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Abstract

This is a brief account of different contexts in which random walks on
graphs occur, and of techniques used in their analysis. It is an expanded version
of talks given in several places during 1986-89.

1. INTRODUCTION. Just as games of chance provide an easily compre-
hended setting for the elementary mathematics of probability, so random walks
provide a simple illustration of stochastic processes. Drunkard's walk, with suc-
cessive steps taken right or left at random, and gambler's ruin, the successive
fortunes of a gambler staking $1 on red at roulette, are readily described to a
non-mathematician. Generalizations to the study of sums of independent identi-
cally distributed random variables in 1 or d dimensions form a classic field of
probability theory (usually called random walk, but here called random flight):
see [40]. A different generalization is to consider a graph G and a particle step-
ping randomly around the vertices in the natural way: from a vertex v it chooses
uniformly at random an edge e incident at v, and steps to the vertex v' at the oth-
er end of e. Such random walks on graphs are our subject.

The professional probabilist, vintage 1960-80, is liable to regard this topic as
a dull special case of Markov theory. The author would prefer to draw an analo-
gy with (say) branching processes, another special case of Markov theory which
has long been recognized to have a distinctive flavor. The author, admittedly
partisan, feels that "random walks on graphs" has at least as many applications,
and a greater variety of mathematical tools and results, than does "branching
processes", and deserves similar recognition as a subject in its own right.

Because these random walks arise in different settings, many elementary
(and not-so-elementary) results have been repeatedly rediscovered. The purpose
of this talk is to publicize the fact that a lot is known about these random walks,
even though the subject has not been well-organized.

2. Contexts This section is devoted to a list of applications of random
walks on graphs. "Applications" is a much-abused word: what I mean is "con-
texts in which random walks arise, in settings where the original question is not
about random walks".
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Context 1. Analogy with electric networks. The delightful elementary

monograph by Doyle and Snell [25] treats this analogy in detail. Consider the

edges of a graph as a network of resistors of unit resistance. Apply unit voltage

at vertex V\ and 0 voltage (ground) at vertex υ j . Then some current i υ w flows

along each edge (υ,w), each vertex υ has some voltage f(υ) and some total cur-

rent / flows through the network. These quantities are related to quantities de-

fined in terms of the random walk on the graph. Write T υ for first hitting time on

υ, and T^ for first return time to υ.

Write Eυ( ) and Pv() for expectation, probability for the walk started at υ.

Write d(y>) for the degree of υ (= number of edges at υ). Then

fix) =Pχ(Tv<Tv)

ίΌW = £ υ ((# steps υ -> w) - (# steps w -> υ) before τv)

Facts about electric networks, such as

• Removing a wire can only decrease current flow

• actual current flow minimizes energy dissipation amongst all possible

flows can be re-interpreted as facts abour random walks on graphs, and lead to

results such as conditions for recurrence/transience for walks on infinite graphs.

Context 2. Leveling networks. Maps show heights of mountain-tops, etc.,

which are ultimately derived from measurements of height differences between

points with a clear line of sight. Consider a graph whose vertices are the physi-

cal points whose heights are desired, and where an edge (υ,w) denotes that a

measurement α(υ,w>) of "height at υ - height at w" has been made. Let VQ be a

reference point of known height Λ(i)o). Assuming the measurements contain er-

rors, an estimate of the true heights h(v) could be made by least squares: choose

the function h which minimizes

edges

or more generally a weighted sum of this kind. It turns out that the least squares

estimate A*(υ) can be described in terms of the random walkXrt started at υ o ;
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n = l

In other words, each deterministic walk from υo to υ yields an empirical height

for υ as the sum of measured height differences along that walk; and the least

squares estimate is the average of these empirical heights, where we use the ran-

dom walk to do the averaging. These ideas are explored in a somewhat neglect-

ed monograph by Borne and Meissl [13].

Context 3. Recreational problems. Imagine a knight on a corner square of

an otherwise empty chessboard. Move the knight by choosing at random from

the legal knight-moves. What is the mean time

• until the knight first returns to the starting square?

