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We define a class of multivariate exponential distribu-
tions as the distributions of occupancy times in upwards
skip-free Markov processes in continuous time. These
distributions are infinitely divisible, and the multivariate
gamma class defined by convolutions and fractions is a
substantial generalization of the class defined by Johnson
and Kotz (1972). Parallel classes of multivariate geomet-
ric and multivariate negative binomial distributions are
constructed from occupancy times in “instant” upwards
skip-free Markov chains. Maximum likelihood estimation
and times series applications are discussed.

1. Introduction. The exponential distribution plays a central role in several
fields of probability and statistics, and ranks in overall importance next to the nor-
mal distribution. While for the normal case we have a well established multivariate
normal distribution, in the exponential case the situation is far from clear-cut. A
variety of bivariate exponential distributions (BVE) have been defined in the past,
some of them extendable to higher dimensions and to gamma distributions.

The univariate exponential distribution has a number of important charac-
terizations. Multivariate extensions of some of these characterizations were used
for construction of multivariate exponential distributions (MVE) by Marshall and
Olkin (1967) (lack of memory property) and Paulson (1973) (a stochastic difference
equation). Standard transformation techniques were exploited by Kibble (1941)
using a x2-type derivation, and Moran (1969) using the distribution-function trans-
formation and then the ‘-log’ transformation to obtain a MVE from the multi-
variate normal via a multivariate uniform distribution. Gumbel (1960) explored
possibilities of defining BVE and MVE classes based on the form of the joint
distribution and density functions. Arnold (1975) constructed nested classes of
BVE’s by repeated application of geometric compounding. His constructions are
equally applicable to multivariate geometric distributions (MVG). Wang Zi Kun
(1980) derived the distributions of occupancy times (sojourn times) in birth-death
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processes; these distributions are MVE. This brief review of related research is
not exhaustive; our research was motivated by these references. We extend the
results of Wang Zi Kun to all upwards skip-free Markov processes on {0,1,2,...},
and define a parallel MVG class.

In Section 2 we give the definition of occupancy times and related notation,
and construct a new class of MVE distributions. We will work mainly with mo-
ment generating functions (mgf), and we derive for them recursive formulae which
involve the matrix of transition intensities of the underlying Markov process. Ow-
ing to infinite divisibility we have also a class of multivariate gamma distributions
(MVD).

In Section 3 we construct a new class of MVG distributions from occupancy
times in ‘instant’ Markov chains. The constructions in Sections 2 and 3 are com-
pletely analogous, and there is a one-to-one correspondence between our MVE and
MVG classes, which is also a one-to-one correspondence between the underlying
stochastic processes. This one-to-one correspondence is an extension of the well-
known relationship between the mgf’s of univariate exponentials and probability
generating functions (pgf) of geometric distributions:

vo(s) = Py(s+1) for @ =p~' -1,

where g is the mgf of the exponential with parameter ©, ©/(© — s), and P, is
the pgf of the geometric distribution with parameter p, (1 — p)/(1 — pz).

In Section 4 we discuss maximum likelihood estimation with our MVE class
and indicate some time series applications. We propose estimation methods based
on the mgf because it has a much more tractable form than the density function.
Our comments in the Section are equally applicable to the MV G class, although
there the scope of applications is probably limited.

In Section 5 we discuss an alternative definition of an MVE class based on the
generalization of the x% distribution, and state a conjecture that the occupancy
times and this generalization define the same class of MVE. The support for this

conjecture is the equivalence between a pair of subclasses of these distributions,
proved by Kent (1982).

