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This paper is directed toward the challenge to model de-
pendencies among discrete-state processes. In an earlier
motivating application, we used proportional hazards re-
gression models with time-dependent covariates to ex-
amine the relationship between relapse following treat-
ment for leukemia, internal biological processes fighting
the leukemia, and interventions intended to fix defects
in these processes or to stimulate them to behave more
aggressively. Complexities in this application led to the
introduction of new dependency measures derived from
extending Kolmogorov’s differential equations. In this
paper these dependency measures are interpreted for a
bivariate Markov chain where one process is a failure pro-
cess and another evolves concurrently. Likelihood con-
struction using these dependency measures and others
currently used in the context of a failure process are dis-
cussed.

1. Introduction. Our interest in measures of association that evolve in
time has its genesis in an application involving multiple parallel, non-independent,
discrete-state random processes evolving in time. A motivating application involv-
ing certain random events and the relationship between these events is described
briefly in Section 2 to provide a context for the theoretical development. The
principal issue is how to define and model the dependency of a failure process on
discrete-state continuous-time random covariates. In Flournoy (1990) we develop
measures of dependency among multivariate discrete state stochastic processes
by extending the concept of intensity functions using multivariate extensions of
Kolmogorov’s differential equations. Now these dependency measures are made
explicit and interpreted for the situation where one process is a failure process and
another (possibly vector-valued) process evolves concurrently. Also we describe
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the incorporation of these dependency measures into the likelihood function for
purposes of estimation.

It is important to note that there may not be a unique natural multivariate and
conditional extension of Markovian processes or of univariate intensity functions.
Indeed a variety of extensions can be created depending on different needs and
different criteria. There are two approaches to incorporating the Markov property
of lack of memory. One approach assumes that each process is marginally mem-
oryless and characterizes multivariate processes with this property. However, the
resulting multivariate processes are not memoryless. This approach was used, for
example, by Yadin and Syski (1979) to explore the randomization of intensities
in a Markov chain, and by Cogburn (1980) in describing random environments.
In contrast to this approach, we examine measures of dependency based on the
assumption that two processes are jointly memoryless, yet inhomogeneous.

The rationale for a model that is jointly memoryless, yet inhomogeneous, arises
from medical applications such as the one described in the next section. Section
3 provides the necessary notation and a discussion of likelihood construction for
one general class of continuous time Markov chains, and for failure processes in
particular. In Section 4 a bivariate derivation of intensity functions is obtained
that is analogous to Kolmogorov’s (1931) univariate derivation. The likelihood
is given for the situation in which one process is a failure process. In Section 5
dependencies within the bivariate chain are described and incorporated into the
joint likelihood. These dependencies are motivated by one proposed by Cox (1972).

2. A Motivating Scientific Problem. A description of the original mo-
tivating application should serve to provide a context to our development. The
comparison of several proportional hazards regression models analyzing this ap-
plication is reported by Weiden, Flournoy, Thomas, Fefer, and Storb (1981) with
conclusions reported earlier by Weiden, Flournoy, Thomas, Prentice, Fefer, Buck-
ner, and Storb (1979). To be brief and retain focus, the present description is
restricted to the situation surrounding two primary events of interest without re-
gard to competing causes of failure or other covariates.

A bone marrow transplant is preceded by a dose of radiation that destroys the
bone marrow that produces leukemic cells. Originally, the effect of this treatment
was hypothesized to be dual: the first hypothesis has been demonstrated effec-
tively, namely, that extremely high doses of radiation can be given, increasing the
destruction of leukemic cells with the transplant rescuing the patient; the second
hypothesis is the subject of inquiry, that if the body’s failure to mount an effective
fight against the leukemic cells results from a defect in its ability to identify the
leukemic cells as foreign objects, and if a healthy immune system is transplanted,
one that matches the patient’s own immune system so closely that it will accept the
patient as itself, the transplanted immune system will recognize that the leukemic
cells are strangers and wage an aggressive battle against any that survived the
radiation treatment.

