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FLEXIBLE ALGORITHMS FOR CREATING AND ANALYZING
ADAPTIVE SAMPLING PROCEDURES

BY JANIS P. HARDWICK1 AND QUENTIN F. STOUT1

University of Michigan

We describe a collection of algorithms and techniques that have been developed
to aid in the design and analysis of adaptive allocation procedures. The emphasis is
on providing flexibility to the investigator, so that appropriate statistical and practical
concerns can be addressed directly. The techniques described allow for optimizations
previously not attainable. They also permit exact evaluations for a wide range of criteria
and are intended to encourage investigators to explore more alternatives. Optimizations
investigated include 2- and 3-population fully sequential models, few-stage models, and
models with constrained switching between options. One of our algorithmic approaches,
path induction, speeds up the process of evaluating a procedure multiple times so that
thorough robustness studies can be undertaken. Our approaches can be utilized with
both Bayesian and frequent is t analyses.

1. Introduction. In situations where data are collected over time, adaptive
sampling methods often lead to more efficient results than do fixed sampling techniques.
When sampling or "allocating" adaptively, sampling decisions are based on accruing
data. In contrast, when using fixed sampling procedures, the sample sizes taken from
different populations are specified in advance and are not subject to change. Using
adaptive techniques can reduce costs, time and improve the precision of the results for
a given sample size. Fully sequential adaptive procedures, in which one adjusts after
each observation, are the most powerful. Such procedures are rarely used, however,
due to difficulties related to generating and implementing good procedures as well as
to complications associated with analyzing the resulting data.
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Our goal is to help researchers utilize adaptive allocation by creating a collection of
algorithms to optimize and analyze a variety of sequential procedures. The techniques
are detailed in Hardwick, Oehmke, and Stout (1997), Hardwick and Stout (1993a,
1993b, 1996a, 1998a, 1998b), and Oehmke, Hardwick and Stout (1998). The intent here
is to illustrate how this growing suite of algorithms allows researchers the flexibility to
incorporate a variety of statistical objectives and operational considerations into the
design and analysis process. Optimal procedures may be needlessly complex or difficult
to employ and explain. An added value associated with their generation, however, is
the ability to establish the efficiency of suboptimal procedures. If one can show that
the relative efficiency of a procedure is high compared with the optimal one, then
investigators may be justified in implementing the typically simpler and more intuitive
suboptimal option. Since this collection of algorithms also allows for the optimization
of strategies that are constrained to have desirable operational characteristics, the
likelihood that investigators can incorporate such goals and still achieve statistical
efficiency is increased.

1.1. Motivation. Years ago it was not only analytically, but also computation-
ally, infeasible to attain exact solutions to most adaptive allocation problems. As an
example, Bradt and Karlin (1956) argue that if, for a specific problem, the optimal
sequential procedure were "practically obtainable, the interest in any other design cri-
teria which have some justification although not optimal is reduced to pure curiosity."
They immediately add, however, that obtaining optimal procedures is not practicable.
Then, as an illustration of the "intrinsically complicated structure" of optimal proce-
dures, the authors detail the first step of the optimal solution to a simple sequential
design problem involving only three Bernoulli observations. While during this same
year, Bellman (1956) identified the fact that problems of this nature could, in princi-
ple, be solved via dynamic programming, such solutions are still typically viewed to be
infeasible. For example, Wang (1991), addressing a variation of the problem in Bradt
and Karlin (1956), notes that "in theory the optimal strategies can always be found
by dynamic programming but the computation required is prohibitive."

Historically, then, the computational complexity of sequential sampling problems
forced researchers to pursue approximations or bounds that could be obtained analyt-
ically. Usually the process has been to determine a lower bound for some statistical
objective function and then to evaluate how close various ad hoc strategies came to
the bound as the sample size approaches infinity. It has generally been felt that if a
procedure achieved second order efficiency then it was probably a suitable rule. There
do not, however, appear to be good ways to assess how accurate the approximations
are for specific sample sizes. Often, for example, in order to employ a procedure it is
necessary to specify constants that are only vaguely determined by the asymptotics.

