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ABSTRACT

We treat the role of point processes in the statistical analysis of rainfall fields.
We look in specific at Poisson-based models of the Le Camian type. These rep-

resent rainfall fields as a smoothing transformation of a Poisson random mea-
sure. We provide a number of examples of particular interest to hydrologists
who analyze rainfall fields and we outline strategies for their assessment. Here
we find a place for novel applications of statistical techniques, such as simula-
tion, method of moments, nonlinear regression, and image and life history anal-
ysis.

1. Introduction Rainfall fields refer to the observed pattern of ground-lev-
el intensity of rain falling from precipitating cloud systems. Reflecting the non-
equilibrium thermodynamic origins of such systems, these patterns manifest
highly-structured distributions of rainfall over space. Our discussion here con-
cerns modeling and inference for the temporal evolutions of these distributions.

The temporal evolutions of rainfall fields proceed from the changing thermody-
namic conditions governing the phenomenon of precipitation. As part of a fam-
ily of processes involved in global atmospheric circulation, precipitation is a
process of complex geophysical origins. To model the dynamics of rainfall
fields is obviously beyond the scope of present endeavors. In substitute, we treat
phenomenological models of rainfall fields, that aim to describe the phenome-
non as observed.

Nicolis and Prigogine (1977) note that the observable behavior of many
nonequilibrium thermodynamic systems is well represented by a stochastic pro-
cess. We take this view in modeling rainfall fields with a spatial stochastic pro-
cess. In particular, we look at models that represent such fields as a smoothing
transformation of a Poisson random measure. The general framework for these
was introduced in Le Cam (1961). Nonetheless, it was not until after the GATE
experiment of 1974 that Le Cam's work began to have impact. From this obser-
vational study of tropical rainfall over the Atlantic Ocean, meteorologists report-
ed new understandings of the organization and structure of precipitating cloud
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systems; see for example Houze and Hobbs (1982). Since that time, Le Cam's
work has influenced recent efforts to model rainfall fields including those in
Smith and Karr (1985), Waymine, Gupta, and Rodriguez-Iturbe (1984), Rodrigu-
ez-Iturbe, Cox, and Eagleson (1986), Rodriguez-Iturbe, Cox, and Isham (1987,
1988), and Cox and Isham (1988).

We later recall the Le Camian representation of rainfall fields and discuss its
principal characteristics. In providing a number of examples, we interpret the
primitives in these representations in terms of the geophysical constructs of the
raincell and the cloud cluster. These constructs have informed the discussions of
rainfall events by meteorologist, and so provide the motivation behind the exam-
ples. As examples of particular interest to hydrologists who analyze rainfall
fields, we include the WGR model in Waymire, et al. (1984) and the random-
disks model in Cox and Isham (1988).

The complexity of these models and the phenomenon they represent com-
pels the need for flexible strategies in their assessment. One such strategy,
which we recall below, is outlined in Rodriguez-Iturbe, et al. (1988). This is a
practical approach to parametric estimation that blends formal statistical proce-
dures with informal physical judgements in promoting physically meaningful
answers. To it, we add our own emphasis on the sample path analysis of rainfall
fields as implemented in Phelan and Goodall (1989). This approach uses nonlin-
ear regression and image analysis in data-analytic assessments of the ability of
the model to represent observed rainfall fields. We emphasize that for any strat-
egy to be successful it must stimulate the dialogue among observation, model-
ing, and inference.

This dialogue will often lead to fresh scientific inquiries as well as to novel
applications of statistical techniques. To illustrate, we anchor our final discus-
sion in the question of aging in rainfall fields. Here we introduce the aging func-
tion, which is a cumulative hazard function appearing as parameter in many
models of rainfall. We address the problem of nonparametric estimation of such
functions from observed rainfall fields, where we aigue for the application of the
techniques of life history analysis. In specific, we introduce a martingale-type
estimator as a nonparametric estimator of the aging function in a class of point
process models for rainfall fields. Finally, we integrate our approach to nonpara-
metric estimation with the strategy for parametric estimation described above,
and thus enhance its flexibility as an assessment regime.
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2. Poίsson Random Measures and Le Camian Representations The

work in Le Cam (1961) develops a general framework for the stochastic descrip-

tion of precipitation using point processes and their transformations. Here we

recall the main idea behind such descriptions and provide examples. Our inten-

tion is to draw attention to what we call Le Camian representations of rainfall

fields.

Convective Raincells and Point Processes. In describing precipitating cloud

systems, meteorologists refer to a geophysical construct known as the convec-

tive raincell. Briefly, the convective raincell denotes a localized region of high-

intensity rainfall induced by convection or the exchange of heat from the earth to

the atmosphere. In practice, we typically observe composites of such cells at a

scale of about 4 km. At maturity, they may cover a surface area of 16 km2 with

rainfall at an intensity reaching 8 mm/hr. In the tropics for example, mature

raincells are observed in groups called cloud clusters. They are usually connect-

ed by a layer of stratiform cloud. Aided by the winds, such precipitating sys-

tems horizontally traverse the lower atmosphere while depositing their water

contents on the surface of the earth. We refer the reader to for example Houze

and Hobbs (1982) for further details of the phenomenology of raincells in me-

soscale descriptions of precipitative events.

