
Chapter 3

Examples and special types of models

1 Introduction

The purpose of the present chapter is to indicate the range of applications of
analytic models by showing some examples of models and classes of models that
are analytic. Some considerations relating to the indices of the models, as defined
in Section 2.5, are included because these quantities are of primary importance in
the asymptotic theory, in particular as developed in Chapter 4. We also include a
few examples of non-analytic models to emphasize the limitations of the theory.

Let us recall some notations from Chapter 2. We consider models of the form

{(E^yj(y β) βeBCV}, (1.1)

where E is a space equipped with a σ-algebra, v is a measure on £ , f(y β) is the
density at y G E of a probability measure denoted Pβ, indexed by a parameter β
ranging over a subset of a finite-dimensional real vector space V. Unless otherwise
stated the notation ||v||, for v G V, refers to an arbitrary pre-given norm on
V. Since we shall consider sub-models of other models in some cases it may
occasionally be convenient to denote the parameter by a symbol different from β.

The differentials of the log-likelihood function are denoted

Dk(β) = Dβ\ogf(y;β) (1.2)

for k G N, β G 5 , and y G E, whenever they exist, and their joint cumulants are
denoted

-)} (1.3)

for fci,..., km 6 N, v-i,..., vm € F , and β € B, again provided their existence.

84
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2 Linear exponential families

Consider a model with densities

f(y; θ) = a(y) exp{( θ , t(y)) - κ(0)}, (2.1)

where t : ϋ? —> W is a measurable mapping to a finite-dimensional real vector space
Wj a : 2? —> R is a non-negative measurable function, 0 is the parameter ranging
over the space

Θ = { θ G W* : μ(0) = I a(y) exp{( 0 , ί(y))} dv{y) < oo } (2.2)

where W* is the dual of W and we have used the notation

(w*,w) = w*(w), weW,w* e W*, (2.3)

and finally

θeθ. (2.4)

A model of this form is called a full exponential family, θ G Θ is called the
canonical parameter, and t(y) the canonical sufficient statistic. Such families, and
sub-families of these, play an important role in the statistical theory and compre-
hensive accounts may be found, e.g., in Barndorff-Nielsen (1978) and Brown (1986).

The differential at θ of the function K is Dκ(θ) E Lin(W*;R) which may be
interpreted as an element in W, in which case it equals the mean value mapping
r, say, at 0, i.e.,

τ(θ) = Dκ(θ) = Έe{t(Y)}. (2.5)

The differential of the log-likelihood may then be written as

{Dθ log /(y; θ)}(w*) = (w*, t(y) - r(θ)) (2.6)

for θ e int(Θ) and w* G W*. For any θ G int(Θ) the statistic t(Y) has finite
exponential moments and its cumulant generating function is given by

l o g E * e x p { ( s , t(Y) )} = n(θ + s ) - κ{θ) (2.7)

which exists whenever θ + s G Θ. The cumulants of t(Y) are therefore seen to be

= Dkn(θ) (2.8)

for k G N, in the distribution corresponding to θ G int(Θ).
Consider now a model parametrized by β G B C V in which θ in (2.1) is replaced

by the image θ(β) of a mapping

0 : 5 -> Θ. (2.9)
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Then the densities become

f(y;β) = a(y)exp{(θ(β),t(y))- κ[θ(β))}. (2.10)

In this model the first differential of the log-likelihood is given by

D1(β)(v) = (Dθ(β)(v), t(y) - τ[θ{β)]) (2.11)

for β G int(J9) and υ G V, if θ is differentiate at β and θ(β) belongs to int(Θ).
Notice that Dθ(β) is a mapping in Lin(V; W ) .

When the mapping θ in (2.9) is linear the model (2.10) is called a linear expo-
nential family. In that case Dθ(β) does not depend on β and we denote it Dθ. Its
transpose, denoted Dθτ is a mapping in Lin(VΓ; V*) defined by the relation

( D θ ( v ) ,w) = ( υ , Dθτ(w)) (2.12)

for all υ G V and w eW, cf. (1.1.26). Then we may rewrite the model (2.10) as

f(y β) = α(y)exp{(β, Dθτ(t(y))) - κ[θ(β)]}. (2.13)

Thus the model is reduced to the form (2.1) with canonical parameter /?, canonical
sufficient statistic Dθτ(t(y)) and K replaced by n o θ. In the sequel we therefore
assume, without loss of generality, that the linear exponential family is of the form
(2.1), except that the parameter space is a subset B C θ .

