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MARKOV CHAIN MONTE CARLO FOR THE BAYESIAN
ANALYSIS OF EVOLUTIONARY TREES FROM ALIGNED

MOLECULAR SEQUENCES

BY MICHAEL A. NEWTON, BOB MAU AND BRET LARGET1

University of Wisconsin-Madison and Duquesne University

We show how to quantify the uncertainty in a phylogenetic tree inferred
from molecular sequence information. Given a stochastic model of evolution, the
Bayesian solution is simply to form a posterior probability distribution over the
space of phylogenies. All inferences are derived from this posterior, including tree
reconstructions, credible sets of good trees, and conclusions about monophyletic
groups, for example. The challenging part is to approximate the posterior, and
we do this by constructing a Markov chain having the posterior as its invariant
distribution, following the approach of Mau, Newton, and Larget (1998). Our
Markov chain Monte Carlo algorithm is based on small but global changes in
the phylogeny, and exhibits good mixing properties empirically. We illustrate the
methodology on DNA encoding mitochondrial cytochrome oxidase 1 gathered
by Hafher et al. (1994) for a set of parasites and their hosts.

1. Introduction. Stochastic models have long been considered useful for
describing variation in the molecular sequences of extant populations (e.g., Jukes
and Cantor, 1969; Felsenstein, 1973; Kimura, 1980). Parameters in such mod-
els include the phylogeny, which encodes the pattern of evolutionary relation-
ships among populations, and substitution rates, which describe how molecules
change over time within populations. It seems quite natural to infer these pa-
rameters using the induced likelihood function in some way, but such inference
has been difficult in practice because computations can be prohibitively expen-
sive. Owing to the Markovian nature of the standard models, evaluation of the
likelihood function follows straightforward recursive equations, and so evalua-
tion is not the difficult part. The difficulty arises with optimization, since the
likelihood resides over a complicated parameter space, and seems to admit no
simple representation (Felsenstein, 1981, 1983; Goldman, 1990; Yang, Goldman,
Friday, 1995). Nevertheless, computer code is available for approximate max-
imum likelihood calculation (Olson, et al, 1994; Felsenstein, 1995; Swofford,
1996).

Beyond estimation, practitioners have demanded some way to assess un-
certainty in aspects of the estimated phylogeny, just as error bars accompany
simpler kinds of point estimates. A standard and appealingly simple calculation
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is to apply Efron's bootstrap (Felsenstein, 1985), and although this method
may accurately approximate sampling distributions, its role for statistical infer-
ence about the phylogeny has been a matter of some debate (e.g., Felsenstein
and Kishino, 1993; Newton, 1996; Efron, Halloran, and Holmes, 1996; Chernoff,
1997). Of course, bootstrapping a complicated estimator serves to compound the
computational problem. Thus, bootstrapping a full-blown maximum likelihood
estimator is practically impossible with today's implementations. A common
practice is to bootstrap a much simpler estimator.

An alternative, model-based, assessment of uncertainty was postulated some
time ago by J.F.C. Kingman, in the discussion of Joe Felsenstein's 1983 paper
on statistical issues in evolutionary biology:

In view of the difficulties of the maximum likelihood approach, it seems
worth asking what a Bayesian analysis would look like. The author has
shown us how to write down the likelihood function, and this has only
to be multiplied by a suitable prior. . . . The result is a set of posterior
probabilities for collections of possible phytogenies, not just a single esti-
mate, and it may well be that there are tractable approximations of the
probabilities of some compound events. Has this approach been explored?

Until recently, this Bayesian approach had not been explored. Sinsheimer et
al. (1996) developed exact Bayesian calculations for the four-species problem.
Several groups have been pursuing Markov chain Monte Carlo (MCMC) ap-
proximations. Mau and Newton (1997) described an MCMC method for models
satisfying a molecular clock, and presented calculations for binary, restriction-
sites data. Mau, Newton, and Larget (1998) have extended these calculations
to problems with more taxa and nucleotide sequence data. Yang and Ran-
nala (1997), and Li, Pearl and Doss (1996) have developed different Markov
chain Monte Carlo strategies for the same general problem. In fact, the MCMC
method of Kuhner, Yamato, and Felsenstein (1995) can be modified to produce
approximate Bayesian phylogenetic inferences, even though their model consid-
ers within population sampling of sequences. The purpose of the present article
is to review the Mau, Newton, Larget approach and to illustrate the calculations
in an example.