This situation motivated us to work on greatly extending the range of problems
that could be analyzed and optimized computationally. While some of the gains can
be attributed to the ever increasing power of computers, much is due to algorithms and
implementation. To state that a problem can be "solved with dynamic programming"
is as vague as saying that one need only "do the math". Careful implementations of
complex dynamic programming variations, along with new algorithmic techniques such
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as path induction, have been necessary to achieve the results reviewed here. While
the models for which optimal solutions can be computed are often, albeit arguably,
deemed to be "too simplistic", it is nevertheless the case that the insight one garners
from evaluating these models are likely to lead to better heuristics that apply as well
to more complex scenarios. Furthermore, as the research progresses, the complexity
and functionality that can be evaluated increases.

To illustrate the flexibility of this computational methodology, we demonstrate the
manner in which

1. dynamic programming can be used to generate optimal procedures,

2. path induction can be used to evaluate both optimal and suboptimal procedures
for their statistical properties and operating characteristics, and

3. a variety of criteria and constraints can be added to a base problem to incor-
porate important aspects that might otherwise be ignored or - due to analytic
intractability - be treated in a seriously suboptimal manner.

Another important characteristic of the algorithms is that all results are exact.
In the next section, Section 2, we define the model and two sample problems that

are used to illustrate the results obtainable. In Section 3 we address optimizing fully
sequentially procedures, and illustrate the progress that has been made in solving large
problems. In Section 4, we address scenarios in which model assumptions have been
violated, and illustrate the valuable role of path induction in enabling sensitivity anal-
yses. In Section 5 we consider the practical restriction that sampling be specified only
by stages rather than fully sequentially; and in Section 6 we consider the related prob-
lem of sampling when repeated switching among populations is undesirable. Finally,
in Section 7, we outline ongoing work to extend these techniques to new problems.

2. Problem formulation. Throughout, we restrict attention to problems for
which the population outcomes are independent Bernoulli random variables. To design
optimal sampling strategies, we assume a Bayesian perspective and model the success
parameters of the populations as independent beta random variables. These assump-
tions can be relaxed, and we have evaluated procedures where the populations are not
independent, and ones where the success parameters are mixtures of betas. While we
utilize Bayesian assumptions for optimal design, we can analyze arbitrary procedures
using either Bayesian or frequentist criteria. These criteria need not be tied to the
assumptions used to generate the procedure.

To simplify the discussion, the total number of observations, n, is fixed. It is
important to note that this is merely for convenience in describing the complexity of
the algorithms, and is not a requirement of the procedures. For example, in Hardwick
and Stout (1993a), n represents the maximum possible number of observations, where
optional stopping is available and the goal is to minimize the expected number of
observations needed.

A number of different types of goals can be treated using the techniques discussed
here, and we have selected two problems to serve as examples. The first is the classic
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multi-armed bandit problem with finite horizon n [Berry and Fristedt (1985)] where
the objective is to sample from among a Bernoulli populations (the "arms") in such
a way that the sum of the n observations is maximized. The second, the product of
means problem, is to minimize the mean squared error of the estimate of the product of
the success probabilities for the different populations. It arises in reliability and other
settings and has been studied by several authors in a variety of forms [see Hardwick and
Stout (1996b), Page Shapiro (1985), Zheng, Seila and Sriram (1998), and the references
therein].

Note that, while the aim in the bandit problem is to quickly identify and then
to sample from the best population, for the product of means problem one needs a
sufficient, although usually disproportional, number of observations from each popula-
tion because each contributes to the function estimator. The nonlinear nature of the
function further complicates the interactions.

3. Computational approaches. Before discussing algorithms for specific class
of procedures, it is important to understand how they would be used. To optimize
the design for a specific problem, one would decide the class of procedure desired,
such as fully sequential, 2-stage, fully sequential with constrained switching, etc. The
algorithm for that class of procedure would be used, and the only adaptation needed
for the specific problem would be to determine the value of the objective function at
the terminal states, i.e., at the end of the experiment. For example, for the bandit
problem this is merely the number of successes observed. Except for these few lines of
code, the algorithm is unchanged, even though the procedures it produces may vary
dramatically for different objective functions.

The primary computational challenge of adaptive allocation is the fact that the
state spaces involved are quite large. To describe the time and space requirements
of algorithms, we use "generalized O-notation" from computer science, in which we
say a function f(n) = θ(ρ(n)) if there exist positive constants C, D, N such that
Cg{n) < f(ή) < Dg{ή) for all n > N.

