1987) discusses alternate derivations for this expansion, as well as σth-
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er expansions for tail probabilities. These in turn might inspire similar varia-

tions on the expansion presented here.

5. The Choice of L. For the logistic examples considered in this paper, the

cumulant generating functions are defined on an open interval (τ l f τ 2 ), with

τχ < 0 < τ 2, and there exist rλ and r 2 such that (τ. -1) K (t) -> ri as t-*τr for i = 1

and 2. Then the approximate cumulant generating function

L (0 = -Σ*= j [r̂ iog (l - 1 /τ.) + (rfi /τ. ] will satisfy the requirements i-v of sec-

tion 1, and the resulting approximate saddlepoint ta is the solution of the qua-

dratic equation in t:

Finding approximate cumulant generating functions more closely fitting the ac-

tual functions appears to be very difficult.

6. An Example: The Logistic Distribution. Consider for example the lo-

gistic distribution, whose density is — e x p x—- and whose cumulant gener-
(l+exp[-x])2

ating function is

and set n = 1, so that S = Xχ. The approximating cumulant generating function

defined by the algorithm described in section 5 is

L(t) =-log(l-ί2) for ίe (-1,1),

the cumulant generating function of the double exponential, with density

-exp H * | ] , defined over the same interval. The saddlepoint of L is easily found

t o b e ( V i + χ 2 - 1 /x). Straight-forward calculations verify the conditions (2) are

fulfilled; the fifth condition is checked by examining coefficients of the series

expansion for K(t) - tL\t) and noting that they are all negative. The function L

was chosen so that the difference a(t) between K(f) and Ut) is bounded, and has

a bounded first derivative.

I plotted the differences between the logarithms of various approximating

densities and the logarithm of the true density (Figure 2). The approximations

considered are the Edgeworth series, the Saddle Point series in which the ap-
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proximating saddlepoint ta satisfying L (ta) = x is used naively instead of te sat-

isfying K% (te) = JC, the quasi-saddlepoint approximation (6), and the true saddle

point series. The Edgeworth series performs best for small values of the ordi-
nate, but for large values this approximation fails miserably. The other three ap-
proximations all perform similarly. Maximal fluctuation in the differences from
the logarithm of the true density are about the same, implying that under an opti-
mal standardization, these approximations would have similar maximal errors.

Part of the discrepancy between the approximation and the exact saddlepoint
approximation can be explained by the difference in variance standardizations
used. The true saddle point approximation uses the second derivative of the cu-
mulant generating function evaluated at the true saddle point, while the approxi-
mation uses the this derivative evaluated at the saddle point of the simpler
cumulant generating function. The ratio of these standardizations is far from
unity when the quasi-saddlepoint approximation and the exact saddle point ap-
proximation are far apart.

The quasi-saddlepoint approximation may be improved by using a one-term
Taylor series approximation in te-ta to A"f (t€). Note that by Taylor's theorem,

Hence κ\(ta) ~κ\{ta) + ( ι Γ g r Λ ( g - r . t g -β . t g r n(ta) /κ\(ta).

Replacing Jκn

 n(ta) in the definition of σ a by this expression results in a vari-

ance standardization much closer to that of the exact saddlepoint, and a resulting

approximation that works better than the exact saddlepoint approximation (Fig-

ure 3).

Note that the choice of approximating cumulant generating function was
crucial here. For example, if L is modified by multiplying by the ratio of the
variances corresponding to K and L, in order to match variances, the resulting
difference is not well-behaved, and indeed the quasi-saddlepoint approximation
works poorly (Figure 4).

7. An Application. Convolution of the normal and logistic distributions
has important applications in random effects logistic models where the random
effect is normally distributed. Consider the following logistic model for random
variables X; taking on the values 0 or 1. The probability of realizing a 1 depends
on the random effect ε{ :

logit P(Xi = 1| ε,.) = μ + ε.
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where ε, are normals with zero mean and variance σ2. I wish to derive approxi-

mations to the unconditional means and variances of the P (X, = i| ε.) 's.