• until the knight has visited all squares?

These look like messy problems for which no simple answer would be expected.

It turns out that Maikov chain theory gives a simple answer (168) to the first

problem (this is a textbook exercise). The second problem really is messy, but

some asymptotics suggest a rough approximation (500) which simulations re-

veal to be about right.

Of course, the knight is performing random walk on a graph. Random

walks arise in other recreational problems (on polyhedra; in card-shuffling), and

from time to time appear in the "math" section of electronic bulletin boards.

Diaconis [21] contains a nice account of card-shuffling problems.

Context 4. Universal traversal sequences. It has long been realized that proba-

bilistic methods are sometimes useful in combinatorics to establish the existence

of objects which are hard to exhibit constructively: classical applications are in

the monograph by Erdos and Spencer [27]. The following elegant application of

random walk to a combinatorial problem was made by Aleliunas et al [6]. Let

S(N,d) be the set of all d-regular graphs G with N vertices and with the edges at

each vertex labelled (1,2, ...,d). A universal traversal sequence

ivi2 iue {l d} satisfies: for each GεS(N,d) the deterministic walk "at

step n choose edge ίrt" visits every vertex. What is the shortest length U =

U(N,d) of such a sequence? It can be proved that most sequences of length

o (dNhogN) are universal traversal sequences.

To see why, choose ίi,i2»— uniformly at random, so the walk is simple RW.

On a fixed G, consider the cover time C = time to visit all vertices. It can be
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shown that EC = O(N2) for G regular. Then by iterating, there is a constant K

such that on fixed G,

P (C > KdNhogN) < N~Nd

But \S(N,d)\ = o(NNd), SO

C£KdN3\ogN for all GeS(N,d)) -.

Context 5. Minimization algorithms. One way in which probability enters the

theory of algorithms is via randomized algorithms, as in the example above.

Another way is that certain problems can be proved "hard" by showing that,

when presented with random data, no algorithm has much chance of finding the

solution quickly. An application of random walk was given by Aldous [3].

Consider a function A defined on the vertices of a graph G: for definiteness, the

cube graph in d dimensions. One wants to find the vertex υ at which Λ(υ) is

minimized. Constrain h to have no local minima except the global minimum.

Thus any deterministic "descent" algorithm will work, but it might work slowly.

Could there be some more sophisticated algorithm which always works quick-

ly? The answer is no. Consider random walk started at a uniform vertex VQ and

let h(v) be the first hitting time on υ. Then h is a random function satisfying the

constraint, but it can be proved that every algorithm requires expected time

to locate υ 0 .

Context 6. Approximate counting, or simulating uniform distributions on

combinatorial sets. Consider finite combinatorial sets S#, e.g. all permutations

of \χ...yK satisfying some family of conditions. It is intuitively clear that find-

ing an exact formula for IS#I is roughly equivalent to being able to write a pro-

gram to simulate a uniform element of the set using a deterministic number of

calls to a random number generator. But there is a classical "Markov chain"

method of simulating approximately a desired distribution π, originally devel-

oped for Ising-type physics models [29]: define a chain whose stationary distri-

bution is π and simulate the chain. In our setting, we make a graph G with

vertex-set Sg and with edges (υ,w) interpreted as "υ can be obtained from w by a

small change", for some specified notion of small change. If the graph is con-

nected and regular (the non-regular case can be handled by minor modifications)

then random walk has uniform stationary distribution, and so we can approxi-
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mate the uniform distribution by simulating the random walk. For this method

to be useful, the walk has to be "rapidly mixing": that is, the time for distribu-

tions to approach the stationary distribution should be small compared to the

size of the graph. This is equivalent to G being an expander (i.e. highly- con-

nected) graph.