3.1. £-Population fully sequential procedures. Multi-population fully sequential
allocation presents a state space that has impeded analysis since its earliest embodi-
ments. While such problems can be solved with dynamic programming, for a Bernoulli
populations and a sample size of n, the number of states is

n + 2a\ n
2a

2a ) (2α)Γ

Even when a = 2, the growth rate is daunting and has been a hindrance to exact
evaluation and optimization. Most of the work on optimizing fully sequential models
has come from interest in bandit problems, although, as noted above, with a change
of terminal objective function many bandit algorithms could optimize any problem.
Armitage (1985) cited the 2-armed bandit (2-AB) as being a problem for which "the
computation involved is prohibitive except for trivially small horizons". More recently,
however, refined algorithms, careful implementations, and ongoing advances in com-
puter speed and memory, have greatly extended the range of sample sizes that can be
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TABLE 1

Computational Solutions for Multi-Armed Bandits

n

200
400
100
200

Arms

2
2
3
3

Equiv. Evals

6.7 x 107

1 x 1011 t
1.4 x 1011 t
8.9 x 1012 t

State RAM

1.3 x 106

1 x 107

8 x 107

2.7 x 109

Berry & Eick, 1987
Hardwick & Stout, 1993

Oehmke, Hardwick, Stout, 1997
Oehmke, Hardwick, Stout, 1998

Machine

Cray 2
Sun 3 work.

IBM SP2
IBM SP2

t State evaluations if backward induction, versus path induction, used for 100 procedure
evaluations.

exactly evaluated. Some of the techniques for careful implementation are detailed in
Hardwick and Stout (1996b).

To be specific as to the benefits claimed, it is our understanding that, prior to our
work, the largest 2-population fully sequential problem that had been solved appeared
in Berry and Eick (1995). Using a Cray 2 supercomputer in 1987, they solved a 2-AB
with a sample size of n = 200. At the other end of the resource spectrum, Jones (1992),
using a (presumed) personal computer, solved a variation of the 2-AB problem, but
could only handle size n = 25. Concurrently, in 1991 we addressed virtually the same
variation with samples of size n = 150 using a modest desktop workstation [Hardwick
and Stout (1991)], and by 1993 were solving problems of size n = 400. Further, we
needed to evaluate the procedures 100 times to determine the probability of correct
selection. These evaluations were performed using path induction (Section 3.3), saving
an order of magnitude in time over the usual backward induction.

3.2. Multiple populations and parallel algorithms. More recently, we have been
pursuing problems involving more than two populations. Such problems are of great
interest, particularly in the design of clinical trials to sequentially select or test among
several populations [e.g., see Betensky (1996), Buringer, Martin, and Schriever (1980),
Coad (1993), Cheng (1994), Palmer (1993), Thall, Simon, and Ellenberg (1989)]. We
know of no prior work in which exact, optimal solutions for fully sequential problems
with three or more populations are determined.

In Hardwick, Oehmke, and Stout (1997), we describe initial work on the Bernoulli 3-
population fully sequential problem with samples up to n = 100. Since the state space
of the 3-population problem is roughly three orders of magnitude greater than that of
the 2-population problem, it was necessary to move onto a modest parallel computer
which offers greater compute power and memory than a standard workstation. We
used an IBM SP2, although the program is written in a fashion that allows it to be
ported to a variety of parallel and distributed systems. The program is being revised
to scale to larger problems and parallel systems, and we can presently run problems
with sample sizes of n = 200. Table 1 summarizes the sizes of bandit problems that
have been solved to date.

3.3. Path induction. The progress in addressing fully sequential allocation was
not limited to mere size increases. A new technique we refer to as path induction has
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allowed for multiple evaluations of arbitrary procedures [Hardwick and Stout (1998a)].
The multiple evaluations are useful because they provide insight into the behavior
of the procedures. For example, whereas the "solution" to a simple 2-AB problem
furnishes the number of successes to be expected, path induction can give information
such as the distribution of the same quantity or similar information relating to other
procedure attributes.

