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In nonlinear situations, optimal experimental conditions generally depend upon un-
known parameters to be estimated from the data collected during the experiments. A
natural approach then consists in designing the experiments sequentially, that is, alter-
nating estimation and design phases. Each design phase can be considered as a control
action applied on the system. Sequential design thus corresponds to adaptive control,
with, e.g., the precision of estimation as objective. Even for a purely static system, de-
signing the experiments sequentially introduces a feedback of information, which induces
dynamics into the design procedure. Several sequential schemes, corresponding to differ-
ent control policies, are considered. The optimal one corresponds to closed-loop control
and is the solution of a stochastic dynamic-programming problem, which is extremely
difficult to solve even in very simple cases. Suboptimal strategies are thus proposed.
Examples for nonlinear regression models are presented.

1. Introduction. In nonlinear situations the optimal experimental conditions

generally depend upon parameters to be estimated during the experiments. Sequential

design provides a method of circumventing this issue: after each observation, or each

sample of n observations, the parameters are estimated, and this information is used

to design the experiment for the next observation(s). One can refer to Chernoff (1972)

for a monograph on sequential analysis, including the construction of stopping rules.

Since stopping rules will not be discussed here, one may prefer to call the designs

considered "adaptive". We shall, however, call them "sequential" since this seems to be

common practice. The design phases can then be considered as control actions applied

on the system, the control objective being for instance the precision of estimation.

The dependence of the A th experiment on previous observations introduces a feedback

of information, and thus induces dynamics into the design procedure, even in cases

where the process under study is purely static. In this sense, one can think about

the A th design step as the design of the experiment to be performed at time k, and

sequential design can be considered as an adaptive-control problem. For instance, the
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usual non-Bayesian myopic approach of sequential design can be considered as Forced
Certainty Equivalence control [see Pronzato, Walter and Kulcsar (1993), Runggaldier
(1993)]. Relations between experimental design and control are briefly described in
Section 2. Section 3.1 discusses convergence problems for batch-sequential design,
whereas Section 3.2 concerns fully-sequential design. The case where the number of
observations is fixed is considered in Section 4. The optimal strategy corresponds to
closed-loop control, and is the solution of a stochastic dynamic-programming problem
[see Bellman (1957)], which is extremely difficult to solve even in very simple situations.
Examples with two-stage sampling can be found in Zacks (1977), Pronzato, Walter and
Kulcsar (1993), Kulcsar, Pronzato and Walter (1994). Different suboptimal strategies,
passive and active, are presented. In conclusion, Section 5 gives some perspectives.

2. Experimental design and control. Consider a system on which N observa-
tions j / i , . . . , j/iv are to be performed, with

(2.1) y* = *?(£, &) + €*,

where θ G Θ is the true value of the model parameters, with Θ C IBP a compact
set, ξk denotes the experimental conditions for the A -th observation and is assumed to
belong to a compact set, {e&} is an i.i.d. sequence of normal variables Λ/*(0, σ2), with σ
known, and η(θ, ξ) is the model response for the value θ of the model parameters and
experimental conditions ξ. The response may be nonlinear in 0, and it will then be
assumed two times continuously differentiate with respect to θ. Least-squares (LS)
estimation is considered, which coincides here with maximum-likelihood estimation,
and we shall denote

θk = ks{yk

x) = a r g m i n l > - η(θ,ξ$2 .
θ € θ <=i

Here and in what follows x\ denotes the list of variables (xi, Xj+i,..., Xj).
The design problem is to choose the experimental conditions that yield the highest

possible accuracy for the parameter estimators ΘN. Under suitable conditions [Jen-
nrich (1969)], for large values of N, ΘN approximately follows the normal distribution
Λf(θ,M-ι(θ,ξ?)), where

1 f) f
is the Fisher information matrix. We shall thus use Φ(M) as a criterion for experimental
design (to be maximized) [see, e.g., Fedorov (1972)]. Special attention will be devoted
to D-optimality, for which Φ( ) = det( ). Note that a more accurate approximation of
the distribution of ΘN may be used to define more accurate design criteria [see Pazman
and Pronzato (1992), Pronzato and Pazman (1994)].