Thus if Sg can be given a usable graph structure which gives an expander

graph, we can simulate the uniform distribution approximately, and thus esti-

mate quantities such as

h* = weseSh(s)

for specified h : 5 -» R. A more interesting issue is to use such simulation to ap-

proximately count the size IS#I. This is studied in detail by Sinclair and Jerrum

[39], who develop a notion of "self-reducibility" for families (Sg) which permit

approximate counting. To specify a simple example, for a given graph G let SG

be the set of partitions

s = {(Όj.wj), (υ2,w2),..., (υ^wk)};k<\G\/2

into edges (υ̂ ,ŵ ) where the vertices \>v wv υ2, w2,... are distinct. There is no us-

able exact formula for isy »but we can make SQ into a graph with edges (sijj)

such that the edges of G comprising s2 and sγ are identical except for some one

edge (υ{ ,Wj). Performing random walk on SG allows approximate counting of

that set.

A continuous variant of the above is the problem of approximating the vol-

ume of a convex body 5ς^Rd in high dimensions d. By considering a fine grid,

one can re-interpret this as the problem of approximate counting for a "convex"

subset s* c zd. One can then seek to do the counting by running random walk on

S*, considered as a subgraph of 27*. This is studied in detail by Dyer et al [26].

Context 7. Random spanning trees in regular graphs, A connected finite

graph G has a set of spanning trees, that is subgraphs on all vertices which are

trees. The number of spanning trees is given by a classical expression, the ma-

trix-tree formula, found in many textbooks on graph theory. Now consider the

(uniform) random spanning tree in G. Studying its properties via combinatorial

methods is not easy, since this involves counting the number of spanning trees

with some extra property, and typically there are no nice formulas available.

However, there is a probabilistic construction of the random spanning tree using

random walk, as follows. Start the walk X(ri) from an arbitrary vertex X(0). For
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each υ*X(0) let Γ υ be the first hitting time on υ. Then the graph with edges

(X(Tυ -l),υ) is a random spanning tree, and it turns out (but seems non-obvious)

that this random tree is indeed uniform on the set of all spanning trees. Thus one

can use properties of random walk to study the random spanning tree. See Al-

dous [4] and Broder [16]}.

Context 8. Planar graphs. The usual square lattice in R2 has edges of con-

stant length and vertices of degree 4. The triangular lattice has edges of constant

length and vertices of degree 6. There is a sense in which "6" is critical.

Conklin [19], using results of Dodzuik [23] and Doyle and Snell [25], proves

the following result.

Let G be an infinite planar graph with edge-lengths le. Suppose there exist

ε > 0, n0 < oo such that, for each connected finite set of vertices of size at least ΠQ,

the average degree is at least 6+ ε. Then supeljinfele = «».

The proof can be phrased in terms of random walk. The "average degree >

6" hypothesis implies the walk is transient; whereas if G is planar and the edge

lengths were bounded above and below then the walk would be recurrent.

Context 9. Voter Models. One of the major post-1970 developments in

probability theory has been the study of interacting particle systems on infinite

lattices: see the book of Liggett [35]. The following finite version has been stud-

ied by Donnelly and Welsh [24], Consider a graph where each vertex is colored,

initially with different colors. Each vertex from time to time (precisely, at times

of independent Poisson processes) picks an adjacent vertex at random and

changes its color to the color of the picked neighbor. Eventually, on a finite

graph, all vertices will have the same color: how long does this take? This ques-

tion turns out to be related (via a certain notion of duality ) to the following

question. Imagine particles, initially one at each vertex, which perform random

walk on the graph, but which coalesce when they meet. Eventually they will all

coalesce into one particle: how long does this take? Such questions are analo-

gous to the cover time problems in Context 4.

These questions have been studied more in the setting of infinite graphs.

There, the chance two walks coalesce may be less than 1, which turns out to be

equivalent to the original voter model having more than one stationary distribu-

tion.