The first differential of the log-likelihood is given in (2.6) from which it is seen
that for k > 2 the differential

Dk(β) = -Dkκ(β) (2.14)

is non-random, where β 6 int(Θ). Thus, at any such point the cumulants of the
log-likelihood differentials are given by

Xl^β) = ~Xk(β) = Dkκ{β) (2.15)

k

for k > 2, and

Xk1...kJβ) = 0 (2.16)

for m > 2 if kj > 2 for any j.
The following result shows that the class of analytic models includes the class

of linear exponential families.

Lemma 2.1. Any linear exponential family is analytic at any point β G int(i?),
where the interior is interpreted as the interior relative to the smallest affine space
spanned by B. Furthermore the index of the model is Unite at any such point.



CHAPTER 3 Examples and special types of models 87

Proof. We shall verify the conditions (i)-(iv) in Definition 2.2.1. As the set E\
we take the set of j/'s with a(y) > 0. On this set all densities are positive and
consequently the measures are mutually absolutely continuous.

There is no loss of generality in assuming that B is not concentrated on any
affine subspace of dimension strictly less than the dimension of W*, because we
might otherwise embed the parameter space B in a vector space of this dimension
and then use the device (2.13) to bring the model back into the form (2.1) with a
parameter space that would now be of the same dimension as Θ.

Hence, assuming that B is of the same dimension as W*, any interior point of
B is also an interior point of Θ C W*. Since K is known to be analytic at any such
point it follows that the conditions (i)-(iii) in Definition 2.2.1 hold, and that there
exist two constants c(β) > 0 and X(β) > 0 such that

\Dkκ(β)(w*)k\ < k\c(β)2\(β)k-2\\w*\\k

for all k > 2 and w* G W*. Thus, it is seen from (2.15) and (2.16) that any of the
cumulant conditions (v)-(vii) in Theorem 2.4.2 hold, and hence that the model is
analytic at β.

Assume now that I(β)(w*)2 = 0 for some w* φ 0, w* G W*, and β G Ίnt(B).
Since

all cumulants of (w* , t(Y)) must be zero if the Fisher information is zero. It
follows from (2.8), (2.14), (2.15) and (2.16) that in that case all the Dk(βYs are
zero and hence that the model is constant in the direction w* from β in some
neighbourhood of zero. We now use Lemma 2.5.9 to deduce that the index is finite
at/?. I

Note that it follows from Theorem 2.6.1 that for a linear exponential family the
index cannot be reduced by any analytic one-to-one reparametrization. In a gen-
eral sense this suggests that the canonical parameter is the 6best' parametrization
in terms of the results that can be obtained by the present theory, cf. Section 4.3,
concerning the approximation of the distribution of the maximum likelihood es-
timator by a normal distribution. However, other parametrizations may provide
better approximations in particular cases, because the results only provide bounds
on the error, not an expression for the error itself.
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3 Curved exponential families

Consider again a family of the form (2.1) and a parametrization

0 : B -» Θ, (3.1)

of the model

f(y\β) = α(y)exp{(0(/3), t(y)) - κ[θ(β)}}, (3.2)
where B CV and K is given in (2.4). Such a model is called a curved exponential
family although it may, as a special case, be linear. Sometimes this name is
understood to imply certain smoothness conditions, such as differentiability of the
function θ. From the previous section and from Section 2.5 it is easy to see when
such a family is analytic. It essentially requires that the mapping θ is analytic.

Lemma 3.1. A curved exponential family is analytic at any point β E int(5) for
which the mapping θ is analytic at β and θ(β) E int(Θ). If the representation of
the canonical sufficient statistic is minimal, i.e., if var0o{ί(Y)} is positive definite
for any, and hence all, ίo E θ , then the condition that θ is analytic at a point
β E int(i?) with θ(β) E int(Θ) is also necessary for the model to be analytic at β.
Furthermore, under the same condition of minimality of the representation oft(y),
the index of the model is finite at any such point β if and only if Dkθ(β)(vk) = 0
for any k E N and υ eV for which Dθ(β)(υ) = 0.