2. Occupancy Times. Let {Z;};>0 be an upwards skip-free Markov process
on the state space of the non-negative integers {0,1,2,...} in continuous time
t > 0, given by the matrix of transition intensities

( bt 71 /\0 . .
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where A; > 0 (¢ 2 0), i 20(:>1),&; >20(:>354+2 > 2), and all the
row-totals of ) are equal to zero. We denote by @, the n X n upper left-hand
corner submatrix of @, corresponding to the states 0,1,...,n — 1. Let S,, = diag
{s0,81,-+,8n—1} be the diagonal matrix with real numbers s; on the diagonal;
they will be subsequently used as the arguments of a joint mgf

(2) o(sp) = / . ./exp (x'sn) f(x)dx,

where s, = (80,81,...,3n—1). The index n will be omitted whenever its value is
obvious from the context.
The first hitting time from a state k to a state n > k is formally defined as

(3) Ten =min{t; 2, =n | Zo = k},

and the vector of occupancy times during passage from k to n > k (denoted by
Tk,) is the decomposition of the first hitting time 7 , into the sum of the times
that the Markov process Z has spent in each of the states 0,1,...,n — 1:

Tim = ( 0 _(1) (n"l))’

Tem Tems s Thin

where
M = /I{Zt = h|Zo = k}dt

(I{A} is the indicator function for the event A, and the integral is over the interval
[0, Tk,n])-

The joint mgf ¢y »(s) for the vector of occupancy times during the passage from
k to n > k can be derived using a backwards equations argument; the derivations
below are similar to those for the first hitting times (fht) given by Rosenlund
(1977). Firstly, owing to the strong Markov property of the process Z we have

(4) Tin = Tkpsr + Thpr k2 + - - -+ Ty
with mutually independent summands, and trivially Ty = (0,0,...,0). Corre-
spondingly for the mgf’s we have

(5) ©kn(S) = Prk+1(8)Pr+1,k+2(8) - - - Pn—1,n(5),

and ¢i(s) = 1. The backwards equations for the ‘one-step’ mgf ¢} (s) =
@k k+1(s) can be expressed in the form

ot (s) = (vk — s£) 7 Mk + pepr—1,641(8) + E k-20k-2,k41(5) +
(6) A + gkyosoovk'*'l(s)]’

where 7 (s) = vo/(v0 — $0), and & 0 = 0. The equation (6) can be reexpressed as
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@i (s) = A/ (vk — si)[1 — pr/(vk — sk)pf_y(s)
(7) —&kk—2/ (VK — k) Pr—2,k(8) — - .. — &0/ (Vk — sk)po,(s)] 7Y,

which implies that the occupancy times vector Ty = Tk k41 is a convolution of a
univariate exponential distribution and a geometric compound distribution. Hence
T (¢7) is infinitely divisible, and owing to (5) so are all the occupancy times.

It is easy to show by induction, using (5) and (7), that ¢} (s) is a ratio of
polynomials

(8) ¢t (s) = AeRi(s)/ Ri41(s),
where

Ro(s) = 1,

Rl(S) = Vo — So,

Ry(s) = (vo— s0)(v1— 1) — Aopa,

and generally,

Ry11(s) (Vk = sk)Bi(s) — peAk—1RE-1(8) — &k k-2 A k-1 Ak—2 RE—2(s)
(9) — =&k A=t - - - A2 A1 Ry (8) = Lk 0Ak—1 - - - AL,

which is exactly the expansion for det (Qg4+1 — Sk+1) With respect to the bottom
row. Hence

(10) R.(s) = det (Qn — S»)

for n > 1. As a by-product we have the identity det(—Q,) = AoA1...Ap—1.
The vectors of occupancy times during passage from 0 to n define our class of
n-variate exponential distributions. Their mgf’s have the form

(11) an,n(s) = AO}‘I e /\n—l/Rn(s),

where the polynomials R,, linear in the variables sg,$;,...,8,—1, are generated
recursively by (9).

The versions of the identities (8) and (9) for the birth-death process (all &; ;
equal to 0) were obtained by Wang Zi Kun (1980).

The bivariate exponential distribution generated by occupancy times during
passage from 0 to 2 has the mgf

AoA1/Ra(s) = XoA1/[(vo — s0)(v1 — 81) — Aopal,
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and the joint density

(12) AoA1 exp (—vpzo — 1121)Lo(Aop1z071)

where
Lo(z) = Tk /(K2

The distribution (12) has been previously defined by Downton (1970), and in a
more general context by Kibble (1941).
We define for A > 0

(13) Li(z) = Zga* /KT (k + b + 1),

which is an analytic version of the Besel function of order h. The bivariate gamma
distribution (BVT') with scale 0 > 0 corresponding to (11) has the density

(14) (Ao)\l)”(moml)”‘lexp (—'1/0(170 - Vlzl)La(Ao/tlivoiL‘]).