Context 10. Diffusions on regular fractals. The d-dimensional diffusion (=

continuous-path, strong Markov) processes arising in most applications behave
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locally like Brownian motion with some drift and covariance functions, plus

some boundary behavior. Quite different diffusions can be constructed to live

on regular fractal sets such as the Sierpinsky gasket (divide an equilateral trian-

gle into 4 smaller triangles, remove the center one, and repeat this procedure on

the 3 remaining regions.) One can regard the fractal set S as a limit of finite

graphs Sg and the diffusion on S as the renormalized limit of random walks on

SR. The properties of the diffusion may be established by first studying proper-

ties of the finite random walks. See Kusuoka [34], Barlow and Perkins [7],

Krcbs [33].

Context 11. Random fractals. Physicists believe that at "critical points"

there is typically some type of "fractal" behavior. In undergraduate probability

theory, the word critical arises in one place, in the context of simple branching

processes. Consider a non-trivial critical (mean number of offspring = 1 )

branching process, and condition on non- extinction (i.e. condition on non-ex-

tinction at generation n and take weak limits of the whole process as n->«>.)

This process, considered as a tree in the natural way, is a prototype for a class of

"random fractals occuring at critical points in random processes". More compli-

cated and more interesting random fractals occur as critical percolation clusters.

One method of studying these fractal sets has been to study random walk on

them. For instance, on the critical branching tree the distance from the origin at

time n grows at rate nιβ: see Kesten [32].

3. Topics and Techniques. We now turn from the extrinsic to the intrinsic.

If we agree that random walks are worth studying, what are natural mathemati-

cal questions to ask about them? Let us list some topics which have been stud-

ied, and mention some techniques used. My own particular interest has been the

case of large, finite, unstructured graphs, and that will be the central theme. But

many of the topics discussed will be one step removed from this area, in one of

many possible directions.

Technique 12. Reversible Markov chains. Simple random walk is an example

of a reversible Markov chain. Where the graph has no special symmetry, there

are few special techniques available beyond the general techniques for treating

reversible chains. Thus it is arguable that the "natural mathematical setting" for

the study of random walk is within the larger class of general reversible Markov

chains. From this viewpoint, one special property of our random walks is that

there is a simple explicit formula for the stationary distribution
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T At w<*(υ) = degree of υ (1)

and that this stationary distribution is typically roughly uniform. This contrasts

with other settings where reversible chains arise:

• queueing networks - Kelly [31 ]

• interacting particle systems - Liggett [35]

• physical systems - Whittle [43]

where useful explicit formulas are often hard to find, and where typically one

gets stationary distributions of the form π(jc) = C exp(-V(;t)).

Topic 13. Exact formulas! group representation theory. Exact formulas for

n-step distributions or first hitting times can only be expected for graphs with

very special structure. Given a discrete group G and a subset H (typically, H is a

small set of generators) with H = /Γ1, we can construct the Cayley graph which

has vertex-set G and edges (g,gh) : geG,he H. Such graphs satisfy one of a

hierarchy of symmetry conditions (see e.g. Biggs [10].) Given enough symme-

try, it becomes feasible to use group representation theory (the analog of Fourier

analysis for random walk in Rd) to get more-or-less explicit formulas. Diaconis

[21] gives a fine introduction.

Problem 14. Weakening symmetry conditions. For most applications it is

unreasonable to assume any group-theoretic symmetry condition. On the other

hand, if a graph is merely assumed to be regular, then the random walk may be-

have quite badly. As a specific instance, consider asymmetry of mean hitting

times. Vertex-transitivity implies £υΓw = Ewτυ, whereas for regular graphs the

ratio may grow polynomially fast as the size of the graph increases. One would

like some "niceness" condition which forced ratios E^TJEJΓ^ to stay bounded

or grow only slowly.

Technique 15. Hard Analysis. Random walks specialize reversible chains,

which in turn may be considered as discretizations of rf-dimensional reversible

diffusions (without the geometry of d-dimensional space), which in turn general-

ize the physics of the heat equation and the mathematics of Brownian motion.