In the importance of the convective raincell, Le Cam recognized a role for

point processes in his stochastic descriptions of precipitation. The principal idea

is that the occurrence of convective cells be identified with the atoms of a point

process. In specific, let (Ω, H, P) denote a probability space and (E, E) a mea-

surable space. Now let M and N denote random measures on (E, E). We refer

the reader to for example Karr (1986) for further mathematical details. We as-

sume that N is a Cox process having directing measure M. Here in the context of

modeling mesocale precipitation, N is the primitive that models the occurrence

of convective raincells. For Le Cam, the specification of the space (E, E) and

the directing measure M is determined by the geophysical context and the design

of the modeler.

We fix ideas and take E to be a product space of the form TxSxχ. Here T

denotes a subset of I? and a time-index set, S denotes a subset of R2 and a pla-

nar region affixed to the surface of the earth, and χ denotes a vector space used

in characterizing raincells by their water content, dispersion, velocity, etc. We

assume that M is the fixed measure μ satisfying

μ(dt, dx, dz) = cdtdx π (dz), (teT, xeS, z e χ), (1)
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where c is a positive constant and π denotes a probability measure on χ equipped

with its measurable sets. Note that N is thus a Poisson random measure on

TxSxχ with mean measure μ.

We say that the atoms of N identify convective raincells. That is, fix ω in Ω

and suppose that (t, x, z) is an atom of N(ω) where t e Γ, x e s, and z e χ. Here

(ί, x) localizes the time and place of birth of a raincell. The vector z endows the

raincell with a set of distinguishing characteristics such as its velocity and water

content. According to equation (1), the model places raincells at random over

time and space, whereas their characteristics vary independently over χ with

common distribution π.

Remark. We mentioned earlier that convective raincells tend to occur in clus-

ters. Le Cam addressed this issue in his proposal to construct the directing mea-

sure M to reflect the observed organizational structure of storm systems. For

example, M may be chosen so that N is a cluster point process that clusters rain-

cells in the manner observed in tropical storms. We refer the reader to Le Cam

(1961) for the details of this part of the framework. In doing so, we nevertheless

note that clustering among raincells is an important yet open issue in phenome-

nological modeling of rainfall, D

Rainfall Fields and Le Camian Representations Rainfall fields refer to the ob-

served pattern of ground-level intensity of rain falling from a precipitating cloud

system. Le Cam suggested that these be represented by a smoothing transforma-

tion of the point process N. In describing these representations, we proceed with

our ideas fixed as above.

Our mathematical setting is the space TxSxχ equipped with its measurable

sets, where we have defined the Poisson random measure N that generates rain-

cells and their characteristics. We aim to model the temporal evolution of the in-

tensity or rate of rain falling over S. For each t e T and x e s, let k(t, x) denote a

positive, measurable function defined on 7x5xχ. Let k - {k(t,x),teT,χeS}

denote the corresponding family of functions, where we assume k satisfies

J μ (duf dyt dz) k? (ί, x, u,y, z) < ~, (2)
TxSxχ

for every t e T,xe S. Here μ is the mean measure belonging to N as specified

at equation (1). Next, we introduce a spatial stochastic process R = (R(t, *)),

t e T, x € s, where R(t, x) satisfies
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R(t,x) = J N(du, dy, dz) k(ί, x,u,y, z), (3)
ΓxSxχ

Here we interpret Ritpc) as the intensity of rain falling on position x at time f, so

that the process R models the temporal evolution of the intensity of rain falling

over S. Note that condition (2) guarantees the existence of at least the mean and

variance of this process.

In the general framework of Le Cam, k is an example of a smoothing kernel,

and R is thus an example of a smoothing transformation of N. A rainfall intensi-

ty process so obtained, we shall call a Le Camian representation of the rainfall

field. Such representations appear in the examples below, where we add specific

interpretations to the items introduced here.

Examples We illustrate the main ideas above and provide examples of particu-

lar interest to hydrologists who analyze rainfall fields. For simplicity in doing

so, we omit the presence of a clustering mechanism, but we refer the reader to

remark (1) below.

a) The WGR Model. This model is developed in Waymire, et al. (1984).

Let Γ, S, and χ denote the sets* M2 and R+ respectively. We assume that N is

a Poisson random measure on 7x5xχ equipped with its Borel sets. For the

purpose of interpretation, fix ω and suppose that (ί, xz) is an atom of N(ω). We

then say that t and x is the time and place of birth of a raincell having water con-

tent or total intensity z. If the mean measure μ belonging to N satisfies equation

(1), then π specifies the distribution of the raincells* water contents.

The WGR model includes a Le Camian representation of the rainfall intensi-

ty process. In particular, let a and b denote fixed, positive scalars and let v 0 de-

note a fixed vector in the plane. Here the smoothing kernel k satisfies: for each

te T and x e s,

k ( t , x t u , y , z ) = z l

for every u e Tt y e Sf and z e χ. Here d(y) denotes the squared Euclidean dis-

tance between points in 5. Under the smoothing kernel thus defined, the rainfall

intensity process R = R(t, x))91 e 7, x e s is represented as in equation (3).