There are two situations where design and control are strongly related: (i) the
experimental conditions correspond to the input of a dynamical system, (ii) the exper-
iment is designed sequentially. This paper essentially concerns case (ii). Case (i) can
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be illustrated by the simple example of model with Finite Impulse Response (FIR),
which is classical in control engineering, signal processing, time-series analysis, etc.

EXAMPLE 1. Consider the situation where the model response η(θ,k) associated
with the λ -th measurement is a linear combination of design variables fe-p+u »ζk)l
i.e.,

(2.3)
i=0

and ξi = 0 for i < 0. D-optimal design then consists in choosing the input sequence

{ξk} that maximizes the determinant

r N i
d e t Σ f e ' £k-l, , ξk-p+l)T(ξk, &-1, , ξk-p+l) ,

Lfc=i J

with e.g. a power constraint of the form Σh<Nζl ^ ^max, which defines the admissible
design region. The determination of the optimal input sequence is then a nonlinear
control problem.

Since η(θ, k) given by (2.3) is linear in 0, the optimal design does not depend on
θ and sequential design is not needed. Consider now a trajectory-following problem,
where {£&} should minimize

N N

k •>

k=l

with ref( ) a given reference trajectory to be followed by the system and η(θ, k) still
given by (2.3). The optimal input-design then depends on 0, which is unknown and
can be estimated at time k by θk. This type of problem will be considered in Section
4. Another situation where the optimal design depends on the value of θ is when
the dynamical system contains an autoregressive part [see, e.g., Goodwin and Payne
(1977), Zarrop (1979), Walter and Pronzato (1997)]. The determination of the optimal
input sequence for the estimation of θ is then again a nonlinear control problem, but
it may be useful to design the experiment sequentially.

Sequential design is strongly related to control even if the model has no dynamical
aspects. In the rest of the paper we shall focuss on static regression models such
as (2.1), where η(θ,ξk) is independent of ξk-iiζk-2i &nd is nonlinear in #, so that
M(θ,ξ^) depends on θ. Classical fully-sequential design is then as shown in Figure 1,
with θ° some prior guess for θ.

Qk-l

design observe

Vk

estimate design

F I G . 1. Fully-sequential design.
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Since ξk depends on yk x, designing ξk corresponds to controlling a dynamical
system. One may have two different objectives in mind: first, one may wish that
ξ^ = (£i,..,£jv) tend to the optimal design for θ when TV tends to infinity, this
is considered in Section 3; second, for a fixed value of JV, one may wish to maximize
Φ[M(0, £ί^)], with θ unknown. This corresponds to adaptive control with finite horizon
and is considered in Section 4.

REMARK 1. We shall still use M(0,£f), given by (2.2), to characterize the pre-
cision of the estimation, although it does not correspond to the observed or expected
information matrix [Ford, Titterington and Wu (1985), Wu (1985)].

3. Convergence issues.

3.1. Batch-sequential design. Classical batch-sequential jD-optimal design is as

shown in Figure 2, where θ° is some prior guess for 0, and where ΈLk

D = ξk^_^n+1 is the

exact D-optimal design of size n>p= dim θ for the estimator θk~ι, that is

Ξk

D = ΞD{θk-1) =

Qk-l
}lkn

design observe estimate design

F I G . 2. Batch sequential D-optimal design.

We shall consider three alternatives for θk, to show the importance of this choice.
Let θk denote the LS estimator based on the n observations associated with Ξ^, that

is

(3.1)
kn

i=(k-X)n+l
- η{θ,

(i) A first choice, obviously not recommended, is θk = θk: the design Ξk

D then does
not converge since θk is based on n observations only, with n fixed,

(ii) A second choice, often used in practice, is

(3.2)
t = l

Let τr( |0, Ξ) denote the density of the LS estimator for the design Ξ and true parameters
θ. The estimator θk has the density π[θ\θ, ΞD(0fc~1)], and one can show [Pronzato,
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Walter and Kulcsar (1993)] that sequential design corresponds to a Robbins-Monro
stochastic-approximation procedure for computing the value θ* that satisfies

θ* = f θ π[θ\θ,ΞD(θ*)] dθ.