Assume that two random processes initiate realizations on the day a patient
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receives a bone marrow transplant to treat leukemia. One process governs the
recurrence of the leukemia, the relapse rate. It is this process that we seek to
control and model. A second process governs the emergence of side-effects caused
by the bone marrow graft that resemble lupus, an auto-immune disease. If the
second hypothesis holds, then an appearance of this side-effect, called graft-versus-
host disease, indicates that the transplanted immune system recognizes the foreign
cells, and is engaging in a battle that reduces relapse probabilities. However, these
battles are frequently fatal. If the hypothesis is true, the battle between the
transplanted immune system and its new host, the patient, should be encouraged
rather than stifled. But accepting this second hypothesis implies risking the lives of
patients believed to be at high risk of later relapse in order to learn how to control
the transplant’s attack on residual leukemia cells without killing the patient.

The second hypothesis is that the onset of graft-versus-host disease reduces
the probability of relapse. Yet if graft-versus-host disease does affect relapse, it is
hard to imagine that its effect is constant or even proportional. The need to model
inhomogeneous effects led us to consider the Chapman-Kolmogorov equations as
a tool for developing multivariate measures of dependency.

3. Notation and the Likelihood. Now we present the necessary notation
in the context of a single discrete state process. Then we specialize to a two-state
failure process such as is commonly called a death process (see, e.g., Karlin and
Taylor (1981)), and establish a correspondence with the notation commonly used
in survival analysis. The likelihood is given for the situation in which independent
censoring mechanisms terminate the observation of sample paths. A method now
used to incorporate dependencies into failure models is described and used to
motivate alternative approaches. One such approach in which dependencies are
defined by straightforward extensions of classical univariate Markov chain theory is
described in subsequent sections. Connections to the theory of counting processes
are not pursued at this time.

8.1. The Likelihood for a Univariate Markov Chain. To introduce notation and
elementary definitions, consider a continuous time Markov chain U(t), or simply U,
with a finite discrete-state space # = 1,2,...,9Q, and continuous time parameter
t € T = [0,00). Throughout, lower case Roman letters are used to denote times
and Greek letters are used to denote states. When considering functions of a
process U and the context is clear, we omit the ‘U’. Let H'* = H!'5(U) be a
Q. x Q, matrix of transition probabilities with elements

(1) hie = hye (U) = P{U(t) = 6]U(s) = o},
0,60=1,2,...,9Q,,
each of which is a probability that the process is in state § at time ¢ given it was

in state o at time s. Note that in this notation the current time t and state 6 are
given before the vertical line, and the prior time s and state o are given after the
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vertical line. Of course, some transitions may have probability zero.

We adopt the assumption that the process U cannot return to a state once it
has been there and left, which implies that H*® is an upper triangular matrix for
all 0 < s < t. Also note that, in general, Hrl® and HUl" do not commute. These
features are significant for solving matrix versions of Kolmogorov’s differential
equations. Furthermore, these features hold for the motivating application where
graft-versus-host disease (the event), relapse of leukemia (the failure), and death
from causes other than leukemia together with termination of observation (the
censorings) are not reversible.

Assuming the limits exist, let Q* be a 2, X, dimensional matrix with elements
the univariate intensity functions qgl »(U) defined as by Kolmogorov (1931) to be
the derivatives of inhomogeneous transition probabilities with time s evaluated
at the later time ¢. The derivative of H!* taken elementwise yields the upper
triangular matrix

0
(2) Q' = o H''(U)|
ot
Since the diagonal elements of H'l® are positive except in degenerate cases, the
inverse (H*%)~1 generally exists and so will solutions to Kolmogorov’s differential
equations

s=t"

(3) gHtls = Hr]a 0

Y ptlr — mtlsnt
ot BtH | "

r=t —
fors<r<it.

As pointed out by Chang and Yang (1990), standard reference books on stochas-
tic processes (e.g. Chang (1980)) discuss solutions only of homogeneous Markov
transition probabilities, and solutions for inhomogeneous Markov transition prob-
abilities (e.g. for (3)) remain very much application dependent. This remains true
although Feller (1940) proved existence and uniqueness theorems for the solutions
of inhomogeneous Markov chains; and although more recently the solutions of in-
homogeneous Markov chains have been further characterized by Getz (1976) and
Hartfiel (1985). Therefore, it is of practical significance that maximum likelihood
estimates can be obtained without requiring a general solution to (3). This is the
case in the present model.