Note that

where Gι(x) is the cumulative distribution

function e*/(l + e*).

= G2(μ)

where G2OO is the cumulative distribution function of the

sum of a logistic random variable and an independent

N(0, σ2) random variable.

Hence we see that E (P (Xi = 1| ε.)) can be approximated by (6), where

K(t) = log(πί csc(πί)) + ^ 2 σ 2

L(t) =~log(l-ί2)

a (0 = log (πί (1 -12) esc (nt)) + iί 2σ 2

Similarly,

Note that G2 is an increasing differentiable function taking values in [0,1], such

that

lim Ghz) = 0
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and

lim G\(z) = 1
Z->oo

and hence is a distribution function. Differentiation shows that its density is

Integration shows that its cumulant generating function is K(t) = log(f(l + i)πc-

sc(πί)) defined on (-2,1). It also has first moment 1. Hence

P]) = G 3 ( μ - l ) .

where G3 is the cumulative distribution function corresponding to the cumulant

generating function K(t) = log(ί(i + θπcsc(πr)) -* + σ2ί2/2 defined on (-2, 1).

The methods of section 5 lead to the approximation

L(t) = -log ((l - 0 (2 + 0) -t/2 + log(2), also defined on the same interval, and

satisfying the conditions (2). Furthermore, the saddlepoint equation arising

from L is easy to solve. Hence we see that E{P]) can be approximated by (6),

where K and L are as just described, and

a{t) = lo g (πί( l- ί 2 ) (2 + 0csc(πί)) + ^ 2 σ 2 + ~ί-log (2)

• _ _; \ — / 2.

1 2*
X+2

These approximations appear at first glance to work well (Figures 5 and 6) but

note approximation (6) performs poorly when evaluated at values of the ordinate

less than the mean of the distribution. These approximations can easily be mod-

ified to calculate the lower tail when the ordinate is less than the mean. Taking

care to calculate the correct tail, and subtracting from 1 if necessary, these ap-

proximations appear to work well over all, but for moderate σ, do not perform

well enough to approximate the variance (Figure 7). Furthermore, the resulting

discrepancy is more a result of the inability of the quasi-saddlepoint expression

to approximate the true saddlepoint than the error inherent in the saddlepoint ap-

proximation.

8. A Second Example: An Overdispersed Binomial Distribution.

Consider random variables Xt distributed as Bernoulli trials each with success

probability p/. I aim to calculate tail probabilities for the standardized sum Sn of
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the centered variables *,-/>,. Were pi all the same, exact tail probability calcu-

lations would be trivial. Were they distributed with some postulated distribu-

tion, techniques described for the previous example could be used to calculate

unconditional success probabilities and also tail probabilities. Under more lax

assumptions about their distribution, one might use a normal approximation to

calculate unconditional tail probabilities. Unfortunately, the distribution of Sn

has much lighter tails than the normal, and we might hope for better tail behav-

ior. This section investigates what information about thep; is necessary to apply

the quasi-saddlepoint techniques to approximate tail probabilities.

Choose p e (0, l). We will approximate the exact cumulant generating

function of 5n, Kn (t) = Σ?= x [log (p. (exP (t 14k) - 1 ) +1) -pflJk ], by the cu-

mulant generating function that arises when all of the p t are set equal to p:

Ln(t) - nlog (p(exp(ί I Jn) - 1 ) +1 - Jnpt. Solving the saddlepoint equation

forLΛ,Ln(ία) = s, yields ta = -7niogit(p + sl4n) -iogίr(p) ] . Note that p + s/*Jn

is the average of indicator variables, and hence always in [0,1]. The difference

between Kn and Ln is given by

= Σ log Γl -
l+/?(exp(ί Jn) -I) - (pi-p)t Jnj

Hence

n^ a' r~ JLJ

Lengthy but unenlightening calculations show that the third derivative of an is

bounded over the possible choices of thep, , and hence the error incurred by sub-

stituting L for K in (6) is of order 0(1/Jn) uniformly over choices of the p t . This

choice of Ln satisfies the requirements i-iv of section 1 regardless of the relation

between thep, and p. The quality of this approximation improves asp moves to

represent a more central value for thepj .