Path induction is a two phase process. In the "initialization" phase, the algorithm
works from the front of the experiment towards its conclusion, going through the
state space to determine the number of paths that reach each terminal state. In the
"evaluation" phase, path counts are used to determine the probability of reaching
each terminal state, which can be used to determine whatever average quantities one
desires. In general, since there are far fewer terminal states than total states, use
of path induction results in significant savings when multiple evaluations of a given
procedures are needed. This method is exact and quite general, and is applicable to a
wide range of procedures, analyses and criteria. For more details and algorithms, see
Hardwick and Stout (1998a).

In Section 4, path induction is applied to the problem of assessing the robustness
of prior specifications in a Bayesian setting. Path induction can be also be used to
assess frequentist characteristics of arbitrary procedures — due to space limitations we
refer the reader to Hardwick and Stout (1998a) for examples. Multiple evaluation is
often called for in frequentist analyses because some criteria, such as the probability of
correctly selecting the best populations, are defined in terms of extremal values over a
parameter range. If the parameter values that yield the extremal value are unknown,
then one must evaluate at many values to locate the extreme. Path induction can
provide significant speedups in such settings, compared to the standard use of backward
induction which works through all of the states. For example, for α-population fully
sequential allocation there are

n 2a - 1\ n2a'1

2a-1 J (2α-l)!

terminal states, versus ^ n2a/{2ά)\ total states, so each evaluation via path induction
is roughly a factor of n/(2a) faster than an evaluation via backward induction.

4. Sensitivity analysis: an application of path induction. A common
argument used to dismiss procedures built on Bayesian foundations is that the prior
distribution may be misspecified. This could mean that the prior assumes too much
knowledge and overpowers the data or it may simply mean that the prior is not a
reasonable representation of reality. In studying adaptive procedures of the sort pro-
posed here, it is the Bayesian framework that allows us to specify and locate optimal
procedures. Since an investigator may not have prior information or may not wish
to be using Bayesian design, it is important to have an idea as to how prior assump-
tions affect various characteristics of the procedure. In other words, it is valuable not
only to examine how efficient a Bayesian procedure is when the prior parameters have
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been "misspecified", but also to evaluate how well it performs according to frequentist
measures.

Here we apply path induction (Section 3.3) to the study of robustness in the prod-
uct of means example. This example is from Hardwick and Stout (1998a), in which
sequentially estimating polynomial functions of means is considered. In particular, we
examine the impact of departing from the prior parameter configurations used in the
design of a procedure. The goal is to answer questions such as:

Suppose we determine the optimal allocation procedure associated with a
certain prior distribution on the problem parameters. Will the performance
be degraded if one assesses the procedure with a significantly different prior
distribution?

The evaluation uses two sets of prior parameters, the A parameters, [(A\, A2)] {A3,
Λ4)], and the B parameters, [(BUB2); (#3, #4)], where the subscripts 1 and 2 refer to
the beta parameters for arm one and 3 and 4 refer to the beta parameters for arm two.
The analysis goes as follows:

(1) Generate the optimal procedure for the A parameters.

(2) For each choice of B parameters,

(i) Using the B parameters, compute the operating characteristic, which in this
case is the Bayes risk, of the procedure from (1).

(ii) Compute the Bayes risk of the optimal procedure for the B parameters.

(ii) The relative efficiency is the ratio of risk obtained from (ii) with that ob-
tained from (i).

Figure 1 is an interpolated surface plot of the relative efficiencies, where the A pa-
rameters were fixed at [(1,1); (1,1)], and 25 configurations of the B parameters were
used: Bλ = 0.01, 0.1, 1, 10, 100, B2 = 0.01, 0.1, 1, 10, 100, B3 = 1, and BA = 1.
For example, the value at B_l = 0.01, B_2 = 0.01 is .865, which is the relative effi-
ciency of the procedure generated using the uniform distribution but evaluated using
B = [(0.01,0.01); (1,1)] versus the optimal procedure generated and evaluated using
this B distribution.

Overall, the data in Figure 1 suggest that if a conservative prior (uniform) is used
to design the allocation procedure, then even if the values of the prior parameters differ
by an order of magnitude from those used in analyzing the results, the procedure will
still be quite efficient. The efficiency under such departures is typically above 90%,
although when the deviation from the design parameters is closer to two orders of
magnitude the efficiency reduction may be unacceptable.