In fact, solutions are required only for the diagonal elements of H!* as we
now explain. Since H'® is an upper triangular matrix, both the derivative of
H'ls and its inverse are upper triangular matrices, and consequently, the product
(H'5)~19H*!*/dt is upper triangular. In particular, each diagonal element qf,lo,
0=1,2,...,9, in the solution of (3) equals the product of the respective diagonal
elements in the matrices (H*)~! and H!l*/dt yielding a system of Q,, differential
equations for each s and ¢ with solutions

t
(4) hile = exp{ / Gpdr}, 0=1,2,...,%.
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Given » = 1,..., N independent realizations of U(t), a likelihood can be con-
structed using probability laws for sample paths. For the nth realization, let 7,,,
be the time of the mth transition for m = 1,..., M,, and let {6,0,6051,.-.,000,}
denote the distinct states visited. For notational convenience, we assume that the
realizations are of finite duration so that the M,th transition is to an absorbing
state. Karlin and Taylor (1981, pp. 145-149) describe the process of determin-
ing probability laws for sample paths from homogeneous Markov chains and point
out that the process is analogous for sample paths from general continuous time
Markov chains. Following their argument, let k£ be fixed and K > 0 be an arbitrary
positive integer. Then for the nth realization [U,(t), 0 <t < 7as,],

;:S;:;(kﬁ())h'nm = P{Un(T) =blpm, Tam <7< Tn(m+1—(k/K))}
and (assuming U(t) is separable),

lim h"’n(m+1-(k/K))|"'nm
K—oo Inml|bnm

may be considered as just
Tn(m+1)

q;]edr} ’

where the last equality follows from (4). Also the probability that U(t) remains
at Opm from Ty t0 Th(mq1) and then jumps to 6, (m41) # Onm in time d7 is

h‘l’n(m+1)|7'nm =P {Un(T) =bpm, Tam <T < Tn(m+1)} = exp {/T

Onm |0nm
nm

h"’n(m+1) [Tnm Tn(m+1)
9nm |0nm en(m+1) lanm

Therefore, assuming the probability of more than one jump in the time span from
Ta(m+1) Y0 Tp(m41) + d7 goes to zero as dr — 0% and given the initial states
{0no, n =1,..., N}, the likelihood of [Uy(t), 0 <t < 7az,] is

Mn—1 T, |7 T,
o - [ ez

9nm|0nm on(m+1) Onm
m=0

_ M,-1 Tn(m+1) ” d Tn(m+1)
= H exp A Q0nm |0nm T qen(m+1) [6nm >
nm

m=0

where the last equality follows from (4). Note in the first expression in (5) that
the likelihood depends on diagonal elements from H* that correspond to the time
spent in those states that were actually visited and off-diagonal elements from Q°
that correspond to the actual state changes at observed transition times. The
second expression in (5) shows that, by solving for only the diagonal elements of
Htls, the likelihood can be written strictly in terms of elements of Q. This fact
facilitates the modeling dependencies on failure processes.
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3.2. The Likelihood of a Failure Process. A simple failure process, namely, a
two state process with one absorbing state is now described, and its likelihood is
derived assuming that independent censoring mechanisms terminate observation
of the sample paths. Let V be a failure process with state space Q, = {0,1}, where
state 1 denotes failure. Then the matrix H/* of transition probabilities simplifies
because the transition matrix depends on only one element, i.e.,

htl-’ ht|-’ _ptls t|s
(6) m(vy= | "9 1P| = [1 "ajo "uo],
with the consequence that Q* also simplifies:
t t
—q q
7 - 1o %o |
. =]t ]

Clearly, the failure process is completely specified by q{lo and the system of dif-

ferential equations (3) reduces to the single one-to-one correspondence familiar in
survival analysis with the solution:

(8) S(t) = exp {— /ot qhodr} ,

where S(t) = hg':) |s=0, the probability that no state changes occur up to time ¢, is
called the survival function and the hazard function, commonly denoted by A(t),
is the intensity of failure qilo.