For each t and x, R(t, x) denotes the total intensity of rain falling at (t, x). It

is the sum of the contributions of all the raincells born before time t. That is, fix

ω and suppose that (w, y, z) is an atom or raincell ofN(ω). According to equa-

tion (3), k(tpc,u,y,z) is the contribution of that raincell to the total intensity Λ(ω; t,
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x). In particular, by the action of k, its contribution is proportional to its total in-

tensity z. To understand the proportion, we interpret t - u as the age and y + (f-

U)VQ as the position of the raincell at time t. As it ages, the raincell thus propa-

gates along the plane with velocity v0. We therefore see that, as a function of u

the raincell *s contribution to Λ(ω; t, x) decays exponentially with its age and its

Euclidean distance to x. Here we call a the rate of aging and b the coefficient of

disperson. α

b) The Random-Disks Model. This model is developed in Cox and Isham

(1988). As the name suggested, it envisions the coverage of a precipitating rain-

cell to be a random disk in the plane. The initial placement of the disk is speci-

fied at birth, when the raincell is characterized by a radius, water content,

duration, and planar velocity. A raincell becomes active at birth and it remains

so for its duration. The ensemble of active raincells migrates s across the plane;

the individual motions being at uniform rate along that raincell's velocity. In do-

ing so, they deposit their water contents uniformly over their identifying disks

and uniformly over their durations. Thereafter, the raincell vanishes.

We formalize the qualitative description above. Let T, S, and χ denote the

sets R JR2 ,/y3

+ x/?2, respectively. We assume that N is a Poisson random

measure on T x S x χ equipped with its Borel sets. For the purpose of interpreta-

tion, fix ω and suppose that (ί̂ c,(r,w,z,v)) is an atom of N(ω), where teT, xeS,

r,w,zeR+ , and v e R2 . We then say that t and x is the time and place of birth

of a raincell having radius or dispersion r, water content w, duration z, and veloc-

ity v. If the mean measure μ belonging to N satisfies equation (1), then t speci-

fied the joint distribution of the raincell' redii, water contents, durations, and

velocities.

For each time t and site JC, let R(tpc) denote the total intensity of rain falling

at (tpc). According to the model, this is given by the sum of the contributions of

those active raincells that cover the site x. Here we give its Le Camian represen-

tations. Let k denote the smoothing kernel satisfying: for each t e T and x e s,

tytjcu&mzy) = wl(κ < t) 1 (d(x,y + (t - u)v) < r)ί(z >t - u),

for every ueT, ye S, rtw,z e R +, and veR2. Now we define R(tjc) according

to equation (3), and thus obtain the desired representation of the rainfall field R =

(R(tjc), teT, xeS. In leaving the specifics of the interpretation of the action of

k to the reader, we ask him to verify that the representation of R given here is

(stochastically) equivalent to that of equaiton (8) in Cox and Isham (1988). D
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Remarks

(1) Clustering. The models described above admit generalizations involv-
ing higher-order clustering. This entails constructing a directing measure M
that subordinates the point process N. For example, M itself may be a smooth-
ing transformation of an initial point process. The action of the initial process is
to generate cluster potentials, so that M may direct N to cluster raincells in the
vicinity of these. Such a mechanism may well model the appearance of the
cloud clusters mentioned earlier. For example, this device is used in Cox and
Isham (1988) to induce either Bartlett-Lewis or Neyman-Scott type cluster pro-
cesses.

(2) Geometry and Kinematics. The choice of smoothing kernel reflects or
imposes a choice of geometry and kinematics for the underlying storm system.
In the geometry of the WGR model, for example, each raincell is identified with
a continuum of Gaussian surfaces. This has obvious ramifications for the spatial
distribution of rain falling from that cell. In contrast, the geometry of the ran-
dom-disks model distributes rain over a migrating coverage process, so that each
raincell deposits water uniformly over a random set in the plane. Nevertheless,
the two models maintain essentially the same kinematics. The raincells move at
uniform rate along a specified velocity. The difference lies in that they do so in
lockstep fashion in WGR, whereas random-disks allows for individual varia-
tions in these motions, D

3. Strategies in Assessment Stochastic descriptions of precipitation are
useful from a number of viewpoints. On the one hand, they offer a ready frame-
work to guide the hand of the data analyst. They suggest ways of examining ob-
servations and discovering relationships. On the other hand, they can be an
integral part of scientific inference about precipitation or a workable tool in the
engineering of water resources. Hydrologists, for example, use stochastic mod-
els in forecasting and simulating precipitation as part of the hydrological cycle.
They may require only that such descriptions preserve averages or provide real-
istic patterns in rainfall activity. Nevertheless, in assessing stochastic descrip-
tions of precipitation, we do well to remember the physical origins of the
phenomenon in designing strategies and in judging the descriptive capabilities
of the model.