This gives an indirect link to a large chunk of classical physics and analysis, and

some of the ideas developed there carry over to our setting. One natural concept

is the Dirichletform



20 ALDOUS

</./> * i Σ σo w ω ) 2 (2)
(,/) € E

where/is a function on the vertices and E denotes the set of edges. For instance,

the dominant eigenvalue λ^ controlling the asymptotic rate of convergence to

the stationary distribution can be characterized as

There are several ways to actually bound this quantity for specific graphs: an el-

egant way, involving specifying a path between each pair of vertices and seeking

to minimize the number of such paths using any fixed edge, was introduced in

[30] and is treated systematically by Diaconis and Stroock [22]. Deeper results

relating the distributions at time t to properties of the Dirichlet form are given by

Carlen et al. [17] in the more general setting of reversible chains.

Another powerful result whose proof comes from classical analysis is a uni-

versal large deviation bound due to Carne [18]. For random walk (X )̂ on any

regular graph,

PΌ(Xrt =w )<P(\Sn\>d(v,w))

where Sn is simple symmetric random walk on the integers and d is graph-dis-

tance (= minimum path length). When d(x>, w) » n1/2, the elementary Binomial

bounds make the right side small. In particular, for graphs of polynomial growth

(i.e. the number of vertices within a ball of radius r grows only polynomially)

we can deduce that d(XΛ,Xj = O («1/2iog β(n)). Sharp results of this kind for

subgraphs of 2^ are given by Barlow and Perkins [8].

Topic 16. Infinite and finite graphs. For random walk on an infinite graph,

one can ask questions like: is it transient or recurrent? does it have non-trivial

boundary? At first sight such questions have no relevance for finite graphs. But

it turns out that they do relate to properties of sequences Gg of finite graphs

with l vk\ -»oo. Loosely, with an infinite graph G one can often associate finite

graphs Gg which can be thought of as "finitizations" of G. For instance, with Z^

we associate Z? modulo K. On the other hand there are many sequences of finite

graphs (e.g. the cube graphs) with no natural limit infinite graph: in a sense, the

notion of "sequence of finite graphs" is more general than "infinite graph".

For example, a sequence Gg of finite graphs may or may not have the prop-

erty
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&vevwEvTj\ vκ\ is bounded in K. (4)

When the Gg are finitizations of an infinite G, this property is equivalent to tran-

sience of the random walk on G. Thus in general we can regard this property as

the finite analog of transience.

Technique 17. Naive and threshold limits. Classical probability theory was

much concerned with the asymptotic behavior of a fixed process as time -> <*>.

Such naive limit theory is rather trite for random walks on finite graphs.

Instead, one can consider non-asymptotic properties of random walk as the size

of the graph increases. Limit theorems in this setting are sometimes called

threshold results, a term used for analogous results in the theory of random

graphs (see Bollobas [12]}). As an example, under the boundedness assumption

(4) one can show that normalized first hitting distributions converge to a limiting

exponential distribution: see Aldous [1].

Topic 18. Isoperimetric inequalities. An inequality of the type: for all finite

subsets A of vertices of a graph G,

#edges (A ->AC) >c min (|Λ|, Uc|)

is called an isoperimetric inequality. The largest c permitted (strictly positive,

for a finite connected graph) is the isoperimetric constant for G. One can use c

to bound λ2 (recall (3)) and thence the time for convergence to the stationary dis-

tribution: see Jerrum and Sinclair [39] (this is one technique used in Context 6).

Thus for finite G, the property that c is not close to 0 (such G's are loosely

called expanders) is equivalent to the rapid mixing property of random walk on

G.

For an infinite graph we have a rigorous definition: it is an expander iff c >

0. This graph-theoretic property corresponds sharply to some probabilistic prop-

erties of the random walk:

• The random walk has non-trivial boundary

• Λ> (*n = υ ) -* ° exponentially fast.

See Gerl [28] for a survey. These results allow us to regard "rapid mixing" for

walks on finite graphs as the finite analog of "non-trivial boundary" for walks on

infinite graphs.

A "pure math" treatment of the connection between eigenvalues and ex-

panders, in the context of graphs associated with groups, is in the forthcoming

book by Lubotzky [36].