Of course Bayesian analysis provides more than assessments of uncertainty
about phylogenies, the focus of this work. The array of inference problems pre-
sented in Huelsenbeck and Rannala (1997), for example, all may be approached
from a Bayesian perspective. We anticipate that future research will clarify the
role of Bayesian analysis for evolutionary biology, but first some essential com-
putational problems must be addressed.
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2. Phylogeny. A phylogeny or evolutionary tree, r, admits various rep-
resentations. For the present discussion, it will be convenient to treat τ as
a pair (ί,σ) where t = ( ί 1 ? . . . ,ί5_i) G Rs~ι is a vector of positive speciation
times, s is the number of species under consideration, and σ is a permutation
of {1,2,... , s}. The path of evolution corresponding to r can be envisioned
by processing t and σ in a manner as illustrated in Figure 1. Species labels
{1,2,... , s} become leaf nodes of a tree upon being arranged horizontally in
the order determined by σ. Moving from left to right, we drop a vertical line of
length t{ from a point in between the ith and (i + l)th leaf node, and we call the
lower endpoint an internal node. In Figure 1, internal nodes are labeled by in-
creasing speciation time. We draw a tree by moving downwards from the species
labels, establishing in turn each internal node as the parent of two descendant
nodes. Acting on a given internal node j , say, an edge is formed between node
j and the parentless node k < j having horizontal position closest to node j
from the left, and a second edge is formed to the nearest such parentless node
from the right. Eventually, all nodes are connected, and a tree results. The node
corresponding to the largest ti is called the root.

Several remarks are in order regarding this construction. The horizontal
axis serves only to organize the information, and has no intrinsic scale. On the
other hand, the vertical axis records time into the past. As drawn, our trees
are rooted and have contemporaneous tips, and will be considered parameters
of models which satisfy the molecular clock hypothesis. In work to extend our
methods to models where evolutionary rates vary among branches of the tree,
a somewhat different tree representation is more appropriate than the one just
described. It is noteworthy, however, that the essential elements of the Monte
Carlo algorithm to be described carry over readily to this more general case.
Note that the drawing algorithm has not been defined when two times are equal,
and so we omit this case (i.e., assume ti φ tj for all z, j . ) and thus consider only
binary trees. This is not a serious restriction because the likelihood function
(Section 3) is continuous in ί, and hence the likelihood of a polytomy may be
arbitrarily close to the likelihood of a binary tree produced by resolving the
polytomy with tiny branch lengths.

The phylogeny τ — (ί, σ) records the path of evolution from a single ancestral
population to the present array of s populations under study. Any point on the
tree drawn according to the rules above thus represents a population at some
time in the past. Evidently, different (ί,σ) pairs determine the same path of
evolution, noting again that the horizontal axis in Figure 1 has no scale. For
example, rearranging species 3 and 9 does not change the path of evolution. A
given unordered set of times {tut2,.. , ts-i} induces the same path of evolution
in 2 s " 1 different ways. To see this, take a phylogeny and rotate the graph by
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FIG. 1. Phytogeny: The top panel shows the raw ingredients in the (ί, σ) representation of a phylogeny.
Internal nodes appear at the lower end of the vertical line dropped from the horizontal. The middle
panel shows the tree formed by processing the first panel, that is by moving down from the leaves
towards the root, establishing connections each time an internal node is reached. The bottom panel
shows a second version of the same phylogeny.
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180 degrees above any of the s — 1 internal nodes. Strictly speaking, therefore,
the phylogeny τ is an equivalence class containing 2 5 " 1 different versions (ί,σ).
The third panel in Figure 1 shows a second version of the preceding tree.

The representation of a phylogeny as 2 5" 1 points (ί,σ) is particularly con-
ducive to Markov chain Monte Carlo (MCMC), as we discuss in Section 4. A
key feature is that the tree is part of a continuum, and the branching pattern of
the tree is induced by the permutation σ and the relative ordering of the times
ί i , . . . ,ί s_i Indeed, the branching pattern inherent in r may be of interest,
but we do not represent that pattern directly, choosing instead to work with
more elementary objects which combine to produce the pattern. This some-
what indirect approach leads to very simple MCMC steps (Section 4) and may
be associated with the efficiency of the algorithm.