The BVE distribution (11) has the mean {(1 4 g1/A1)/Xo,1/A1} and correlation
p1/vi € [0,1). No correlation corresponds to independence. The conditional
exponential distributions defined from (11) by conditioning on z¢ or z; have linear
regressions:

E(Xo I X] = 271) = Aal(l + ulzl)
and
E(X1 | Xo = 20) = v7 (1 + dopr 1 /v1).

The occupancy times during passage from 0 to n > 2 in birth-death processes form
a conditionally independent sequence and their joint density can be partitioned
into a product of conditional exponential densities, see Johnson and Kotz (1972)
or Longford (1982). Such a sequence can be used to model an AR(1) times series,
although the innovation distribution is difficult to describe.

The general trivariate exponential density has the form

AoM Az exp (—voo — V1T — V2Z2)
(15) x Zk Lk (Aop12071) Li(A1p22121) (A1 €a,0z0z122)F /K.

The proof is given in the Appendix. Clearly this and densities for higher dimensions
are not suitable for direct maximum likelihood estimation. An alternative approach
to MLE is discussed in Section 4.

All bivariate marginals of the trivariate exponential (13) belong to the BVE
class. The correlation matrix for the trivariate exponential is
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1
1- )\1)\27’ 1
1-—1/1A2T 1—/\1/V2 1

and the means are {1/(AoA1A27),v2/ 12,1/ A2}, where 7 = 1/(v1v2 — A1p2).

3. Multivariate Geometric Class. The constructions of the MVE class
from occupancy times in Markov processes have their obvious analogues for discrete
distributions in occupancy times in Markov chains. For example, the birth-death
process has its analogue in the Markov chain which allows jumps only one step
up or down (discrete random walk, skip-free in both directions). However, the
distributions of the occupancy times in such Markov chains have a more complex
structure than their birth-death analogues. Rather than give an example we return
to this point in the conclusion of this Section.

Let

( ap Ug 0 . . . \
d1 ai uy 0

20 d2 az uz 0

A= T30 T31 d3 as ug 0

. )
be a matrix of transition probabilities of an upwards skip-free Markov chain (all
entries non-negative, u; > 0 for all 7, row totals equal to 1). In analogy with
Section 2 we denote by A, the n X n upper left-hand corner submatrix of A, and
define the first hitting times and occupancy times vectors.

The occupancy time in a state k during passage from 0 ton (0 < k < n)
is a compound distribution of the individual waiting times in the state which
are geometric starting at 1. To obtain a geometric distribution we could either
subtract the constant 1 from the occupancy time, or subtract 1 from every waiting
time. We choose the latter option, and refer to the underlying Markov process as
the ‘instant’ Markov chain. In this Markov chain zero waiting times have positive
probability, and so a sequence of states can be visited within the same time-instant.
Our main motivation for this definition of a Markov process is to construct a class
of multivariate geometric distributions (MVG) with analogous structure to the
MVE class defined in Section 2.

For the first hitting times and the occupancy times in instant Markov chains
given by the probability transition matrix A we use the notation identical to that
introduced in Section 2, 7, or T,‘c" , and Tk, or T,;" , respectively. The vector
z = (29,21,22,...) Will be used as the argument in the probability generating
functions (pgf) Py, for the occupancy times vectors:
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Py n(2z) = E(z7+n).
The formula (5) has a direct analogue in

(16) Pin(2) = P (2)Pf, (2)... Pt (2),

where P (z) = Py +1(z), and the backwards equations yield

PY(z) =
(17) (1= akzk) " [uk + di Peo1,k+1(2) + thk-2Pi-2,64+1(2) + - . . + Tk,0 Pok+1(2)]

with the solution in a recursive form

P e) =
ur/(1 = arz)[l — di/(1 = akzk)P,:'_l (2) — Tk k—2/(1 — arz) Pr—a k(2z) +
(18) et rro/(1— akzk)Po,k(z)]'l,

P§f(z) = (i - a0)/(1 — ao20).