In this section, we describe two broad strategies for the assessment of point
process models of rainfall fields. The first is basically a parametric approach as
described in Rodriguez-Ituibe, Cox, and Isham (1988). The method is well suit-
ed for assessing a model's ability to preserve averages in rainfall activity. The
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second strategy is a data-analytic approach to the sample path analysis of rainfall

fields as implemented in Phelan and Goodall (1989). As such, it is well suited

for assessing a model's ability to provide realistic patterns of rainfall. The two

approaches are complementary, and together they offer a practical strategy for

assessing Le Camian representations of rainfall fields.

/. The Method of Primary Features. This method is both a method of fitting

parameters in a rainfall model and of assessing the fitted model. Respecting the

earnest conceptual and computational problems entailed by the likelihood ap-

proach to parametric estimation from rainfall fields, the procedure recommended

here involves solving a system of simultaneous equations drawn from a set of

primary features of the data. Typically, only a subset of such features are needed

to fit a finite dimensional parameter. Once fitted, therefore, the model is as-

sessed against the subset of primary features that remain.

We fix ideas and consider the random-disks model as described in the previ-

ous section. There the mean measure μ depends on two parameters; the rate c

and the distribution π. Recall that π denotes the distribution of the raincells'

characteristics including their radii, water contents, durations, and velocities.

For the present illustration, we assume that π satisfies

π(dr, dw, dz, dv) = ae™ be4™ dedz drdwdz Q(dv), (4)

for every r,w,z e R +, and v e R 2 . Here α, b, and d denote fixed parameters and

Q satisfies

Q(dv) = (β(β| I v I If-1 e"Pl I v 11 / Γ (α))δo,

where 11 v 11 denotes the length of v, α and β are fixed, positive parameters, and

δo is the direct measure concentrated at the fixed vector VQ of unit length in the

plane. This choice of π entails the independence of the raincells' characteristics.

Moreover, the radii, water contents, and durations are exponentially distributed

with parameters a, b, and d, respectively. Finally, the velocities are concentrated

along the direction v0, while their magnitudes are Gamma distributed with shape

parameter α and scale parameter β. We have therefore specified a model of 7

parameters, namely α,6,c,d,α,β, and vo, which we hereafter denote by the sym-

bol θ.

The problem is to estimate θ from a record of observed rainfall activity. The

method of primary features resolves the problem as follows. Typically, the data

will consist of partial observations from the rainfall intensity process Λ, perhaps
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drawn from a network of rain gauges placed in a catchment. Let G denote a set

of primary features of the data. We require that the corresponding model fea-

tures be available either theoretically or by simulation. As examples of features

in G, we take means, variances, and spatial-temporal autocorrelations of rainfall

intensity, as well as derived distributions of say dry periods, level crossings, or

extreme values in rainfall activity. Next, let F denote a subset of G to be used in

fitting θ. We therefore require that F contain at least as many features as the di-

mension of our parameter. Now for each /e F, let D(/) denote the value of/as

determined by the data. Similarly, let M(θ;/) denote the value of/as deter-

mined by the model. For example, suppose/denotes the proportion of time it is

dry at a fixed site. Then D(f) is the observed fraction of time it is dry there, and

M (θ;/) is exp(-2cπ/da2) as determined by equaiton (2) in Cox and Isham (1988).

The method of primary features is to solve for θ by solving the system of simul-

taneous equations satisfying

D(f)=M(Q,f),feF, (5)

provided there is a unique solution.

The choice of features to fill F will be guided by many criteria. The fore-

most is the observational scheme, as we require data-based values for every fea-

ture in F. Otherwise, we look for features that will provide a sensitive and

balanced test of the model's capabilities. For example, we select features that

are relatively uncorrelated and have small sampling variability. Also, we select

features that are available at a range of scales, this reflecting the physical impor-

tance of scaling principles in rainfall fields. Overall, we aim to achieve a nice

blend of formal statistical thinking with informal physical judgment. For exam-

ple, we may incorporate auxiliary information and appeal to physical measure-

ments of the ambient winds to determine v0. These measurements may then be

used to help determine the equations above, say, by fixing an initial value to the

mean α/β in the distribution of raincells' velocities.

In the method of primary features, the fitted model is assessed in two ways.

The first is cross-validation, where the model-based values of the features in F

are compared to data-based values as computed from a hold-out sample.

Alternatively or in addition, if data-based values of the features in F are avail-

able over a range of scales of aggregation, say hourly, daily, and monthly

amounts of rainfall, then model-based values are assessed across this range. In

either case, we assess the capability of the model to reproduce the set of primary

features used in fitting θ. On the other hand, the second way in which the model
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is assessed is to consider those primary features in F0, where F° denotes the

complement of F in G. Here we assess the capability of the model to extrapolate

to the set of primary feature not used in fitting θ. For example, suppose the dis-

tribution of extreme values at a fixed site is derived (at least approximately)

from the model and placed among the features in F°. Then a formal or diagnos-

tic test of the model is made by comparing observed extremes to the extremes

expected by the model evaluated at the value of the fitted parameter.

We believe that the method of primary features is a workable and flexible

strategy for the assessment of point process models of rainfall fields. We find

that it is particularly successful at selecting models that well preserve averages

in rainfall activity. This is due in part to the computational ease of using various

statistical moments as primary features. Nevertheless, it is of certain value to

the community of hydrologists and for illustrations of the methodology, we refer

the reader specifically to Rodriguez-Ituibe, Cox and Isham (1987,1988).