The failure process we consider is extended to a three state process to accom-
modate censoring; the initial state 6,9 is survival, and transitions are possible to
the absorbing states, 6,3 and 6,2, of failure and censoring, respectively. Since only
the first transition is observable, realizations are described by the observations
{(Tn,0n), n = 1,..., N}, where 7, = min{7p1, Tn2} is the minimum of the failure
and censoring times for the nth observation, and 6, equals one if the failure state
0,1 is observed and zero if the censoring state 6,2 is observed. Using (7) and
assuming an independent censoring mechanism, Kalbfleisch and Prentice (1980)
show that the likelihood (5) for the nth observation is

O ™ r
® b= (aip)" oo~ [ bt}

One approach for incorporating dependencies into a Poisson survival model is
becoming popular in applications. If U,(t) is a row vector of covariate processes
for the nth observation and 3 is a row vector of unknown parameters, then a model

(10) dhjo). = B(Un(?),B)
relating the nth observed hazard function q[tIIO]n to covariates U,(?) is selected.
Then dependencies are evaluated by replacing q[tlloln with A(U,(%),B8) in (9) or
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in Cox’s (1972) partial likelihood and evaluating 8 by maximum likelihood meth-
ods. The most famous example of this approach to evaluating the dependency
of a covariate process U(t) on a failure process V() is the use of Cox’s (1972)
proportional hazards regression model

dhijol, = h(t) exp {Un(t)ﬂT},

where h(t) > 0 is an arbitrary function of time and each covariate acts propor-
tionally on the failure intensity q1|0’ in Cox’s (1975) partial likelihood. The partial
likelihood £, for the nth observation is

(11) bpn = [ ‘1[1|01n / qum,] ’

where R, is the set {j : 7; > 7.} of realizations that have not failed or been
censored at the time 7, that the nth observation fails. Heuristically, 8, = 1 for
each failure, and the corresponding ratio in the partial likelihood is the probability
that, of all the realizations at risk at 7,,, it was the nth realization that failed.

When U(t) is deterministic, the insertion of (10) into (9) or (11) can be justified
using conditionality arguments. However, when U(t) is a random function of time,
insertion of (10) into (9) or into (11) does not take the Jacobian of the transfor-
mation into account and clearly their probabilistic content is altered (see Flournoy
(1980) and Yashin and Arjas (1988)). The increasing number of applications that
use (10) in (9) or (11) when covariates U(t) are random is one motivation for
exploring alternative approaches.

Another motivation is to establish a framework which extends the types of
dependencies that can be modeled beyond those that can be expressed in the form
of (10). Note that in (10) as written, the covariate process(es) maps into the failure
intensity at parallel times ¢. Meaningful dependencies between U(¢) and V' (¢) may
involve lag or lead times, or it may be other functions such as the rate at which
states change in U(t) that most directly affect V(¢). An obvious extension of (10)
is qflIO]n = h(Up(s),B, 0 < s <t). But this extension is so general that forms of
h(-) that are meaningful in applications must be determined for the extension to
be useful.

4. A Failure Process in a Bivariate Markov Chain. A common practice
in modeling a Markov chain with a multivariate state space is to reparameterize
to a univariate Markov chain by expressing the state space as a list of all possi-
ble points in the multidimensional space. Such an approach yields a parameter
for every possible transition which makes the model intractable for most realistic
applications and almost certainly intractable if the processes are taken to be inho-
mogeneous. One way to reduce the complexity of inhomogeneous Markov chains is .
to assume that functional dependencies exist between the transitions. This is the
role of the proportional hazards assumption in Cox’s (1972) regression model for
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failure data. We characterize a multivariate representation of the Markov chain in
order to facilitate the conceptualization of other types of functional dependencies
within a more general probability framework.

Let [U(t), V()] be a two-dimensional row vector of discrete-state stochastic
processes, where V(t) is a univariate failure process and U(t), without loss of
generality, might be vector-valued. Note that the elements of [U(t), V(t)] are
jointly indexed by a single continuous time parameter t € T = [0, 00). When ‘¢’ is
not critical to the context, we write [U, V] = [U(¢), V(¢)].

Denote the bivariate state space of [U(t), V(t)] by Q@ = Qy X ©,. For some
t, the probability of being in certain states may be zero. For example, when a
failure in V(t) is fatal to U(t), the combined sample space might degenerate to a
single point representing the absorbing state of the entire system. Let [6%;, 67,]
denote an element in the bivariate state space {2 at time ¢. Rather than maintain
the superscript ‘¢’ in the state space notation, we indicate the states at different
times by another letter o. That is, [fui, 0,;] and [04i, 0,;] denote the ith state of
process U and the jth state of process V at two different times.