The formula (18) is a convolution of a univariate geometric and a geometric com-
pound distribution. This, together with (16), implies infinite divisibility of all
occupancy times distributions. We declare the class of all distributions generated
by occupancy times during passage from 0 to n as our MV G class. This defini-
tion can be extended to the class of multivariate negative binomial distributions
(MVNBD) in the obvious way.

The identities (17) and (18), compared with (6) and (7) indicate a one-to-one
correspondence between occupancy times in continuous and discrete processes.
Moreover, we have a one-to-one correspondence between the underlying processes:
If

uk = Ak/vk (k>0)
dr = pk/vk (k>1)
reh =Eenfvr (K2 h+22>2)

then

(19) ‘Pk,n(s) = Pk,n(s + 1)7
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where 1 = (1,1,...). This one-to-one correspondence between the MVE and
MVG classes is the natural extension of the one-to-one correspondence for the
univariate exponential and geometric distributions.

In complete analogy with the continuous case we obtain the identity

(20) Pon(z) = uoty . . . un-1/Tn(2),

where T, are polynomials linear in zp,z,...,2,-1, generated by the recursive
formula

Tn+1 (z) = (1 - anzn)Tn(z) - dnun—lTn—l(z) - "'n,n—2un—2un—1Tn—2(z) -
(21) ...—TpoUUL ... Up—1,

with To(z) = 1 and T1(z) = 1 — ap2o. It is easy to show by induction that

(22) Tn(z) = det {I, — An(2)},

where A,(z) is formed from the matrix A, by replacing its diagonal elements aj
by axzx (0 < k < n), and is I, the n X n unit matrix.

For the bivariate and trivariate geometric distributions the joint probabilities
and moments (correlations) can be obtained by standard methods, in complete
analogy with the exponential case. For higher dimensions the formulae are not
tractable.

The backwards equations for the occupancy times in classical Markov chains
also define a class of MV G distributions (and are infinitely divisible), but the one-
to-one correspondence with our MVE has a substantially more complex and less
natural form. Even the distributions of the first hitting times in Markov chains
have a substantially more complex structure than the fht’s in continuous time; for
details see Kent and Longford (1983).

4. Maximum Likelihood Estimation and Time Series Applications.
Maximum likelihood estimation for the BVE and BVT given by the densities (12)
and (14), respectively, can be efficiently carried out by application of standard
numerical methods using some well-known recursive formulae for computation of
Bessel functions and ratios of Bessel functions.

Since dLi(z)/dz = Lig4+1(z), the derivatives of the log-likelihood involving the
bivariate densities of the form (14) involve ratios of Bessel functions, Lx41(z)/Li(z).
Efficient recursive algorithms for calculation of such ratios were derived by Amos
(1974); other useful identities are given in Abramowicz and Stegun (1972). The
natural parameter space for the BVE is not an open space because of the bound-
ary g3 = 0. It is easy to show that the maximum likelihood estimate of p; is
positive if and only if the sample covariance N ~1X;20;x1; — ToZ; is positive; see
Longford (1982) where other numerical details are discussed.

The MVE class generated as the occupancy times vectors from birth-death
processes have conditionally independent components, and they can be used for
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modelling of exponential AR(1) time series. Since the likelihood for such a time
series factors into univariate conditional exponential densities, direct maximum
likelihood is feasible.

The form of the density of the general trivariate exponential distribution ren-
ders standard maximum likelihood methods impossible, even though the corre-
sponding mgf’s have a very simple structure. Feuerverger and McDonough (1981)
have developed procedures for maximum likelihood estimation based on the em-
pirical mgf and proved that these procedures can be ‘fine-tuned’ to arbitrarily
high relative efficiency, given some information about the estimated parameters.
Their methods appear to be tailor-made for our classes of multivariate distribu-
tions (MVE, MVT, MVGQG, and MVND) because they offer a unified approach
to estimation in all these classes with generating functions of similar functional
form. The main practical point in application of the methods of Feuerverger and
McDonough is in determining the number and location of the points in which the
mgf/pgf would be approximated. These issues could be explored in the special
case of BVE where direct maximum likelihood estimation is available. It is not
clear though to what extent these results could be generalized to MVE. Of course,
the moment method of estimation is another tractable option, owing to the simple
form of the mgf/pgf.