//. A Method of Sample Path Analysis. This method aims to probe the repre-

sentational capabilities of stochastic descriptions of precipitation, such as the Le

Camian representations of rainfall fields. The method proceeds through a sam-

ple path analysis of an observed rainfall field in the context of a particular repre-

sentation. The basic exploratory principal is that the observed data may be

viewed as the composition of a fitted representation with a residual. Here the fit-

ted representations are probed for their ability to provide realistic patterns of

rainfall and the residuals are probed for systematic departures from the patterns

desired. The procedures involved range from nonlinear regression and image

analysis to time-series analysis and cross-validation against independent analy-

ses of similar or related rainfall events.

We fix ideas and consider the WGR model as described in the previous sec-

tion. We do, however, introduce a modest generalization. First, let χ denote the

set R I xM 2. We assume that N is a cluster point process on ΓxSxχ, al-

though the exact clustering regime is not central to this treatment. Here the rain-

cells are endowed with four random characteristics; namely water content, aging

rate, dispersion, and velocity. Thus the water contents are random as before, but

the parameters a, b, and VQ appearing in the WGR smoothing kernel are addi-

tionally taken to be random variables. This leaves the functional form of the

smoothing kernel itself as the parameter determining the Le Camian representa-

tion in the model.

The problem is to assess the choice of smoothing kernel from a record of ob-
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served rainfall fields. Typically, the data consist of a time series of radar images
drawn from the partial observation of the rainfall intensity process R. As an ex-
ample of such data, we take the GATE rainfall fields as converted by Hudlow
and Patterson (1979). These fields refer to a time series of radar images depict-
ing derived rates of rain falling over a disk-shaped region of the Atlantic Ocean
during the summer of 1974. The issue is thus the extent to which the rainfall in-
tensity derived from the WGR model produces sample paths that represent the
spatial evolution exhibited in this time series.

To fix ideas further, let Y = (Y(t, x)),t e / and x e D denote the time series of
observed rainfall rates. Here / and D denote respectively the summer period of
1974 and the observational disk over the Atlantic Ocean. We view the data Y as
a composition satisfying

Y(t,x)=R(t,x)+Z(t,x),

for every te I and xe D. Here the R(t, x) denote the WGR representations of
Y(tjc) (see equation (3)) and the Z(tjc) denote the corresponding residuals. The
principal strategy of the present method of assessment is to probe the sample
paths of the triplet of processes Y, /?, and Z for evidence of the descriptive capa-
bilities of the model.

The method of sample path analysis proceeds as follows:

(1) The Fit. The first step is to obtain a fitted version of the model-based
representation. Recall that R is a function of the point process N and the
smoothing kernel k. Since our focus is set upon assessing the choice of k and N

cannot be observed directly, we look for a suitable state estimator ft, say, of N.
A general theory for handling such problems is described in section 3.3 of Karr
(1986). As a practical approach, we recommend finding a least-squares fit of N
by minimizing the square-error loss between R and Y over the range of observa-
tion. In our case, this involves estimating the placements and the characteristics
of those raincells generating Y. This may be handled using nonlinear regression.
That is, we introduce a vector-valued "parameter" consisting of those atoms of

N whose placements lie in / x D\ namely the placements and the characteristics
of all the existing raincells perceived to be generating rainfall over the window
of observation. We then solve for the minimizing value of that vector using the
Gauss-Newton procedure described in Bates and Watts (1988).

(2) Image Analysis. Let ft denote a suitable fit of the raincells and their

characteristics. On substituting ft for N in equation (3), we obtain a fitted ver-
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sion k, say, of the model-based representation of Y. Of course, the patterns of

rainfall manifest by k are determined by the choice of the WGR kernel, and thus

these patterns can be explored for the representational capabilities entailed in

this choice. Generally speaking, we look for agreement in shape, organization,

magnitude, and temporal evolution between the fields in the fitted image and

those in the images of data. This may be handled informally by comparing ani-

mations of the two time series or by detailed data-analysis of individual images.

Of course, we recommend doing both.

Next, we look at the least-squares residuals ϊ obtained by subtracting k

from Y. This yields a time series of images depicting departures in the data from

the fitted WGR representation. Here we examine the temporal evolution of the

distribution of residuals with particular regard to their spatial homogeneity.

That is, we look for reasonably Gaussian (i.e. structureless) distributions with-

out apparent anomalies; this may be handled using normal probability plots.

Secondly and peitiaps more importantly, we examine the images of residuals for

their adherence to spatial homogeneity using animation or detailed analysis of

individual images. For example, the presence of inhomogeneities may reflect an

inability of the model to properly fit peak intensities located at the raincells' cen-

ters or an inability to reproduce the stratiform precipitation supported by many

cloud systems. By such an examination, we ascertain when in the life cycle of a

storm system the WGR model gives an adequate description of precipitation

and, moreover, when it fails to do so.