The optimal sampling procedure for this problem was generated via dynamic pro-
gramming, using the A design parameters. Then it had was re-evaluated for each set
of B parameters. Using path induction, instead of backward induction, for the 25 re-
evaluations saved an order of magnitude in the time. This improvement grows as the
sample size grows.
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FIG. 1. Relative efficiency, product of means,
n=100. Design prior A = [(1,1); (1,1)].

FIG. 2. A 3-stage Procedure. Width repre-
sents stage size, shading indicates proportions.

5. Few-stage procedures. In some settings, fully sequential procedures may be
neither possible nor desirable. For example, responses may not be immediate and new
allocations may have to be made before earlier results have been observed. An impor-
tant special case of this is when several allocations need to be made simultaneously.
In such settings, one may perform staged or grouped allocation, in which sampling is
specified for groups of experimental units at one time. At the end of a stage, informa-
tion is updated and allocations are specified for the next stage. Staged allocation also
permits randomization within each stage, another attribute often desired in practice.

There are many ways to formalize an s-stage allocation with fixed sample size, and
here we take the most general approach. At the start of a stage, based on all of the ob-
servations accrued to date, the number of observations to sample from each population
is specified. Thus, not only may the proportions allocated to each population depend
on outcomes of the previous stages; but also the length of a stage can adapt to ob-
served data. Because such procedures are highly efficient for small s, most researchers
are interested in the cases for which s = 1, 2, or 3, which we refer to as being few-stage.
Figure 2 depicts flow options of a 3-stage procedure. The two shades within the rect-
angles (the stages) represent the different proportions sampled from each population
within the stage. So, in the first stage approximately one-third of the observations are
from population 1 and the rest are from population 2. In the second stage there are
two rectangles which represent just a couple of the many ways one could sample in the
next stage. While the third stage must bring the total sample size to n, there is still
flexibility in the proportions sampled from the populations.

Despite their practical importance, with the exception of a few very special cases, we
know of no previous exact optimizations or evaluations of few-stage procedures. Part
of the reason for this may be the counter-intuitive fact that they are more complex
to optimize than are fully sequential procedures. While dynamic programming can be
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used, the most straightforward approaches are impractical. In Hardwick and Stout
(1995, 1998b), we provide efficient, although more complicated, dynamic programming
algorithms for optimizing s-stage procedures with 2 Bernoulli populations and arbitrary
objective function. The algorithms take Θ(n3) time for 5 = 1, θ(n 5 ) time for 5 — 2,
and θ(sn 6 ) time if s > 3. Note that the calculations for the first and last stages are
significantly easier than for intermediate stages, in that either their start or end is
predetermined. Situations in which the total sample size, itself, is random are also
addressed in Hardwick and Stout (1998b), as are situations where the stage sizes are
fixed.

There are a number of questions one might ask about few-stage procedures. For
any given problem, and for any given number of stages, s, naturally arising questions
include:

1. How well a given s-stage procedure compares to the optimal s-stage or to the
optimal fully sequential procedures;

2. How well the optimal s-stage procedure compares to the optimal (s + l)-stage
procedure; and

3. How do the stage lengths of the optimal s-stage procedure grow with the total
sample size?

There has been a tendency to use asymptotic analyses to address the first of these
questions, but the answers came in weak forms indicating, for example, that a given
2-stage procedure is first-order optimal or a given 3-stage procedure is second-order
optimal, Hall (1981). For any specific sample size, however, these results do not indicate
whether the given procedure is 95% of optimal or merely 50% of optimal. The type of
asymptotic results available for the last two questions are even weaker.

In Hardwick and Stout (1995, 1998b), we apply our general algorithms to various
problems to determine the efficiency of optimal 1-, 2-, and 3-stage procedures, as com-
pared to the optimal fully sequential procedure. In this section, we use the product of
means example to illustrate the results we have observed. When the prior distributions
are uniform, efficiencies are presented in Figure 3. Here one can see that, by the time n
reaches about 20, the optimal 2-stage procedure achieves approximately 97% efficiency
and the optimal 3-stage procedure is virtually fully efficient.
Similar results were observed over a wide variety of parameter configurations and for
the bandit problem. These results are consistent with the asymptotic analyses that
suggest that little efficiency is lost when well-chosen 2- and 3-stage procedures are used.