Under rather general assumptions, θk tends to 0* and Ξ^ tends to ΞD(Θ*) when k tends
to infinity. However, in nonlinear regression θk is not a sufficient statistic: each θk is
biased, and this bias does not vanish asymptotically since θk is based on n observations
only. Therefore the bias of θk does not tend to zero, and θ* differs from θ. A similar
problem is encountered when the successive experiments are performed on different
processes, or individuals, sampled from a population [Pronzato, Walter and Kulcsar
(1993)], see DΆrgenio (1981) for an example in pharmacokinetics.

EXAMPLE 2. Consider the case of a simple kinetic model (e.g. in chemical engineer-
ing or pharmacokinetics) with elimination rate constant 0, where η(θ,ξ) = exp(—θξ),
n = p = 1, ΞD(Θ) = 1/θ and θ = 0.5. The measurement error ê  for the experiment ξ^
has a normal density Λ/"(0,σ2), truncated to values e& > — exp(—θξk), so that yk > 0
for all k. Figure 3 gives θ* as a function of σ. For small values of σ the bias is small,
and θk converges to θ* close to 0, whereas θk converges to a value far from θ when σ is
large.

0.57

0.56

0.55

0.54

0.53 -

0.52 -

0.51

FlG. 3. Bias in batch sequential design when (3.1,3.2) is used (θ*
as a function of σ, with θ = 0.5).

(iii) A third choice corresponds to θk = θkn, that is the LS estimator based on all
the observations collected. Since each Ξk

D is non-degenerate, θk converges to θ and Ξ^
converges to ΞD(Θ) when k tends to infinity.

3.2. Fully-sequential design. Fully-sequential designs correspond to batch-sequential
designs with n — 1 (only the case p > 2 is thus of interest). Consider the case of a
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fully-sequential .D-optimal design, see Figure 1, where for k > p — 1 the design points
are sequentially chosen as

(3.3) 6 + i = argmax[detM(0 fc, [ξf.ξ])] = argmax[d(0*,tf,O],

where

This one-step ahead procedure corresponds to an adaptive version of Wynn's algo-
rithm [Wynn (1970)] for the construction of a D-optimal design (approximate theory).
Convergence results for such sequential schemes are still very partial. For instance,
convergence is proved in Ford and Silvey (1980), Mίiller and Potscher (1992) for esti-
mation of the turning point of a quadratic regression: η(θ,ξk) = θiξk + Θ2(ξk)2 + £k,
with the design criterion (to be minimized) Φ [ M ( ^ ) ] = cτ(θ)M.~ι(ξ^)c(θ), where
c(0) = ( l , - 0 i / 0 2 ) Γ [Φ[M(£f)j is thus proportional to the asymptotic variance of
-0i/(202)]. Convergence of fully-sequential designs for location and location-scale
models is considered in Ying and Wu (1997).

To the best of our knowledge, no general result is available about the convergence
of (3.3) in nonlinear regression but the following obvious one: if there is convergence to
a non-degenerate design, then the parameter estimators converge to the true value 0,
and the design obtained is thus D-optimal for 0. Note, however, that this convergence
issue is not as crucial as it might seem. Indeed, one can always construct a non-
degenerate design first, and then successively use its support points every M iterations
of (3.3). The result above then applies, and the design which is constructed can be
made arbitrarily close to the D-optimal design for 0 by choosing M large enough.

4. Sequential design for fixed N. All the design policies that have been
considered so far substitute the current estimator θk for the unknown value of 0, and
the experiment is designed optimally for this estimator. This corresponds to Forced
Certainty Equivalence (FCE), see Runggaldier (1993). In order to define new design
policies, we first write optimal sequential design as a stochastic-control problem.