The state space Q, of U is determined by the application, whereas there are
only two states for the failure process V. Let 6,; or ‘V = 1’ denote the state of
failure while 8,9 or ‘V = 0’ denotes no failure. Thus in the bivariate state space,
[0uis 0v0] = [0ui, 0] and [By;, 0,1] = [Oui, 1] denote U(t) = 6; jointly with survival
or failure, respectively. When it is not necessary to reference a specific state, we
let (8, o.) and (6,, 0,) denote arbitrary states of U in Q, and of V in Q, at
times ¢, and s, respectively. The nth realization of U and V is denoted by U,, and

Vn, respectively, and the mth state visited by the nth realization is denoted by
[0u, 0u]nm-

DEFINITION 1. Now let H!l* = HUS(U,V) denote a 29, x 2Q, dimensional
matrix of joint transition probabilities, where H'® can be partitioned into four
Q, x Q, upper triangular submatrices,

t|s tls
(12) H' = [ Hoo M ] :
0 Hlll

where the 0 submatrix reflects the assumption that the state of failure is absorbing.
The matrix Hﬂ; is upper triangular with elements defined by the probability of

transition in U from state i at time s to state j at time ¢ (¢,5 € Q,) jointly with
the transition of V from survival (0) into failure (1):

(13) houtjow0 = h‘o':”auo(v, V)
= P{U(t) = 8, V(t) = 1|JU(s) = 0ui, V(s) = 0};

H 3‘3 and H ﬂi are also upper triangular matrices with elements defined to be prob-
ability transitions function of U joint with continued survival (V = 0) from s to
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t and with continued failure (V = 1), respectively. In referencing the transition
probabilities (13), we omit the notation ‘(U, V)’ for simplicity when it does not
play a role. The superscript ‘t|s’ is also omitted for notational simplicity whenever
it is not essential to the context.

The nature of a failure’s impact on U is expressed through Hy|;. For example,
H,|; may be the identity matrix Iq, implying U(t) is frozen in its current state
at the time of failure, or U(t) may enter a single absorbing state regardless of its
current state at the time of failure. Often when we focus on how failures depend on
a coprocess, it is natural to treat Hy|; as ancillary and restrict consideration of joint
transition probabilities to the upper submatrices in (12), namely Hy, in which
failure occurs, and Hyjp, in which failure does not occur. Hy|; is ancillary when it
does not contain parameters in common with Hojo or Hyjp which are conditioned
on prior survival.

DEFINITION 2. Two discrete state continuous time random processes U and
V form a bivariate Markov chain if [U, V] have joint loss of memory, that is, if for
any s, r,and ¢t such that 0 < s <r <t < o0,

(14) P{[U®),V(t)] = [0u,0.]I[U(5), V(s)], Vs : s € [0, 7]}
= P{[U(2), V(1)) = [0u, 6,]|[U(r), V(r)]}.

A bivariate extension of the Chapman-Kolmogorov equations follows directly:

(15) HU(U,v)= H(U,v)HI (U, V).

Note that the bivariate Chapman-Kolmogorov equation (15) implies that [U, V] is
a bivariate Markov chain and does not imply that either marginal process U or
V is a Markov chain, that is, (15) does not imply that the univariate Chapman-
Kolmogorov equations hold for U or V. Indeed, the bivariate loss of memory
property (15) will hold also for marginal processes only under very restrictive
conditions (see Yadin and Syski (1979)).

DEFINITION 3. Let two random processes U and V form a bivariate Markov
chain and assume that the derivatives of (13) exist with respect to ¢, then their
Q x Q-dimensional joint intensity matriz is defined analogous to (2):

0 0
(16) Q' =Q'(UV) = 5 H¥ (U, V), = 5, B,y
The elements of Q*(U, V) are denoted by ¢ o louc,» 204 are called joint intensity
functions.
Extending the forward differential equations by taking the derivative of both
sides of (15) elementwise with respect to t, and evaluating the result at r = ¢,
gives bivariate forward equations for all s and ¢ analogous to (3). When [U, V] is

a bivariate Markov chain and V is a failure process, the forward equations are
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t t t tls T
(17) gHtla = g_tHO||.(9) FH . — HO{:) Hl':) Q0|0 QI[O

tls tls tls
_ o|oQo|o Hy 0@t 1|oI Hj0Q1p
0 H{1Q%,

and since H*l® is upper triangular with positive diagonal elements (except in de-
generate cases), the solution of (17) for the diagonal elements in H*l* is analogous
to (4):

t
(18) hzljjo,- = exp {/3 qgjlojdr};
j=0,1,;0=1,2,...,Q.