Different summaries of τ may be of interest to the biologist. The labeled
history describes the branching pattern of τ obtained by ignoring the magnitude
of the times <i, <2? ? ί*-i> but respecting their ordering. Incidentally, counting
labeled histories is quite simple given our construction, as there are s\ ways
to arrange the s species labels, (s — 1)! orderings of the times, but we have
overcounted by 2 s " 1 , leaving s\(s — 1)!/2S~1 distinct labeled histories. The tree
topology corresponding to τ is another property of its branching pattern, where
we record only the sequence of connections, but ignore details of their time
ordering. The tree topology may be characterized by nested parentheses, such
as

(2.1) top(τ) = ((1, (3,9)), (((2, (7,8)), ((4,6), 10)), 5))

for the phylogeny shown in Figure 1. Here we have taken the convention that
when two groups of organisms are merged, we place on the left that group
containing the smallest species label. Assessing uncertainty in the tree topology
is often of interest and will be the focus of our application in Section 5.

3. Modeling substitutions. The probability of data given a tree τ is de-
rived from a model of DNA evolution along the branches, and many such models
have been studied. We follow convention here and take the same general assump-
tions as those characterizing many standard models. That is, we consider the
extant DNA sequences to be aligned into n sites, and we suppose that the evo-
lution of different sites is independent. At any given site, a stochastic process
associates a DNA base to each point on the branches of r, and observed data
are the s DNA bases at the leaf nodes. The standard models assume that base
substitutions occur at points of Poisson processes, with independent evolution
among branches. These restrictions still leave us some flexibility in the modeling
of substitutions (Yang, Goldman, and Friday, 1994). It is noteworthy that the



148 M.A. NEWTON, B. MAU AND B. LARGET

MCMC algorithm discussed in Section 4 is not linked to the particular model
of evolution. As long as likelihood evaluation is a feasible calculation, we can
readily implement a posterior simulation. This is in contrast to Gibbs sampler
algorithms, for example, whose very structure is determined by the likelihood
function under consideration.

In Section 5 we report calculations for the model of Hasegawa, Kishino, and
Yano (1985), which, being richer in parameters, subsumes the earlier models of
Jukes and Cantor (1969), Kimura (1980), and Felsenstein (1981). The generator
matrix for a process governed by HKY85 contains the following infinitesimal
rates of change (the diagonal is determined because rows sum to 0):

A G C T
A ί κπg πc πt \
G κπa τrc τrt

C πa Έg - κπt

\ πa πg κπc

The π's indicate long-run probabilities of each base along one very long branch
and K allows different substitution rates for transitions (changes between A and
G or between C and T) and transversions (any other changes). The infinitesi-
mal rates determine transition probabilities from one base to another over any
extended time period, and these further involve a mutation rate parameter θ.
We omit details here.

By the independent-sites assumption, the likelihood is a product of n factors,
one from each site in the aligned sequences. This naturally collapses to a product
over m < n unique observed patterns of s bases, and so fixing s, the likelihood
evaluation takes O(ra) operations. Furthermore, the Poisson process assumption
implies that evolution is Markovian, and thus that the probability of a given
pattern can be calculated recursively in O(s) steps. This pruning algorithm is
a critical component of our procedure, and so we review it briefly (see also,
Felsenstein, 1983). Let U{ denote the unknown base at the site of interest in
the ancestral sequence associated with internal node i of the tree r. Note that
s + l<i<2s — 1 and Ui G {A, G, T, C}. Each internal node partitions the
descendant species into two distinct groups, whose observed DNA data we label
A(z) and B(z). By the assumed independence of substitutions among branches,
the conditional probability of all data descending from z, given U{, is

(3.2) p{A(i),B(t)Kr}=p{A(»)|« i,r}xp{B(i) |tί<,r}.

These probabilities are important because the likelihood contribution from a
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site with the given pattern is

(3.3) ]Pp{A(root), B(root) \uroot,τ} p(uτoot).

"root

That is, it is a mixture of transition probabilities against the distribution of
the unknown base at the root node. By taking these initial base probabilities
equal to the stationary base probabilities πα, π c, π t, or π^, the Markov process
becomes reversible. To implement the pruning algorithm, one observes that by
the Markov property, probabilities in (3.2) may be obtained recursively, moving
from the leaves of the tree to the root. In our labeling system, the recursion
moves successively through internal nodes i = s + 1 to i = 2s — 1.