4.1. Optimal sequential design and stochastic control. Let the number of observa-
tions be fixed to TV, and let 1° denote the prior information: 0 has the density 7Γ°( )
and {e^} is i.i.d. with the density πc( ). We shall adopt a Bayesian approach (for de-
sign, not for estimation), and maximize E{Φ[M(0,ξfΓ)]|2Ό} with respect to ξ^. Note
that ξk may depend on Xk~~ι given by Xk~ι = { J 0 , ^ " 1 , ^ " 1 } , which corresponds to
the information available at time k. The expectation E{ } is thus with respect to all
random variables involved (0 and {e*}). The optimal strategy is then the solution of
the following stochastic dynamic-programming problem:

[Eyi {max 6 [Ey2 {...

It can be solved analytically in very special situations [for instance LQG control, see,
e.g., Whittle (1982)], and its numerical solution is feasible only for TV very small [N = 2
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in Zacks (1977), Pronzato, Walter and Kulcsar (1993), Kulcsar, Pronzato and Walter
(1994)]. Therefore, suboptimal solutions must be considered. Most of them use an
approximation of the future posterior density π(θ\TN~ι) in (4.1). All the strategies to
be considered are as follows. Suppose we are at time j , where X-7"1 is available. We
shall design ξ^ then apply ξj, increment j by 1 and repeat.

4.2. Suboptimal passive strategies.

FORCED CERTAINTY EQUIVALENCE. FCE corresponds to sequential local design,

and amounts to substituting the Dirac function δ(θ — θj~1) for π(θ\XN~1) in (4.1), with

θi~ι some estimate of θ, e.g. θ^~ι = argmax^€j[Rp7r(^|X 7~1). Then (ξ^FCE is obtained

by maximizing ΦfM^-1, [£Γ\ξf])], with ξt' fixed to (tf"1 W

O P E N - L O O P FEEDBACK. OLF corresponds to sequential Bayesian (or average-

optimal design), and amounts to substituting the current posterior density π(θ\lj~1) for
π ^ l Z ^ - 1 ) in (4.1). Then {ξf)OLF is obtained by maximizing EJ{Φ[M(0, [ ξ Γ \ ξ f ])]},
where ξ{~~1 — (ξi^oLF and Ej

θ{-} denotes the expectation for π(θ\lj~1).

O P E N - L O O P . The OL policy involves no feedback of information and is thus not
sequential. In this case, π(θ\lN~1) is simply replaced by the prior density π(0|I°).

A control policy that yields better results than OL is called quasi-adaptive [Wit-
senhausen (1966)]. It is shown in Bertsekas (1976) that OLF is quasi-adaptive and in
Thau and Witsenhausen (1966) that FCE is not

When π°( ) is the normal distribution Λ/"(0°,Σo) and ττc( ) is normal Λ/*(0,σ2),
lP1) in OLF can be approximated by Λ / " ^ ' " " 1 ^ ^ ! ^ ' " 1 ) ) , where

(4.2) Σ jb(0) = [Σό1

FCE is independent of σ2. Since it ignores uncertainty on θ, it is also independent of
Σo

EXAMPLE 3. Consider the nonlinear regression model given by η(θ, ξ) = θι exp(—θ2ξ
with a normal prior λf(θ°,Σ0) for (9, 0° = (l,0.5) τ, Σ o = diag(0.04,0.01), i.i.d. errors
λί(0,0.015) and TV = 4. We compare the OLF and FCE strategies for Φ( ) = det( ) by
performing M repetitions of the sequential experiments, as explained in the Appendix.
Figure 4 gives the evolution of £M-I,O.O5 &nd POLF-FCE{M) given by (A.I) as functions
of M. We can conclude from the figure that OLF performs significantly better than
FCE.