Proof, Throughout the proof consider any fixed point β E int(β) for which
θ(β) E int(Θ). It follows directly from Lemma 2.1 and Lemma 2.6.1 that the
curved exponential family is analytic at β if the mapping θ is analytic at β. The
Fisher information at β is given by

I(β)(v>) = (yΆΐθ{β){t(Y)}) {DΘ{β){v)Y

which, if the representation of t(Y) is minimal, is zero if and only if Dθ(β)(υ) =
0. If this implies that Dkθ(β){vk) = 0 for all k E N then the analyticity of θ
guarantees that #(/?), and hence the model, is constant in the direction ϋ, and
from Lemma 2.5.9 it then follows that the index at β is finite. Conversely, if
there exists a υ e y and a it G N with Dkθ(β)(vk) φ 0 and Dθ{β){v) = 0, then
I(β)(υ2) = 0 but the model is not constant in the direction v from β and it then
follows from Corollary 2.5.8 that the index is infinite.

Finally, assume again that the representation of t(y) is minimal, and that the
model is analytic at β. Then it follows from condition (iii) in Definition 2.2.1 that
the function

{θ{β),t{y))-κ[θ(β)} (3.3)

is analytic at β for all j / i n a set of probability one. Since t(y) is not concentrated
with probability one on any proper subspace of W it is possible to find a collection
yi^'-iVn of points in E such that the function in (3.3) is analytic at any of these
points and such that the linear space spanned by /(j/i),. - ,t(yn) is equal to W.
Hence, by considering pairwise differences between the functions in (3.3) at these
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points, we deduce that (θ(β), w) is analytic at β for any w G W. This implies
that θ itself is analytic at β. |

For the record we note that

Dk(β)(vk) = (Dkθ(β)(vk), t(y) - τ[θ(β)})

m=2 a£Sm(k)

x *<"> [θ{β)\ {D^ θ{β){v^),..., Da- θ(β)(va-)} (3.4)

for k G N and υ G V, where r is defined in (2.5), 5m(fc) is the set of sequences
from (1.2.24), κ^m^ is the function θ •-> Dmκ(θ), and the sum should be read as
zero if k = 1. From this equation we see that the cumulants of the log-likelihood
differentials are given by

( ) { ^ } (3.5)

for m > 2, fcj G N, and Vj G V, while Xfc(/3)(v/e) equals the second term on the
right hand side in (3.4).

4 One-dimensional location models

Let

where g : R -» R+ is some density function which is assumed to be positive and
analytic throughout R. Because the /^-distribution of Y — β does not depend on β
we see that the /^-moments of

do not depend on β G R. Therefore the model is analytic at all points β if it is
analytic at any one point. Because g is assumed to be positive and analytic, the
criterion for the model to be analytic is that there exist a constant p > 0 and a
function M : R —• [0,oo) such that

\Dk\ogg(y)\<k\M(y)pk-1 (4.3)

for all k G N, and

/ exp{sM(y)}g(y) dy < oo (4.4)

for some s > 0. From (4.3) it follows that a necessary condition for the model to
be analytic is that the radius of convergence of the analytic function y -»logg(y)
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is bounded below by some positive constant i£, say, uniformly in y G R. Assuming
this to be the case we may extend the function log^(y) to be defined and analytic
throughout the strip

= {zeC:\lmz\<R} (4.5)

where Imz denotes the imaginary part of z. Then Cauchy's inequalities tell us
that

\Dklogg(y)\<klr'kMr(y) (4.6)

for any k G N and r satisfying 0 < r < i£, where

Mr{y) = sup{ I logg(y + rz) - logf l(y)| : z G C, \z\ = 1}. (4.7)

The function pMr(y) then satisfies (4.3) with p = r""1 and the problem is whether
there exists a n r > 0 such that Mr(Y) has finite exponential moments. Notice
that whenever y G R, s > 0, 0 < r < i?, and \z\ = 1 satisfy the condition

\g(y + rz) - g(y)\ < g(y)

we have

exp{θ| logίf(y + rz) - logflr(y)|}

^ eχP Is Σ τ My + ̂ ) - g(y)\/g(y)]k)

< exp {θlog[l - \g(y + rz) - g(y)\/g(y)}}

rz)-g(y)\/g(y)Γs. (4.8)

Hence we have proved the following lemma.