On the phylogeny in Figure 1, for example, p{A(12), B(12) |iii2,τ} is the
product of the conditional probability of data for species 3 and species 9 given
ι/i2, the base at internal node 12. These four conditional probabilities are used
subsequently to evaluate the conditional probability of data descending from
node 16, given uι6, which finally enters the likelihood calculation (3.3).

We note that the (ί,σ) representation of r is not the one most conducive
to the pruning calculation which relies directly on relationship information in
r. Our software uses a second representation in which every internal node is
associated with its descendant nodes.

In summary, likelihood evaluation is a straightforward calculation when we
fix the data, the tree, and parameters governing the substitution model.

4. The posterior and MCMC. In contrast to other forms of statistical
inference, Bayesian inference centers on the extent to which opinion about an
unknown is affected by data. Furthermore, probability is the sole medium for
transmitting uncertainty and opinion (e.g., Bernardo and Smith, 1994). To im-
plement an analysis, a Bayesian evolutionary biologist must therefore begin with
a probability distribution over the set of possible phylogenies. This might be
derived from a model of speciation, or from the analysis of existing data. To our
knowledge, little work has been done on the assessment of prior probabilities for
trees, but this certainly represents an important problem if Bayesian analysis is
to be helpful in evolutionary biology. In the present work, we illustrate calcula-
tions with a particularly simple flat prior, and note that the algorithm proceeds
easily with any user-supplied prior distribution. The flat prior we assume is
relative to the (ί,σ) representation of the phylogeny, in suggestive notation:

(4.4) p(r)

ocl [0 < t, < ίmax, for all t ] .
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Here ίmax bounds the time to the root node. One consequence of this prior
is that, like the Kingman coalescent (Kingman, 1982), we induce a uniform
probability distribution over labeled histories, and thus a non-uniform distri-
bution over topologies. This prior favors balanced tree topologies because they
have many more labeled histories than unbalanced ones (e.g., Lapointe and
Legendre, 1991; Brown, 1994). Checking the sensitivity of our calculations to
the choice of prior will be critical in applications, but we do not pursue such
sensitivity analysis here.

Parameters of the substitution model also are unknown and a full Bayesian
analysis requires a prior distribution for them. In this section we focus on the
phylogeny, and thus we consider all other parameters to be known. For example,
the stationary base probabilities πa,πc,πt,πg can be estimated by the relative
frequency of the different bases in the observed sequences.

In light of the data, and taking as reasonable the stochastic model of evolu-
tion, inference about the phylogeny τ must be based on the posterior distribu-
tion, having density

(4.5) p(τ|data) oc p(data|τ) x p(τ).

Monte Carlo appears to be the only effective method for summarizing this dis-
tribution, even though the pruning algorithm enables evaluation of the posterior
up to a constant. Inference about monophyletic groups, most probable topolo-
gies, and the uncertainty in certain branch points, for example, all are based on
expectations with respect to this posterior. Within the class Monte Carlo algo-
rithms, Markov chain methods present the most promising integration methods,
and we review here the proposal of Mau, Newton, and Larget (1998).

An MCMC algorithm realizes a Markov chain r 1 , τ 2 , . . . , τB that has (4.5) as
its stationary distribution (e.g., Tierney, 1994). Empirical averages in the chain
converge as B grows to posterior expectations by the law of large numbers for
Markov chains. We construct our Markov chain using the Metropolis-Hastings
approach. That is, we move from r 1 — r to the next state τ ί + 1 by first proposing
a candidate phylogeny r* generated according to a proposal distribution that
has transition density <?(τ, r*). Next we compute the Metropolis-Hastings ratio

f 4 6 )
p(r|data) q{τ,τ*) '

If r > 1, then τ ί + 1 = r*. Otherwise, we move to r* with probability r and
stay put with probability 1 — r. The power of this approach resides both in its
simplicity and in its great flexibility, because the choice of <?, which affects the
Monte Carlo efficiency of the algorithm, is almost arbitrary.
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Monte Carlo approximations of posterior probabilities can be biased if the
distribution of r 1 is far from the target posterior distribution, and so it is com-
mon practice to let the chain run for a burn-in period before using any of
the sampled states. Determining the length of the burn-in and the total chain
length B to ensure accurate approximations is difficult in advance, and is typ-
ically based on realizations of the chain that are monitored using a range of
diagnostic checks (e.g., Cowles and Carlin, 1996).