In FCE and OLF at any time j all support points in ξf play the same role. The
sequential character of the experiment is thus ignored: the fact that at a future time
k > j , Ik~ι will differ from I 7 " 1 is not taken into account. In other words, FCE
and OLF use feedback but are passively adaptive: decisions are taken as if no other
observation would take place in the future. This is the reason why these policies are
generally implemented in a fully-sequential form, with N not fixed a priori In the
case of D-optimality, this gives the following one-step ahead myopic procedures:
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FIG. 4. Evolution of POLF-FCE{M) (full line) and ΪM-1,0.05 (dotted
line) as functions of M.

The opposite to this is the idea of active control: a control policy is said to be
actively adaptive if it takes its influence on future uncertainty into account. New
sequential strategies based on active control will now be presented.

4.3. Suboptimal active strategies. A first suboptimal active strategy, denoted Al in
what follows, consists in approximating at time j the future posterior π(θ\lN~ι) by the
normal density λί{θ^~ι, ΣN-ι(θj~1)), where Σjv-iO?-7"1) is given by (4.2) and does not
depend on yf~ι. {ξf)Ai is then obtained by maximizing E^ '^ΦpVί^, [ fΓ\ξf ])]},
where ξ-p1 = (ζl^Ai and EJ^" 1 ^} denotes the expectation for θ distributed

Note that when σ2 tends to zero, this distribution tends to the Dirac function δ{θ—θ^~ι)
and Al tends to FCE.

Applying the same idea to an additive decomposition of the terminal cost Φ[M(0, £f)]
we obtain another active strategy. This is illustrated in the case where Φ( ) = logdet( ).
We can write

logdet[M(ό>, ξ?)] = log[σ2 + d(θ, ξ?-1, ξN)] + log[σ2 + d(θ, ξ?~2, ξN^)}

+ ••• + log[σ2 + d(θ, ξp

u ξp+1)} + log det[M(β, £?)]

-(iV-p)log(σ2),

where d(θ, ξj, ξ) is given by (3.4). The dynamic-programming formulation of the design
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problem then becomes:

maxξ l[Ey i{maxξjE^... max^E^E^logdetfM^,ξϊ)}\Ip}+

maxξp+1[Eyp+1{E,{log[σ2 { ) ] \ ^ }

ΛM[2
^ y

maxξjv[E,{log[σ2

The approximations of future posterior densities used for FCE and OLF yield the
same strategies as in the previous section, whereas approximating at time j the future
posterior density π(θ\lk), k > j , by Λf(θj~1,Σk(θj~1)) gives a new strategy, denoted
A2 in what follows. Since Eyk{Eθ{f(θ,Ik-l)\Ik}\Ik-1} = Eθ{f(θ, J ^ " 1 ) ^ 1 } , (ff ) A 2

is obtained at time j by maximizing

E^-HlogdetfM^, if)]} + E f {log[σ2 + d(θ, ξl fp+i)]} + +
E^-2{log[σ2 + d(θ, £f"2,6v-i)]} + E^Ήloglσ 2 + d(θ, ^ΛN)]} ,

where ξ{~1 = (ξΓ1)Λ2 and EJ/{ } denotes the expectation for λί(θj-\ Σkφ^1)).
The idea used in methods Al and A2 has been successfully applied to standard

control problems, such as regulation, trajectory following and target attainment, for
which better performances than FCE or OLF were obtained. For instance, in the
case of Example 1, one may wish to minimize EJX^LJT/^, k) — ref(fc)]2 4- Σ^^=ιul}
[see Pronzato, Kulcsar and Walter (1996), Kulcsar, Pronzato and Walter (1996)]. The
reason for good performance is that active policies force the input to excite the system,
which helps in estimating θ. This is not so crucial in sequential design, since the input
(i.e. the design) is always chosen so as to excite the system. We shall thus consider a
third active strategy, denoted A3, which at time j takes the dependence of π(θ\lk) in
yk into account. The idea is as follows.