The work in Hardwick and Stout (1995, 1998b) also revealed unexpected results,
namely that the initial stages of optimal few-stage procedures are much larger than
those suggested in the literature. In general, for example, being told that a stage size
grows like the square root of n is not useful when n = 100. At this point the constant
associated with the growth rate becomes critical to the selection of a good procedure.
We have used the product of means problem here because it is one of the rare scenarios
for which we have been able to locate growth rate guidelines in the literature.
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In a Bayesian analysis of the two-stage product of means problem, Rekab (1992)
states that one should take lim LV2ln = 0 and lim Li.2 = oo where LΊ.2 is the

n->-oo ' / π-» oo

length of stage one of a 2-stage procedure. These suggestions are clearly too vague
to implement, but a more in-depth examination of the frequentist version of the same
problem is provided by Noble (1990). The author suggests that L1:2 should grow like
θ(n° 5 ) , and he provides some direction for choosing appropriate constants. Noble's
guidelines, while frequentist, suggest that for uniform priors and n = 100, L 1 : 2 should
be about 14. In Hardwick and Stout (1995), however, we found that the optimal value
is 42; and that, in the range n = 10 to 1,000, the optimal L1 : 2 grows at a rate which is
closer to linear than to the square root. Figure 4 is a log-log plot of the optimal first
stage length versus the sample size for a 2-stage procedure with uniform priors. The
line fit to the points represents growth at a rate of n° 8 2 . The other line on the plot
represents growth of n 0 5 . It should be noted that Noble's guidelines are for a procedure
in which the terminal estimator does not utilize the observations in the first stage, an
unusual design which may help explain why his suggested first stage sizes are so much
smaller than those optimal for a Bayesian estimator which utilizes all observations.

More recently, the two-stage product of means problem was analyzed in Zheng,
Seila, and Sriram (1998) in a frequentist setting. While their analytic results hint that
an optimal growth rate for L1:2 is roughly n° 5, their simulation studies confirm our
observations that the growth rate is actually higher than this. We do not know the
asymptotic growth rate of the optimal L1 : 2, and finding it is a challenging problem,
though it may well be irrelevant for practical sample sizes.

6. Constrained switching. Investigators are occasionally concerned that fully
sequential procedures may switch sampling among the different populations with an
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unguarded frequency [Schmitz (1993)]. Unconstrained, sequential procedures optimize
the objective function but ignore practical considerations such as cost, timing and
convenience. In some instances, switching among the different populations may not
even be possible due to the need to reserve equipment or to finish up a batch of some
product needed for the experiment. In an industrial setting, for example, it is often
necessary to reconfigure fixtures each time a switch among populations occurs. In a
clinical setting there may be similar setup or training costs inherent in each switch
among treatment alternatives. There are a number of ways to model the ill effects of
switching and here we consider just a few possibilities:

1. There is a setup cost c^ to change to population z, and an incremental cost βι for
each observation as long as you continue sampling from population i. Here we
assume that α* » β{.

2. If batches of a treatment with a short life span must be prepared or if one can
conduct several identical tests concurrently, then you decide that the next m
observations are to be sampled from population % and a cost of aι + βim is
incurred. Here, m is specified in advance.

3. There is an upper bound, 5, on the number of times you can switch during the
experiment.

While cost structures of the sort listed can be important to investigators, they
are seldom incorporated into experimental procedures. One exception comes up in
certain control theory problems [Agarwal, Hegde, and Teneketzis (1998) and Hofri and
Ross (1987)] in which cost structures such as (1) are utilized. However, the results in
Agarwal, Hegde, and Teneketzis (1998) are applicable only to the special case in which
there is geometric discounting of an infinite horizon and no terminal objective. We have
been unable to locate research that applies to more general sequential problems such
as those allowing arbitrary objective functions, finite horizons and flexible mechanisms
for modeling switching considerations.

For the 2-population Bernoulli response fully sequential setting, we developed dy-
namic programming algorithms that produce procedures which optimize objective func-
tions under constraints on either the maximum or expected number of switches [Hard-
wick and Stout (1996a)]. To establish the impact that switching costs had on sample
problems, we use trade-off curves that allow us to examine the relative efficiency of
procedures that switch less often than the unconstrained optimal ones do.