Recall that in the case where a failure in V' freezes the coprocess U, Hy; is the
identity matrix and hence (17) simplifies considerably because Qlll =0.
Assuming for notational convenience that the M, th transition is to an absorb-
ing state, the likelihood for the nth realization is of the same form as (5) except
that the realized states [0y,0,]nm are now binary with 8, =0,1;m=1,..., M,:

My-1

_ 7n(m+1)|7"lm Tn(m+1)
(19) b = Ho P a6l 801 Lubolnms 1y [Puolm
m=

Tr(m+1
= H exp {/ ( ) ‘1[79.,9,,],,,,.|[0.,0.,],,mdr} q{o':t(;:-]':()m+1)|[9u0v}nm’
m=0 Tnm
where the last equality follows from (18). Hence the likelihood can be constructed
using the diagonal elements of H!*, modeled in terms of the diagonal elements of
Q! using (18), together with the off-diagonal elements of Q* as was the case for
the univariate model. If a failure in V(s) freezes U(t) for t > inf{s : V(s) = 1} so
that Qill = 0, (19) becomes an extension of (9):

Mn—1 Tn(m+1) r Mn -2 Tn(m+1)
(20)  fo = II ex { /T,,.,. ‘Ito«OImuaummdf} 1T %oty [0

% (an(m+1) )1 6nMn (q‘l’n(m+1) )SnMn
[6u0]M~n|[6u0](as,, 1) [6u1]Mn|[640]( pt,, —1) ’
where 6,57, = 1 if the M, th transition is to failure and 0 otherwise.

5. Dependencies Within the Bivariate Chain. We have established the
analogy between likelihood construction for univariate and bivariate discrete state
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Markov chains and shown that their respective likelihoods can be modeled strictly
in terms of the intensity matrix Q. However, the joint intensities in Q* constitute
a limited class of dependencies. We now describe two other classes of dependencies
defined in Flournoy (1990) in the context of a failure process; other dependencies
in time and space could also be considered.

First we consider the process U(t) as it depends on prior realizations of U(s)
and V(s) jointly. There are a variety of applications in which the dependency
of U(t) on U(s), given V(s) = 0 for 0 < s < t, is of interest. For example,
consider a gross simplification of an educational application developed by Debanne,
Rowland, Eielefeld, and Maw (1989) in which U has states that are school grades
(i.e. freshman, sophomore, junior, senior), and V is equal to 0 if a student remains
in high school and is equal to 1 if the student drops out. One dependency of interest
involves the transition through grades of school among students who remain in
school.

The second class of dependency we consider is one in which the failure process
V(t) at time ¢ depends on itself V(s) at a prior time s together with the coprocess
at both times, namely U(s) and U(t). One might wish to model this type of
dependency, for example, to study the way in which failure (V(¢) = 1) depends on
transitions in the coprocess (U(s) to U(t)) given prior survival (V(s) = 0). In the
next section, we show how these two classes of dependencies relate to each other
and to the joint process and thereby their role in the likelihood.

5.1. Conditional Dependencies. Let HU(U|[U,V]) = H(U®®)|[U(s),V(s)])
be a @, X 2Q, matrix of conditional transition probabilities with U at time %
conditioned on itself together with V' at time s, that is, with elements

(21) B = PLU(t) = 0,][U(s), V($)] = [0u, 0]},

Oulouoy
Ou, 0u=1,...,Q; 0, =0,1.

The matrix of conditional transition probabilities is partitioned with respect to
V(s) into two upper triangular submatrices in order to focus on the conditional
transition probabilities at time ¢ given U(s) joint with survival (V(s) = 0) sepa-
rately from conditional transition probabilities given U(s) joint with failure (V(s) =

1):

(22) H(U|[U,V]) [H(U|[U,0]), H(U|[U,1])]

= [E i, 0), #*H(UI;1])].

Similar to the simplification that is possible in the joint transition matrix, H*(U|[U,
1]) may equal Ig, or U(t) may enter a single absorbing state when a failure (i.e.
V(t) = 1) is fatal to the entire system.