(3) Decoupling and Time Series Analysis. As a further exploration of the

data and the model, we recommend that the analysis above be decoupled in time.

That is, we are analyzing a time series of spatial distributions of rainfall overD,

where, for each ίe /, Y(t) = (Y(t,x)),χe D denotes the observed distribution at

time t. Here we recommend analyzing Y(t), separately for every r, using the

techniques above. In this sense, we decouple the analysis in time.

The aim of the decoupled analysis is for example to partially separate the

choice of geometry from the choice of kinematics entailed in the choice of the

smoothing kernel (see remark (2) of the previous section). Thus, for each t in

the decoupled analysis, we decouple the WGR representation as follows. Let Nt

denote a point process on s xR +

2 . Here, if (xt, zt, bt) denotes an atom of N t for

some ω, then xt denotes the raincelΓs position and zt and bt denote its intensity

and coefficient of dispersion. Now we introduce the decoupled smoothing

kerned k' satisfying
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k* (y,xt,zt,bt) = z, Jlΐk bt

for every ye S. Note that the decoupled kernel k' preserves only the spatial

component or geometry in the starting WGR kernel. We have, for example, ab-

sorbed the exponential aging term into the time-dependent intensity zt.

The decoupled analysis proceeds by obtaining a fit #„ say, to Nt, a fitted rep-

resentation kt of Γ(ί), and the corresponding residual ϊt. Here Rt and ϊt are put

to the individual image analyses mentioned above, again emphasizing represen-

tational capability and spatial homogeneity. In addition, the ftt provide a times

series of fitted raincells and their characteristics. These may be analyzed as a

multivariate time series for consistency with the hypothesized model and histor-

ical analyses of similar rainfall events. In the case of the former, one can exam-

ine the choice of exponential aging as well as the chosen kinematic mechanism

describing the motions of the raincells.

In closing, we remark that the analyses above depend to some extent upon

subjective evaluations as well as a variety of informal physical judgements. For

example, detecting raincells in radar images is to some degree a subjective oper-

ation, but this can be achieved with the help of sound data-analytic definitions of

raincells as drawn from the meteorological literature. In fact, without the use of

such informal physical judgements one may not be able to fix suitable starting

values in the nonlinear regressions cited above. Nevertheless, some of these

judgements may ultimately find support in the stability of the resulting least

squares fits. Finally, we believe that the method of sample path analysis is a

strategy that is complementary to the method of primary features for assessing

Le Camian representations of rainfall fields. For an illustration of the methodol-

ogy, we refer the reader to the analysis in Phelan and Goodall (1989).

4. Aging Functions and Their Nonparametric Estimation. The purpose of

this section is to discuss the role of aging in rainfall fields. Our principal aim is

to introduce the aging function, which is a cumulative hazard function appearing

as parameter in many models of rainfall. We define a nonparametric estimator

of the aging function and sketch its properties. In closing, we suggest integrat-

ing the estimator into the method of primary features as described in the previ-

ous section.

Aging in Rainfall Fields. The process of aging in convective raincells ap-

pears to be integral to the evolution of rainfall fields. For example, aging has

been found empirically to effect the propagation of storms, the structure of tur-
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bulence in rainfall fields, as well as the shape of the spatial distribution of rain-
fall intensity.

For example, Houze (1981) discusses the importance of the aging of older
raincells in the creation of new raincells at the leading edge of a storm system.
He describes the resulting interplay between downdrafts and updrafts that ap-

pear to serve the propagation of the system. On the other hand, Zawadski
(1973) drew a connection between the decay of the empirical autocovariance
function of an observed rainfall field and Taylor's hypothesis of turbulence in
such fields. Briefly, he showed that the expected duration of a convective rain-
cell appears to define a cutoff for the approximate validity of this hypothesis for
rainfall fields. Finally, using the method of sample path analysis outlined above,
Phelan and Goodall (1989) assessed the WGR model against GATE rainfall
fields. We found that the model fit the data reasonably well during the earlier
stages of a storm, but that as the convective raincells that were supporting the
storm neared the end of their effective lives, the model lost its ability to describe
the patterns of observed rainfall. It thus appears that the geometry and kinemat-
ics of an aging storm is notably different than that of a developing or mature
storm.

The importance of aging in these and other treatments of observed rainfall
fields suggests the need to better understand the process of aging in convective
raincells. One way to do this is in the context of a statistical investigation of the
durations of such cells. The remainder of our discussion illustrates this ap-
proach by treating the problem of survival analysis of convective raincells from
partially observed rainfall fields.

Aging Functions in Rainfall Models. An aging function is simply a cumula-
tive hazard function belonging to a positive random variable. Nevertheless, we
prefer the simpler term aging function. One reason for this preference lies in the
role such functions play in the story of aging in rainfall fields; a fuller treatment
of this role is to be found in Phelan (1989). We define an aging function.

Definition Aging function. The function A = 04(0), t > 0 is said to be an ag-
ing function if A is an increasing, continuous function satisfying A(0) = 0 and
A(t) tends to infinity with t. D

Note that we have chosen to restrict our treatment to continuous aging func-
tions for the mathematical convenience of this choice below.