We use the 2-AB problem to illustrate the type of results one might observe. First,
as a function of n, we calculated the expected number of switches made by the optimal
2-AB procedure that ignores switching considerations. For a variety of different prior
parameter configurations, it was found that the expected number of switches appears
to grow somewhat faster than logarithmically, but slower than na for any a. Note
that, despite this, a power growth may still provide a good approximation for sample
sizes up to a few hundred. It's also of interest to note that the maximum number of
switches grows linearly in n.
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Next, we imposed fixed costs for switching between populations and obtained the
optimal 2-AB strategies under these conditions. In Figure 5, the optimal tradeoffs
between the expected number of failures and the expected number of switches are
plotted for the case in which n = 200 and both prior distributions are uniform. These
tradeoffs are expressed in terms of the efficiency of the objective function. Note that
one expects to switch about seven times if the experiment follows the optimal sampling
procedure. If however, by imposing costs, the expected number of switches is limited
to, say, only one, then the efficiency of the experiment is diminished by only about 2%.
This suggests that imposing constraints can significantly reduce switching without
correspondingly reducing the efficiency of the procedure.

A similar argument holds when the switching consideration is to constrain the
maximum number of switches allowed. In Figure 6, information comparable to that in
Figure 5 is plotted, but this time the focus is on the worst-case number of switches.
While the unconstrained optimal procedure may switch at nearly every step, the effi-
ciency is reduced by only a couple of percent if the maximum number of switches is
held to only two. If at most one switch were allowed, then the efficiency would drop
to about 90%.

Similar results hold for the product of means estimation problem which has a com-
pletely different form of objective function [see Hardwick and Stout (1996a)]. A critical
point to note, however, is that to obtain efficiencies of the level presented here, the tim-
ing of the switches must be as dictated by the optimal rule for this constraint. While
it might be preferable to enable the investigator to choose when to allow the switches,
this could seriously impact the efficiency of the procedure.

A direction for future research is to study the characteristics of the optimal, but
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constrained, procedures. In doing so, one would hope to develop ad hoc procedures
that retain the spirit, and hence the efficiency, of the optimal procedures but which also
allow the investigator more freedom in calling the shots, i.e., switches. A quite different
variation we are examining is to optimize procedures in which there are concerns about
time trends. In such settings, occasional switching may be an aid in separating time
effects from population effects.

7. Further remarks. As was stated, the emphasis here is not to proselytize
about specific solutions to specific applications, but rather to illustrate that a wide
range of approaches and criteria may be relevant. We hope to allow investigators
significant flexibility in choosing the relevant criteria and approaches used. Further, by
carrying out evaluations of the sort needed with sufficient speed, we wish to encourage
investigators to consider procedures that incorporate criteria that typically have been
ignored or merely approximated. For example, robustness evaluations such as those
shown in Section 4 are very helpful, as are the multiple re-evaluations that allow us to
study distributions of important design characteristics. Path induction enables such
analyses.

This research program is an ongoing effort, with several new avenues currently be-
ing explored. One of these avenues is the extension of few-stage procedures to sample
sizes larger than can be handled exactly. In this situation, we are looking at taking
exact solutions to smaller problems and extrapolating them to obtain good solutions
to larger ones. This approach is producing better solutions than were previously ob-
tainable through asymptotics, especially since most asymptotic analyses give so little
specific guidance. Other areas of investigation include the development of algorithms
for adaptive procedures for situations in which

• the responses are delayed and hence not available before allocations must be
decided,

• covariate information needs to be incorporated (e.g., dose response settings),

• equal allocation approaches are optimized for criteria such as stopping time [Hard-
wick and Stout (1995a)], and

• censoring of observations occurs [Hardwick, Oehmke and Stout (1998)].

Progress has been made on all of these, although much work (and more variations)
remains to be done.

Finally, we remind the reader that the different algorithms correspond to different
classes of procedures or analyses, and not to different objective functions. Thus an
algorithm for optimizing, say, 3-stage allocation is significantly different than one for
optimizing fully sequential allocation. However, once the algorithm for a class of pro-
cedure has been developed, adapting to different objective functions, such as bandits
versus product of means, is a minor change. Occasionally one can exploit special prop-
erties of the objective function to simplify calculations [this is discussed in Hardwick
and Stout (1998b)], but all of our descriptions herein are for general objectives.
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