If we now assume that the p t are distributed with meanp and some variance

σ2, the Central Limit Theorem implies that a" Λ (0) is asymptotically σ 2 +

p Hence a\(ta) is asymptotically ίβσ
2 + 0 p ( l / ^ ) . Also,

L" (t) = p (i ~p)2+o(l/Jn). The resulting conditional tail probability approx-
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imation as a function of the random variables p, is then

(tyL" (ta Jϋ)]

U-*('J<JpU-p)
\ \ (l-

Hence this is also the unconditional probability to order 0(1/Jή).

Appendix 1. Order of the Error term in the Density Approximation. I

aim to show that the error term in (3) is of the order stated. It suffices to prove

the following theorem:

Theorem. Let {pfμ)} be a family of functions indexed by a parameter ί, with a

power series representation

\-m

(9)

where the coefficients β ^ are bounded t in for all k, and a function rmt(u) such

that \rmtt(u)\ ίCm\u\m

9 then the inverse Fourier transform of exp(u2/2+pt) evalu-

ated at α is

(10)

where γ=Γ(β) and

m-2 ~ J
V V 2 L f \ P
Λmέ ^ 'jk j t

Λ,(n) = o\n ~

uniformly in t. Dependence of γ is suppressed.

Proof: To see this,

m

n

observe that

Γβ k 2=FΓ

*l-wukn 2 J_
r \-m

! )

-

J W ( " )

1-m

)(Π)

where
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* ^ * ( « ) = *>m n

2 — & R

for Wjt^n between 0 and n~-j^uk, by Taylor's theorem.

Retaining all terms of order (2 - m)/2 and smaller in n in (11), and including

all others in the remainder, gives

exp(j>(*)) = £ Σ * *

l - m

where Λ* w> t(κ) is of the form Mmn 2 times sums of products of the β's, nega-

tive powers of n, and positive powers of u, plus the same kind of expression
l - m

times r ^ o o . It's absolute value can be bounded by n 2 times a polynomial

qm(\u\) in W whose coefficients are independent of n and t. Taking the inverse

Fourier transform of (12) at α yields (10) plus a term bounded by n 2 times the

normal density φ evaluated at α times a polynomial in α whose coefficients are

independent of t and n.

Appendix 2. Order of the Error term in the Distribution Function Ap-

proximation I now calculate the order of the error R"(s) in (5). Denote the cu-

mulative distribution function associated with σ/rt (μα+σαξ;ία) by Dn. Let

g(ta) = exV[nK(ta

Then, using integration by parts,

J

= 8(ta)\ (D,(ξ) -£m(ξ;β"))exp[zβα(g]

oo

J exp [-zβξ] za (Dn (ξ) - Em(ξ;
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x exp [nK(ta IJ~n) - %aJ~nK (ta I Jn ) + ta*fca' (ta IJ~n) ]

= 2(sup| (Dn(ξ)-Em(ξ;βΛ))|)exp[n£(rβ IJ~n)-taJ~nV {j

The Berry-Esseen theorem tells us that sup|(Drt(ξ) -Em) (ξ;βΛ>'β))|is of order

( 2"mλ
o\n 2 I. Hence the error is always the order of the first term omitted, and our

error bounds can be sharpened to o l i f T j . Furthermore, the Berry-Esseen

bound involves the quantities β, which are uniformly bounded in ta. By assump-

tion,

oxp[nK(ta

is uniformly bounded, and the error bounds given above hold uniformly in ta.
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