We use aging functions here to parametrize the distribution of positive ran-
dom variables. In specific, let X denote a positive random variable of distribu-
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tion ψ. The random variable X is said to have aging function A = A(t)), t > 0 if

1 - ψ(0 = eA(t) or ψ(Λ) = A{dt)eA(t\ t > 0,

The aging function is thus minus the natural logarithm of the survival curves be-

longing to X, which, in the context of survival analysis, is also called the cumu-

lative hazard function.

We give an example. Let X denote a positive random variable having Pareto

distribution of shape parameter b and scale parameter c. The aging function be-

longing to X then satisfies

A(t) = bln{\ + ct/b), ί>0.

This aging function entails that X has a long-tailed distribution relative to, say,

the distribution of an exponential random variable. Nevertheless, as b tends to

infinity, A(t) tends to ct for every ί, where the latter is the aging function belong-

ing to an exponential random variable of parameter c.

Aging functions appear as statistical parameters in many stochastic models

of rainfall fields. As an illustration, we fix ideas and introduce the aging func-

tion to the random-disks model as described in sections 3 and 4. Recall that N

is a Poisson random measure on TxSxχ, where χ is the product space

R I xf 2. Here we simplify the model in assuming that the mean measure μ

belonging to N satisfies

μ{dt9 dx, dr, dw, dz, dv) = dtdxdrer dwew dzez δ0,

for every teTjce S,r,w,ze R + , and veR 2

9 where 6Q is the direct measure

concentrated at the fixed velocity v0. The raincells thus move lockstep along the

fixed velocity VQ. Moreover, their radii, water contents, and durations are inde-

pendent exponential random variables of unit parameter.

Next, let A = (A(t)), t>0 denote an aging function and let/denote the mea-

surable mapping satisfying

f(t, x, r, w, z, v) = (t, x, r, w, A'(z), v),

for every t e 7> e S/,w,z e R + , and v e R 2. Here A" denotes the functional

inverse of A. Now consider the point process N given by NofΛ, where/"1 de-

notes the inverse image of/. According to definition 1.36 in Karr (1986), N is a

measurable mapping ofNbyf. Moreover, N is a Poisson random measure on
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T x s x χ. Its mean measure μ is \xofι and satisfies

A (dz) e~λ ( z ) δQ,

for every teTjce S,r,w,z eR + , and ve/? 2. This follows easily from the na-

ture of the transformation/. In specific, fix ω and suppose (t, x, r, w, z, v) is an

atom of N(ω). Then, by definition, the point (t, x, r, w, A\z\ v) is an atom of

N (ω). Now, it is well known that the mapping z -> A' (z) transforms the expo-

nentially distributed durations among the atoms of N to durations among the at-

oms of N having aging function A. This, or course, implies the desired result.

According to the argument above, N generates raincells whose durations

have aging function A. Obviously, we can enrich the mapping/by introducing

transformations on the remaining characteristics of the raincells, but this would

distract from our present purpose. That is, we view A as an infinite dimensional

parameter in the model above and address its nonparametric estimation.

Nonparametric Estimation. We consider the nonparametric estimation of

the aging function A appearing in the random-disks model described above. In

this consideration, we describe a suitable observational scheme that allows for

the partial observation of a set of convective raincells and their activities. We

then define a martingale-type estimator of A that is to be drawn from these par-

tial observations.

We imagine that we are positioned at a fixed weather radar station, such as

the one presently operating off Darwin, Australia. Over a period of time, storm

systems pass in the vicinity of our instruments, which record the activities of the

convective raincells. We specifically assume that our instruments track the tra-

jectories of the raincells as they pass through the field of view. An objective

method for doing so is described in Rosenfield (1987).

More formally, let TocT denote an interval of time and let 5 0 c 5 denote a

disk of fixed radius in the plane. Here Γo denotes the period of observation and

SQ denotes the field of view of our instruments, so that To x s0 denotes the cover-

age window of our observational scheme. Our scheme is to observe the trajecto-

ry of a raincell in SQ, for every raincell that enters SQ during the period TQ.

We assume that raincells and their characteristics are being generated by the
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Poisson random measure N on ΓxSxχ, where N is described above. We

identify N with the countable sequence (Γn, Xn, Rn, Wn, Zn, VQ), n > 0 of

Γx 5 x χ - valued random variables. For the raincell having label n, (Tn, XJ de-

notes its time and place of birth in TxS, Rn,wn, and Zn respectively denote its ra-

dius, water content, and duration, and VQ denotes its fixed velocity. According to

the kinematics of the random-disks model, the trajectory of the raincell traces a

line segment Lrt, say, in 5. According to our observational scheme, we observe

that part of Ln contained in SQ. Figure 1 depicts the four contingencies in the

partial observation of LΛ, depending on the position of the raincell at birth and at

death.

More formally, for each Λ, let Ln denote the line segment in S traced by the

trajectory of the raincell labeled n Then Ln satisfies

Ln = [x: xeS,x = Xn + tvoor some t e [0, ZJ }.