The MVE class of n-variate distributions (n > 2) has the subclass of n inde-
pendent univariate exponentials and the larger subclass of the distributions with
conditionally independent components (AR(1), generated from birth-death pro-
cesses). It appears natural to define a whole set of nested classes of MVE distri-
butions by allowing the generating Markov process to have the first 2,3,...,n—1
non-zero subdiagonals in the transition intensities matrix Q. If @ has only the first
subdiagonal non-zero, we have an AR(1) time series. We conjecture that if the
first k subdiagonals are non-zero then the resulting MVE has an AR(k) structure,
i.e., it forms a k-step conditionally independent sequence: Zp and Zi4hr4+1 are con-
ditionally independent, given Zp41, Zhy2,. .., Zk+h. Definition of these subclasses
of MVE imposes a structure upon the entire MVE class that could be used for
description of the complexity of the correlation structure of an exponential time
series or a multivariate sample from MVE.

5. MVE As a Generalized Chi-square Distribution. Let X; = (X11, X12,
...y X1,) and X3 = (X321, X22,...,X2,) be a pair of independent and identically
distributed normal random vectors with mean 0 and variance matrix 2. Then the
random vector Y = (Y1,Ya,...,Y,) given by Yy = X3 + X2, defines an n-variate
exponential distribution. The original idea for this definition is due to Kibble
(1941). We will refer to this derivation as the generalized x3. It is easy to show
that the mgffor Y is

det (1/2Q71)/ det (1/2Q71 - 5,),

which closely resembles the functional form of our MVE, see (11) and (10). Kent
(1982) has in fact proved that the subclass of our MVE class arising from birth-
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death processes coincides with the subclass of the generalized x2 distributions
derived from variance matrices  for which Q7! is tridiagonal.

An obvious extension of this identity is the following conjecture: The distribu-
tions of the MVE with AR(k) structure (as defined in Section 4) coincide with the
generalized x3 distributions derived from variance matrices Q such that Q~! have
k non-zero rows below and above the main diagonal. The proof of Kent (1982)
cannot be extended for this general proposition, and we do not have an alternative
method of proof.
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APPENDIX

The density of trivariate exponential distribution

The mgf of the trivariate exponential distibution is

AoA1 A2
(Yo — s0)(v1 — s1)(v2 — s2) — Aopa(v2 — $2) — Arpa(vo — so0) — €2,0001
AoA1 Ao — 1 [ Aofi A1fi2

= : + +

(vo = so)(v1 — 81)(v2 — s2) ,;, (n—s1)k luo—s0  v2—s2

€200 k
(vo — s0)(v2 — s2)
2 = (ko kg + k3)! 1 1

= o Y 3 3 itk t k)

k1=0 k=0 k3=0 kl'kz!k:«;! (Ul - sl)kl+k2+k3+1 . (VO - 80)k1+k3+1
1
(v — sg)Rathetl (Aot ) (A1p2)" (€2,00001)"

The summands above are independent gammas, and the corresponding density is

1
AoA1Ag exp (—voTo — 1121 — V9T2) -
oAz exp (—rozo — 1121 222) %%% k1lkalks!(ky + k3)'(k2 + k3)!

“(Aop1oz1 )t (A p27172) "2 (AoM b2 0T0T122)"
= )\0/\1}\2 exp (—1/0:130 - T — 1/2232)

i (MoAi€2,0z07172)F

o Li(Aop1z0z1) Li(A1p22122)

k=0

Note that if £;0 = 0 (conditional independence), this density collapses to

A()Al/\g exp (—1/0.’20 — 1Ty — 1/23)2) . Lo()\o,ula:oa:l)Lo()\lpgxlwg).
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