22 ALDOUS

Technique 19. Analytic and probabilistic parameters. One can define pa-

rameters of a finite graph which measure typical values of quantities such as

mean hitting times, cover times, or convergence times. Much of the theory of

random walk deals explicitly or implicitly with inequalities between such pa-

rameters. It turns out there are two parallel theories for such parameters. One is

an analytic theory, using eigenvalues such as λ2, which can be interpretated as

an "average-case" (over starting places) or I? theory. The other is a probabilis-

tic theory, using techniques such as coupling (see e.g. Diaconis [21]; Aldous

[5]}) to study the "worst-case" (over starting places) or L~theory. The interplay

between these two methods is a recurring theme.

Technique 20. Pure graph theory. The part of pure graph theory which relates

most to our concerns is perhaps the spectral theory of graphs, treated in detail by

Cvetkoviec et al [20]. [ Aside. Actually [20] treat spectral theory of the adja-

cency matrix, which has no direct probabilistic relevance. More recently graph

theorists have studied spectral theory of the Laplacian matrix β, which is essen-

tially the transition rate matrix for the continuous-time Markov chain with tran-

sition rate 1 along each edge: see e.g. Mohar [37]. Our concern is primarily with

the transition matrix P, whose study reduces to that of Q iff the graph is regular.

Of course, similar techniques can be used on all these matrices.]

It would be foolish to pretend that our random walk studies are central to

pure graph theory. Many topics in graph theory (chromatic number, perfect

graphs) involve qualitative or quantitative properties of graphs which do not

seem to relate significantly to properties of random walk on the graph. Let us

merely observe that occasionally random walk is useful in answering non-ran-

dom questions about graphs (e.g. Contexts 4,6, 8). And occasionally consider-

ing random walk on graphs will illuminate connections between properties of

graphs. For example, the connection between eigenvalues and expanders is a lit-

tle mysterious in itself, but become clear when you realize that both measure

how rapidly random walk is converging to its stationary distribution.

Topic 21. Exact extremal graphs. The subject of extremal graphs - i.e.

those for which general inequalities become equalities - is an established part of

graph theory (see e.g. Bollobas [11]). As mentioned before, much of the theory

of random walks involves bounds between parameters of the walk and parame-

ters of the graph, so it is natural to ask for the exact extremal graphs where the

bounds are attained. It is easy to show that the complete graph is extremal in

various senses. For example, there is a general inequality
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E π Γ Ό >(l-π(υ)) 2 /π(υ)

with equality iff the graph is complete, (π is the stationary distribution (1)). The

only known hard extremal result about general graphs concerns t smaxυ W7Ό.

Brightwell and Winkler [15] show that t* is maximized, over Λ-vertex graphs,

by a graph consisting of a complete graph on *« 2n/3 vertices, with an attached

path of length n k.

On trees there are simple explicit formulas (apparently due to Moon [38]) for

means and variances of hitting times, so it is not surprising that extremal results

are somewhat easier. Results concerning hitting times are given by Yaron [44],

and results concerning cover times by Brightwell and Winkler [14]}.

Topic 22. Fractional dimension. For a subgraph G of the lattice Z^, or

more generally for a graph in which the number of vertices within a ball of radi-

us r is O(r**) for some d, it is natural to try to assign some "fractional dimension"

dim(G) < d to G . As mentioned in Context 11, one can try to relate definitions

of dimension to properties of random walk on G : for recent woik see Barlow

and Taylor [9], Teles [41,42].

Technique 23. Martingale methods. Martingales occur naturally in some
questions about random walk on infinite graphs, e.g. boundary theory. But the
key results about martingales are the general inequalities, which are purely
finitistic; one would expect these to be useful in establishing inequalities con-
cerning finite random walks. Surprisingly, very little use of martingales is made
in the existing literature (Aldous [2] is one exception): perhaps they will be ex-
ploited more in future.

A more extensive bibliography concerning random walks on finite graphs is
available from the author.
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