Let /(£„) denote the length of Ln. Clearly, we have

for every n, provided llvoll > 0. Thus, by observing the trajectory of the raincell,

we observe its duration. The observational scheme, however, allows only the

partial observation of the Ln, and thus it allows only the partial observation of

the Zn. That is, we observe only the subtrajectory sonLn, see figure 1, and

therefore we observe only the censored duration zrt satisfying

ZΛ = /(SonLΛ)/llvoll.

According to the model, the Zn have aging function A = (A(t)), t>0. Here

we propose an estimator of A to be drawn from the zn; the censored durations.

For each n, let δ n denote the indicator l (Zrt = zΛ) this indicator is one for any

raincell whose trajectory is fully contained in SQ. Let M denote the random vari-

able satisfying

Here M is the random number of raincells whose trajectories enter our field of

view. If for example To is a bounded interval, then M is finite almost surely.
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Now let (TV,), t > 0 and (Rt), t > 0 denote the stochastic processes satisfying

M M

Nt= X i(ZΛzt, δn =1) and/?, = χ i ( Z n > o .
Λ = 1 n = l

These processes are respectively the analogue of the survival counting process

and the risk process referred to in the analysis of censored survival data; see

for example Andersen and Boigan (1985). Finally, we define the stochastic

process λ = (A,), t > 0 satisfying

Here we propose A as a nonparametric estimator of the aging function A.

Properties of the Estimator A. The estimator A is in essence a Nelson-

Aalen estimator of the aging function A. It may be justified as a nonparametric

maximum likelihood estimator (NMLE) or as a martingale estimator. In the

case of the former, one writes down the appropriate likelihood for the censored

durations as a function of the infinite dimensional parameter A. Then one ap-

peals to a generalized principle of maximum likelihood to derive A as the

NMLE in the manner of argument given for example in Johansen (1978).

On the other hand, A is also a martingale estimator. That is, let

G= ί G ], f > 0 denote the internal history generated by the counting process

(Nj)i t > 0. Then the process formed of the difference between A and A> name-

ly A -A = (Λ -A (0), t > 0, is a semimartingale relative to G. Although such

estimators have been studied extensively in for example Andersen and Boigan

(1985), their application to the analysis of rainfall fields is a novel one.

Whether one views A as an NMLE or a martingale estimator, the martin-

gale property is useful in developing its statistical properties. For example, we

consider the asymptotic distribution of A as the observational period Γo grows

unboundedly. In this consideration, we expect that A - A (suitably normalized)

converges weakly to a Gaussian process. Since A is a martingale estimator,

this expectation can be proved by appeal to the appropriate martingale central

limit theorem.
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A complete treatment of the statistical properties of A are to appear in a

Phelan (1990). There we treat a broader range of observational schemes and

stochastic models of greater generality than the one described above.

The estimator A and The Method of Primary Features. In order to inte-

grate the estimator A into the method of primary features, we recommend that

the aging function A be chosen as one of the primary features. That is, we

identify A with the model-based value of the "aging-function feature."

Typically A or Λ(θ) will depend on one or two parameters in the model, such

as the shape and scale parameter determining the Pareto aging function exhib-

ited above. Next, we identify the data-based value of the aging-ftinction fea-

ture with the nonparametric estimator A. Finally, we incorporate the pair

(A(θ),λ) directly into either the estimation or the post-estimation assessment

procedure developed in the method of primary features. On the one hand, A

may be used to determine the parameter θ in the simultaneous equation shown

at (5). Otherwise, suppose an estimate θ of θ is obtained from (5) without the

help of Λ. We then use θ to form the model-based parametric estimator A(e)

of A(θ) and we compare A(Q) against A as a partial, nonparametric assessment

of the fit of the model.

5. Concluding Remarks. We argued for the use of spatial stochastic pro-

cesses as phenomenological models of rainfall fields. In this spirit, we treated

the stochastic descriptions in Le Cam (1961). We described Le Camian repre-

sentations of rainfall fields and cited two examples of interest to hydrologists

who analyze such fields.

We referred to the need of flexible strategies in the assessment of Le Cam-

ian representations of rainfall. In doing so, we outlined two strategies of as-

sessment; one called the method of primary features and the other a method of

sample path analysis. We argued that the two offer complementary approaches

to the problem of assessment. We remark here that each strategy is made pos-

sible by the increase in sophistication of both data and data-handling capability

available today.

We pointed out that the dialogue among observation, modeling, and infer-

ence leads to fresh scientific inquiries as well as to novel applications of statis-

tical technique. In illustration, we introduced a nonparametric estimator of an

aging function in a rainfall model by way of a martingale estimator typically
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found in the literature on life history analysis. We argued for the integration of
this estimator into the method of primary features.

We remark, finally, that the Le Camian framework for the stochastic de-
scription of precipitation remains to be fully explored. For example, little is
understood of how well these models satisfy the evolution equations that de-
scribe the physical dynamics of precipitation. Notwithstanding, more work is
needed in the theory and application of such descriptions in the statistical anal-
ysis of observed rainfall fields.
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Figure 1. Four contingencies in the partial observation of Ln. Here So denotes a
disk in the plane, VQ points in the horizontal direction, x denotes the position of
the raincell at birth, and 0 denotes its position at death.
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