Lemma 4.1. A location model of the form (4.1) is analytic at any point β G R
if the density g is positive and analytic throughout R, the function z H-> logg(z)
may be extended to an analytic function without singularities on a complex strip
of the form CR defined in (4.5), for some R > 0, and

J sup { [1 - \g(y + rz) -g(y)\/g(y)Γ8 : z G C, \z\ = 1} g(y) dy < oo (4.9)

for some s > 0 and r G (0,i2).

The condition that the convergence radius of logg(y) is bounded below by R
uniformly in y has here been replaced by the equivalent condition that the function
is analytic without singularities in the strip CH The condition (4.9) may also be
replaced by another condition which is simpler, although not implied by (4.9).
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Lemma 4.2. A location model of the form (4.1) is analytic at any point β G R
if the density g is positive and analytic throughout R, the function z ι-» log#(2)
may be extended to an analytic function without singularities on a complex strip
of the form CR defined in (4.5), for some R > 0, and the derivative of the function
z —• logg(z) is bounded on some strip Cr with 0 < r < R.

Proof. Let

\Dlogg(z)\ <K <oo

for z G C r. Then

exp{θ| logg(y + rz) - logg(y)\} < exp{srK}

for all s > 0, y G R, and z G C satisfying \z\ = 1. Thus, the function Mr(Y)
defined in (4.7) is seen to have finite exponential moments. |

Concerning the index we have the following result.

Lemma 4.3. If a location model of the form (4.1) is analytic, then its Fisher
information is positive, its index is finite, and both of these quantities are inde-
pendent of the parameter β G R.

Proof. From Lemma 2.5.9 we know that the index is finite if the Fisher infor-
mation is positive. But

= wa.vβ{Dβ\ogg(y-β)}

= J {Dy logg(y - β)}2 g(y - β) dy

= J{Dlogg(y)}2g(y)dy

which is constant and cannot be zero because that would imply g(y) to be con-
stant. Hence the model has finite index at any point β. The invariance argument
underlying the computation above is easily extended to show that the index is
independent of β. |

The results in the three lemmas above generalize directly to the case of multi-
dimensional location models, but we shall not pursue that subject here.
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5 Cauchy location model

The following example is included to show that the moment condition (iv) in
Definition 2.1 is not as restrictive as it may seem at first. Let

for y G R and β G R. Thus Pβ is a Cauchy distribution centered at β and the
model is a location model as discussed in the previous section. For any z G C with
\z\ < r < 1 we have

logg(y + z) = -logπ - log{l + (y + z)2} (5.2)

which is clearly analytic without singularities throughout the strip C r from (4.5).
Furthermore, if z = y + iθ where |0| < r, we have

\D\ogg{z)\ =
2z

(5.3)

which is bounded throughout the strip C r when r < 1. It now follows from
Lemma 4.2 that the model (5.1) is analytic, and Lemma 4.3 shows that the index
is finite.

6 Location and scale models

Let
) = e^g(a + e^y), (6.1)

where β = (#,7) G R2, y G R, and g : R —» R+ is a density function which is
assumed to be positive and analytic. The (α,7)-distribution of

U = a + eΊY (6.2)

is the standardized distribution with density g corresponding to a = 0 and 7 = 0
in (6.1). Thus the model for Y is obtained from the density g by location and scale
changes.

The technique used for the location models in Section 4 can be used again to
obtain quite similar results.

Lemma 6.1. A location and scale model of the form (6.1) is analytic at any
parameter point (0,7) G R2 if the density g is positive and analytic throughout R
and the function z ι-+ logg(z) may be extended to an analytic function without
singularities on a set of the form

{zeC: \Imz\ < R(l + \Rez\)} (6.3)
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for some R > 0, and

Γ sup{ [1 - |(1 + z2)g(u(l + z2) + zx) - g(u)\/g(u)}~s :
J — OO

z\,z2e C; |zi | < r,|2Γ2| < r}g(u)du < oo (6.4)

for some s > 0 and r G (0, iZ).