Assume that σ2 tends to zero. Then at time j , if ξj4"*1"1 is non-degenerate, for
k > p π(θ\lk) tends to the Dirac function δ(θ - Θ^P'1). Therefore, the problem to
solve becomes:

(4.3) max[E%.{. . m a x

REMARK 2. A3 tends to be optimal if N = p when σ2 tends to zero. This strategy
is closely related to p-measurement feedback control [Curry (1969)], which has better
performances than OLF [Bayard (1987)]. For this policy, at time j the next p steps
are performed in closed loop, and the rest with OLF, that is Eθ{Φ[M(θ,ξ^ί)}\IjΛ-p-1}
is substituted for Φ[M{θj+p-\ξ?)] in (4.3).

REMARK 3. Problem (4.3) is much simpler to solve than (4.1), but still involves
p imbedded expectations and maximizations. To facilitate the calculations, at time j
one can approximate θk, k > j , through the recursion:
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with s(0,f) = dη(θ,ξ)/dθ and cϋk distributed Λ/*(0,1). The expectation with respect
to yk in (4.3) is then replaced by an expectation with respect to ωk

To reveal the active character of strategies Al, A2 and A3 we introduce constraints
between design points, by considering the case where ξ is time. The sequential con-
struction of the design then implies the time constraint £^+1 > ξk for any A:. Since all
design points play the same role in passive strategies, they can be permuted without
changing the value of the criterion. The time constraint has thus no other effect than
restricting the design space to [£j_i, oo) at step j . On the other hand, active strategies
are affected by the time constraint. In Al the influence of ξ^ is different from that of
the other &'s; in A2 the &'s for i > p play different roles in the criterion, whereas in
A3, at step j , the roles of the &'s with j < i < j + p - 1 are different.

EXAMPLE 4. Consider the model η(θ,ξ) = exp(—0£), with measurement errors
{ek} i.i.d. Λ/*(0,σ2) and a normal prior Λf (0.5,0.01) for θ. We use Φ[M(0,fΠ] =
detM(0,ξf) = Σ £ L i f 2 / σ 2 e χ P ( - 2 0 f ) This additive form makes it possible to use
A2. At step 1, FCE and OLF can be calculated analytically: (£I)FCE — 2 and
(ξι)θLF = 2.1922. We consider the case N = 2, for which Al and A2 are computed
without numerical integration, and the computation of A3 only requires one numerical
integration. We also compute the strategy which is optimal up to a linearization of
the model response (to get a normal posterior for θ). Figure 5 gives the evolution of
the first sampling time ξι as a function of σ for the different strategies when there
is no time constraint. The optimal strategy and A2 remain close to OLF, which is
independent of the value of σ. Al (resp. A3) tends to FCE (resp. OLF) when σ
tends to zero. Figure 6 corresponds to the case where time constraints are present.
FCE and OLF stay the same as previously, whereas the first sampling time for the
optimal strategy, A2, and for A3 is shifted towards smaller values: the strategies are
thus cautious, in the sense that performing the first observation too late would imply
performing the second one even later, which might then yield bad performance if the
value of θ happens to be large. Note that in Figures 5 and 6, A3 tends to the optimal
strategy when σ tends to zero, but quickly moves away from optimality as σ increases.

We compared the performances of the suboptimal strategies by performing 1000
repetitions of the sequential experiments, as explained in the Appendix, for σ — 0.1225
and N = 4. The results are as follows, where < means that the difference was not
significant at level 0.05 and « means that the performances were similar:

without time constraint: FCE < A3 < Al < OLF « A2
with time constraint: A3 < OLF < FCE < Al < A2

These results confirm in particular that the performance of A3 may quickly deteriorate
as σ increases.

Finally, Figure 7 presents the evolution of ξι as a function of TV for different strate-
gies, when σ = 0.02 and time constraints are present. FCE and OLF do not depend
on TV and σ2. The optimal strategy is not computed for TV > 2 due to the complexity of
(4.1). Note that, as intuition would suggest, active strategies tend to be more cautious
as N increases. Al remains close to FCE due to the small value of σ.
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2.15-

2.05-

0.20.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

F I G . 5. ξι as a function of σ for different strategies without time
constraint when N = 2. Al is in dash-dotted line, A2 in dotted line,
A3 in dashed line, the optimal strategy is in full line, {£I)FCE = 2 ;

{ζi)θLF is indicated by a star.