The conditional intensity matriz is defined, analogous to (2), through the
derivatives of (21) to be
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(23) QL. v) = [gavw@iv, ]|

s=t

with elements ¢f | . . Partition Q*(U|[U, V]) in (23) compatibly with H!*(U|[U,
V1) in (22) to obtain:

@) QUL = [FE@ID,0), a1

= [Q'wIw,0), @'(ui[v,1)].

The conditional dependencies are aggregations of the joint transition probabil-
ities with

s=t

(25) H(U|[U,0)) = Hopo + Hyo, H(U|[U,1]) = Hyps,
QUI[U,0]) = Qoo + @10,  QUIU,1]) = Qqp1-

Using (18) in (25), the diagonal elements of H(U|[U, 0]) are

t t
f|
h9:|0..a., = exp {/; qguolouodr} + exp {/s 45.,1|o.,odr} .

In the situation where Qilo = _Q3|o’ the number of parameters to be modeled in
the joint likelihood (20) is reduced and the analogy between (20) and the univariate

likelihood (9) for a failure process is strengthened. This simplification occurs when
Q'(U|[U,0]) = 0, that is, when

(26) 2 PAU() = 51U(s) =, V() = 0} |,y = 0,

,7=1,...,Q.

Equation (26) is attained when the conditional transition probabilities are constant
functions of ¢ for each i. An important special case in which (26) is attained is
the case in which H!*(U|[U,0]) = Iq,, that is, the case in which U(r) is constant
for s < r <t almost everywhere. In many applications, there is no scientific basis
for the assumption that Qoo = —Q1jo. Consequently, the reduction of parameters
in the likelihood (9) that resulted from such an equality (see 7) for the univariate
failure process does not apply generally to the likelihood (20) for a bivariate chain
that contains a failure process.

We now introduce a second class of dependencies before discussing the rela-
tionship of both classes to the bivariate likelihood function.

5.2. Cross-conditional Dependencies. Let H(V|U,[U,V]) = H!(V|U,[U,V])
be a 2Q2, x 29, dimensional matrix with elements
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(27) htlt’s = P{V(t) = 0uIU(t) = 0y, [U(s)7V(3)] = [o, a'v]} ’

0vlou¢7u¢70
Ou,0u=1,...,Q4; 04,0,=0,1,

that are called cross-transition probabilities. Cross-transition probabilities are de-
pendencies between the failure process V' at time ¢ conditioned on the coprocess
at the same time ¢ as well as on the joint process [U, V] at a prior time s. Thus,
for example, the elements of H!%5(1|U,[U,0]) are the probabilities of having failed
by time ¢ given survival at time s and given the state of process U at s and at ¢
with states [o,0] and [6,,1]:

t|t,s _ g tlt,s _ t|t,s
(28) by 16uouceV(5)=0 = P1j6us0 = 1 = Rojg. 0000
V(t)=1
Ou,0,=1,...,0,.

Through the derivatives of (27), define a cross-intensity matriz with V' at time ¢
conditioned on U at time ¢ and itself together with U at time s to be

(29) QW)= [Frtemv v

s=
with elements qzv Bucuo that are called cross-intensity functions.
Now H(V|U,[U,V]) and Q(V|U,[U, V]) each can be partitioned into four Q,, x
Q, dimensional submatrices. But these matrices can be defined in terms of one
submatrix as is seen from an expanded representation of H(V|U, (U, V)):

H(0|U,[U,0])J — H(O|U,[U,0
(30) H(V,U,[U,V])=[ (01T, 030 7 — 7012, 10, ])],
where J is a Q,, X2, dimensional matrix with each element identically one reflecting
the absorbing state of the failure process. Note that, for convenience, the config-
uration of the cross-transition functions in (30) deviates from the conventional

univariate representation of transition probabilities in which the row probabilities
sum to one. From (30) we have, by definition (29), that

(31) Q(017,[U,0]) = -Q(1U,[U,0))
analogous to (7).

5.3. Dependency Measures and the Likelihood. Theorem 1 states that the joint
likelihood can be written in terms of conditional and cross-conditional intensity

functions. Let 67, = 1 if the M,th transition of the nth realization is to failure
and 0 otherwise.