Proof. As in Section 4 we see that the condition we need to prove to show that
the model is analytic is that for all k G N,

(6.5)

for some p > 0 and M : R —• [0,oo) satisfying

E ( α , 7 ) e x p { 5 M ( y ) } < o o (6.6)

for some 5 > 0. If we let

Mr(y) = sup{ \zb + logg(a + za + eΊ+zby) - log^(α + eΊy)\ :

α , 6 G R , ^ G C ; α 2 + 6 2 = r2,\z\ = 1} (6.7)

for 0 < r < i2, then Cauchy's inequalities show that pMr(y) satisfies (6.5) with
p = r " 1 . It remains to be shown that Mr(Y) has finite exponential moments for
some r G (0, J2).

Let a2 + b2 = r2 and \z\ = 1, 2r G C. Then, as in (4.8) we obtain

\zb + lo g 5 (α + za + e^zbY) - log(/(α

< {1 - |e^6

5(α + *α + e ^ ' 6 y ) - g(a +

= {1 - |(1 + z2)g(z1 + (1 +

where

and

\z2\ = \ezb-l\<rer.

It is now clear that if we choose r sufficiently small then, for any fixed (α,7), the
expectation of the last expression is bounded by an integral of the form (6.4) with
another (larger) value of r. |

Also as in Section 4 we have the following simpler sufficient condition for the

model to be analytic.
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Lemma 6.2. A location and scale model of the form (6.1) is analytic at any
parameter point (α,7) G R2 if the density g is positive and analytic throughout
R, the function z »-> log g(z) may be extended to an analytic function without
singularities on a set of the form (6.3) for some R > 0, and

zD log g(z) (6.8)

is bounded on this set.

Proof. Notice first that it follows from the assumptions that also the function

D log g(z)

is bounded on the set AH because the subset with \z\ < 6, say, is compact and the
function is continuous. As in the proof of Lemma 6.1 we see that if α2 + b2 = r2

and 1̂1 = 1 we may write

α + zα + e^zbY = zλ + (1 + z2)U

where |zi|,|z2| < δ for some 6 > 0 that may be made arbitrarily small by an
appropriate choice of r. Furthermore we then have

(1 + z2)U = ez>Ue A25, |* 3 | < log(l - ί),

and record that
Dxlogg(Uex) = UexD logg(z)

is bounded for z = exU G A25, x G C. Hence, for any fixed parameter point
(α,7) G R2 and s > 0 we obtain

exp{s \zb + log#(α + zα + eΊ+zbY) - logg(α + eΊY)\}

< expίθr + θίsup{ \Dlogg(z)\ : z G A2δ }

- δ) sup{ \zDlogg(z)\ : z G A2δ }

which is uniformly bounded in α, b and z. Therefore Mr(Y) defined in (6.7) has
finite exponential moments. |

Also the result concerning the index generalizes from the location model al-
though the proof is a bit more complicated.

Lemma 6.3. If a location and scale model of the form (6.1) is analytic, then its
Fisher information is positive definite and its index is finite.

Proof. Let the parameter be fixed and observe from (6.1) and (6.2) that

D1(α,7)(α,δ) = b + (α + be^Y)D\ogg(α +

= b + (α-bα + bU)D \ogg{U) (6.9)
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for any (α,δ) G R2, where Dlogg refers to differentiation with respect to the
argument of the function g. Thus, the Fisher information may be written

/(α,7)(α,6)2= / {b + (α - ba + bU)D\ogg(u)γ du (6.10)
J—oo

which is positive unless

D\ogg(u) = -b/(a - ba + bu)

almost everywhere. This is clearly impossible if b = 0 and otherwise it implies
that g(u) is proportional to \a — ba + bu\~λ which is not integrable. This proves
that the Fisher information is positive definite and hence by Lemma 2.5.9 that the
index is finite at any parameter value. |

The parametrization of the model (6.1) is somewhat unusual but it follows from
Theorem 2.6.1 that a reparametrization of the model to, e.g., the usual form

/(y;<*,7) = - 0 ^ — J , 7 > o , (6.11)

does not affect the conclusion that the model is analytic and the index is finite
whenever the conditions of Lemma 6.1 or Lemma 6.2 hold.