2.15 -

2.05-

1.95

F I G . 6. ξι as a function of σ for different strategies with the time
constraint ξ2 > £i when N — 2. Al is in dash-dotted line, A2 in
dotted line, A3 in dashed line, the optimal strategy is in full line,
(£I)FCE = 2 ; (ξi)θLF is indicated by a star.
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2.2j

FlG. 7. ξι as a function of N for different strategies with the time
constraint ξk > ξk-ι andσ = 0.02. (Al: +, A2: , A3: x, (ξι)oLF-
*, optimal strategy for N = 2: o, (ξ

5. Conclusions. Designing experiments sequentially seems a very natural ap-
proach in nonlinear situations and is more and more used due to the increasing presence
of computers on sites where the experiments are conducted.

Convergence is generally a difficult issue in sequential strategies, but we indicated
why it is mainly of theoretical interest: one can always introduce periodically the sup-
port points of a nondegenerate design in the sequential procedure to ensure consistency
of the estimator. Batch-sequential design is easier to analyse than fully-sequential de-
sign: convergence is generally achieved provided a consistent estimator is used, see
Section 3.1.

Various methods have been considered for finite N, with a distinction between pas-
sive and active strategies. Passive strategies ignore the future. Open-loop feedback
is preferable to forced certainty equivalence, but requires integrations with respect to
the posterior density of θ. Active strategies take into account the fact that future ob-
servations will take place. The support points play different roles in the criteria since
the information available changes with time. Active strategies Al and A2 rely on a
normal approximation of the posterior of θ which is independent of future observa-
tions. Integrations with respect to this approximated posteriors are required. Strategy
AS relies on the assumption that the variance σ2 of the disturbances is small. Only
one-dimensional integrals need to be computed, but integrations are imbedded within
maximizations. Numerical simulations with N = 2 have shown that the strategy tends
to be optimal when σ tends to zero. However, other suboptimal strategies perform
better when σ is not negligible.

Further studies are required to compare these strategies, both from a theoretical
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and practical point of view, and to study the convergence properties of the new active
strategies proposed. Combining strategy A2 with ^43, or with ra-measurement feedback
control, seems promising. Approximating integrals (e.g. using Laplace approximation)
might be useful to reduce the computational task. Also, stochastic approximation
methods might help in cases where expectations and maximizations are imbedded [see
Bayard (1988)]. Finally, other criteria than Φ( ) = det( ) might be considered. In
particular, E{logdet( )} is more justified than E{det( )} [see Chaloner and Verdinelli
(1995)].

Appendix. Suppose that sequential design strategies 51 and 52 have to be com-
pared, with τr°( ) the prior distribution for 0, πe( ) the distribution for the i.i.d. distur-
bances {βk} and N the number of observations.

We perform M independent repetitions of the sequential experiments. For each
experiment, say the i-th one, a value θι is generated according to τr°( ) and N inde-
pendent disturbances {^k}l=i,...,N a r e generated according to πc( ). Let (ξ^)\ (resp.
(£1 )̂2) denote the design points produced by the strategy 51 (resp. 52). We compute
the differences of performances between strategies Si and 52 in the z-th experiment,
that is

Δ'S1_S2 = Φ[M(0\ (^)ί)] - Φ|M(fl\ (tf)j)].

We thus obtain M independent realizations of Δ ^ . ^ , and compute

n M -j M

£ Δ 5 1 _ S 2 , VS 1_S 2(M) =
m <=i m ι t=i

For large M, ASι-s2{M) tends to be normally distributed, and one can use the t-test
to test if E{A1

S1_S2} > 0. We then say that 51 performs significantly better than 52
at level a if Psi-S2(M) > tM-i,α, where tM-ι,a has probability a of being exceeded by
a random variable with Student's t-distribution with M — 1 degrees of freedom, and

(A.1) Psi-s2(M) =
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