Theorem 1. If Qill = 0, then the likelihood (20) for the nth realization of a
bivariate Markov chain [U,V] in which V is a failure process can be rewritten as
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Mp—1 Tn(m+1) . . .
(32) en - Ho exp {/‘r (q[o“]n(m+1)|[’u0]nm - 66u9uq[1]n(m+1)|[9u°'u0]nM) dl'}
m= nm
My-2
H ( Tn(m+1) §Tn(m+1) Tn(m+1) )
m=0 [0u]n(m+1)|[°'u0]nm oubu q[I]n(m+1)I[9uau0]nm

( TnMpn T(m+1) TrMn )1—5nM,.
X\ 0u]pn 0Ol 1) ~ %0ubu  I1lnrty [6ucuOlncarn—1)

( n n| n— )
q[I]"lM I[o"a“O] (M l)

ProoF. The joint transition probabilities factor into two components of cor-
responding elements from H(U|[U,V]) and H(V|U,[U,V])):

(33)  Al*

0u0y|oucy

P(V(t) = 0,|U(2) = 0y, V(s) =0y, U(s) = 0y,)
><P(U(t) =0,,V(8) = 0,,U(s) = 0y,)
P(V(s) = 04,,U(s) = 04) ’

= pilte t|s
- 0u|0uouoy Oulouoy®

Apply the chain rule to (33) in taking the derivative with respect to ¢ to obtain

0 4 ptlts Bt ptls ptlts
(34) ah&fﬁulauav = [ 0u|0u0u¢7”] [ ot o:|a.,a.,] Oulauav] [at 0v|6uouow| *

Note that
(35)  Alte = P(V(t) = 6,|U(t) = 8,, U(s) = 04, V(s) = o)

0v|fuouoy
P(V(t) =0,,V(s) = 0,|U(t) = 0,,U(s) = 04)
P(V(s) = 0,|U(t) = 0,,U(s) = 04)

and (35) evaluated at s = t is equal to 0 if o, # 0, and is equal to 1 if o, = 6,.
Similarly,

(36)  hypuslome = P(U()=0u|U(s) = 0u, V(s) = o)
P(U(t) =0,,U(s) = 0u|V(s) = UU)I
P(U(s) = 6,V (5) = 0,)

s=t

— st
- 60'., Ou

s=t

Evaluating (34) at s = t, using (35) and (36), yields a joint intensity function that
is a weighted sum of a conditional and a cross-intensity function:
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t Y 1 i 11 i
(37) qeuovla'uav - 60v”vq0u|0u0’v + 60'.‘9uq9,,|9.,a'.,0.,'

Evaluate the right hand side of (37) for qéuolauo and q;ull »,0° nsert the results
into (20), and by (31), replace qfolnml[au 0u0ln(mo) with —q[tl]nml[eu 0uOlnmo1) for each
t and m to yield the theorem. ||

Cox defined the hazard function depending on a covariate value at ¢ to be

(3)  AUU@) = Jim = P{V(t+ A~ V(0) = 1[V(1) = 0, U(D)},

which is similar to, but not the same as, the corresponding limit of the cross-
transition probability (27) from survival to failure:

. 1 t+Att+Ate

A?—EO_A—Z 1|0ua!.,0

Both (38) and (39) are conditioned on survival to time ¢, but they differ in that
A(t|U(t)) is conditioned on only one value of U at time t, whereas (39) is condi-
tioned on U at s and t. However, neither (38) nor (39) is equal to the conditional
intensity function qiwwuo. Note that the derivative of A% in (29) is taken with
respect to ‘¢’ which appears in the conditioning event as well as the conditioned
event. The number of parameters in the likelihood (32) can be reduced in two
ways. First, models such as described in (10) can be used to provide structure to
the cross-conditional intensities:

(39)

(40) q[tllnml[ouauoln(m_l) = h(Uﬂ(t)’ :3),
m = 0,1,..., My, ou,O'u =1,...,Q,.

Also the underlying science of an application or prior data on the covariate process
U (which frequently exists conditional on survival) may suggest structural models
for

Tn(m+1)
(41) 90u) s 1) l[7u0lm’
m = 0,1,...,Mn, 0u,au = 1”‘°’Qu-

We expect that when the covariate process U is nonstationary, modeling the con-
ditional (40) and cross-conditional intensity functions (41) and using the joint
likelihood (32) can lead to better estimates than can be obtained by using only
the model (10) in the partial likelihood (11). Structural models to reduce the
parameters in (40) and (41) will be proposed, and their performance analyzed
elsewhere.
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