For the parametrization in (6.11) we can furthermore show that the index is
constant throughout the parameter space.

Lemma 6.4. Consider the model (6.11), where g is some fixed positive and
analytic density function on R. If this model is analytic then its index is finite and
constant as a function of the parameter (#,7).

Proof. We already know that the index is finite. To show that it is constant we
write the log-density as

log/(y α, 7) = -log 7 + logg(u)9 (6.12)

where
u = (y- α)/7,

and notice that
du —1 du —u

dα 7 ' dη 7

Hence, it follows that

Dk log /(y α, 7) = Ί~
kDk log /(«; 0,1)

where the differentiation in both cases are with respect to the two parameters (u
being regarded as fixed in the second case), but in the second case evaluated at
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the 'standardized' distribution with a = 0 and 7 = 1. Since the distribution of U
does not depend on the parameters we deduce that

It is now clear that the 7's cancel from the two sides of the inequality defining
the index of the model in (2.5.3), because 7- 1 appears as a factor in the Fisher
information norm. |

7 Cauchy location and scale model

Let /3 = (α,7)eR2 and

, (7.1,

where g is the density function of the Cauchy distribution as in Section 5. The
model is a location and scale model of the form (6.1). We shall use Lemma 6.2
to show that it is analytic throughout the parameter space. Thus, consider z =
z\ + iz<ι G AR from (6.3), with 21,22 € R. Then, for R < | we have

which shows that the function

logg(z) = - logπ - log(l + z2)

is analytic on the set AR with R = ^. Next, we see that

<2(z2+z2

2)/|Re(l + z2)|

< (2zl + i?2(l + \Zl\f) /{(I + zl)(l - 4i?2)}

which is clearly bounded on AR if R < | . It then follows from Lemma 6.2 that
the model is analytic. It is furthermore known from Lemma 6.3 that the model
has positive definite Fisher information and finite index throughout the parameter
space.
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8 Uniform distributions

As an obvious example of failure of a model to be analytic consider the following
example. Let

β-1 i f° <*</*' (8.1)
0 otherwise

for β > 0, such that the /3-distribution of Y is uniform on (0,/ϊ). Since the
distributions all have different supports the model is not analytic at any point.

9 Piecewise linear regression

Let Y\,..., Yn be independent normally distributed random variables with com-
mon variance σ2 and expectations given by

where # i , . . . ,xn are (known) covariates and the parameters are α, 71, 72, θ in R,
and σ2 > 0. In a neighbourhood of any fixed parameter point, except of those with
θ = Xi for some i, the model agrees with a linear normal model, and therefore it is
easily verified that the model is analytic at any point, except at the singularities
with θ = X{. However, if we let n tend to infinity the set of singularities may become
more dense and consequently the neighbourhoods Uo(β) from Definition 2.2.1 may
shrink. The consequence is that although the model is analytic at any parameter
point, except on a null-set, the asymptotic theory based on the concept of analytic
models may not be of much use.

10 The Weibull distribution

As a less obvious example of a non-analytic model consider the one-parameter
family of Weibull distributions with densities

f(y;β) = βvβ~1eχj>{-vβ} (10.1)

for y > 0 and β > 0. The distribution of Y& is an exponential distribution with
expectation 1. Direct computations yield

log f(y\β) = log/3 + (β- l)log» - yβ (10.2)

and
Dk(β) = (-l)k-\k - l)\β~k - (logy)y (10.3)
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for k > 2. For Dk(β) to have finite exponential moments the integral

roo

/ exp {s [xβ-k(logx)k] - x) dx (10.4)
Jo

must be finite for some s > 0. Since this is not the case we conclude from
Lemma 2.3.2 that the model is not analytic at any parameter point. In fact,
all moments of the D^s exist, but as seen above they fail to have exponential
moments.

Notice that the model may be transformed to a scale family based on the density
g of log X where X is exponentially distributed with mean 1. The inclusion of a lo-
cation parameter would lead to the two-parameter family of Weibull distributions.
The conditions in Lemma 6.1 and Lemma 6.2 may be seen directly to fail for this
family, in accordance with the result above that the scale model is not analytic.