In most implementations of the Metropolis-Hastings algorithm, a collection
of proposal distributions determine the complete algorithm (e.g., Besag et al,
1995). We have found that a single proposal distribution works for the phylogeny
problems considered so far. This proposal distribution is global in that r* can
differ from τ in all respects, and so, in a sense, we have attempted to design
efficiency into the algorithm. Inefficient algorithms are ones which traverse the
parameter space slowly and thus exhibit significant positive correlations on one-
dimensional summaries. Local, single-site updating proposals change parts of
the parameter at a time, and are at risk for low efficiency. One risk of a global
proposal distribution, on the other hand, is that we may reject candidates too
frequently, and thus produce an inefficient algorithm. We avoid this in two ways:
by making our global changes small in magnitude, and by basing changes on
distance within the tree, so that proposed trees are close in posterior density to
the current tree.

More specifically, our proposal distribution works like this. We obtain at
random from the equivalence class defining the current tree τ one of its 2 s " 1

versions, thus identifying a pair (ί,σ). Fixing the leaf label permutation σ, we
generate a new vector t* of times by

ί? = <,•©€,-, for i = 1,2,... , s - 1

where et are independent and identically distributed Uniform(—ί, δ) random
variables for some tuning parameter δ > 0, and 0 indicates addition reflected
into the interval (0, ί m a x ) . For example, ® returns |ίf + e| if ί2 + e < 0. Thus the
proposal is to perturb the speciation times of a version of the current tree.

When the tuning parameter δ is small, the candidate tree is close to the
current tree in terms of pairwise distance between species, and so we expect the
likelihood of the candidate tree to be close to that of the current tree. Similarity
in likelihood is derived by the similar distance structure, and not by a direct
appeal to the model, making the proposal method independent of the model
form. Interestingly, the candidate tree can be quite different from the current
tree in terms of branching structure.

In Figure 2, a version of τ from Figure 1 has had its species times perturbed,
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FIG. 2. Proposal: This graph shows how a candidate phylogeny T* is obtained from one version of
the current tree by perturbing speciation times in the (ί, σ) representation. The shaded boxes indicate
the range of the uniform perturbations. The dark circles indicate times within the current tree, and
crosses indicate times in a particular candidate τ*.

4-

TABLE 1

Gopher/Lice Species Labels

Label
1
2
3
4
5
6
7
8
9
10
11
12
13

Louse Species
G. texanus
G. ewingi
G. oklahomensis
G. geomydis
G. nadleri
G. chapini
G. panamensis
G. setzeri
G. cherriei
G. costaricensis
G.expansus
G. perotensis
G. trichopi

Label
1
2
3
4
5
6
7
8
9
10
11
12
13

Gopher Species
G. personatus
G. breviceps
G. bursarius (a)
G. bursarius (b)
P. bulled
0. hispidus
0. cavator
0. underwoodi
0. cherriei
0. heterodus
C. castanops
C. merriami
Z. trichopus
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leading to a tree r* with a different topology:

top(r ) = ((1, (3,9)), ((2, ((4,6), (7,8))), (5,10)))

Compare with (2.1). Certainly movements induced by this proposal mechanism
are restricted, unless δ is very large. Mau, Newton, and Larget (1998) estab-
lished irreducibility; i.e., that starting at any phylogeny r, and given any other
phylogeny τ 0, there exists K < oo such that there is positive probability density
of moving to τ0 after K applications of the proposal. Mau, Newton, and Larget
(1998) also established symmetry which means that the Metropolis-Hastings
ratio (4.6) reduces to a ratio of posterior densities, and thus, under a flat prior,
to a ratio of likelihoods.

5. An example: Host parasite evolution.

5.1. Data and model structure. We illustrate the MCMC calculations with
data reported by Hafner et al. (1994) regarding a study of molecular evolution
in hosts and their parasites. To facilitate a comparison, we focus on a sub-
set that was analyzed by Huelsenbeck, Rannala, and Yang (1997) (hereafter
HRY97). The data consist of 26 aligned DNA sequences, n = 379 bases long,
encoding mitochondrial cytochrome oxidase I (COI) for 13 lice species and the
corresponding 13 species of their gopher hosts (Table 1). There are m = 156
and m — 130 unique site patterns in the lice and gopher data, respectively.
Table 2 shows summary frequencies of the different nucleotide bases, as well as
the numbers of sites at which all bases are the same and sites exhibiting base
variation.

Because the life cycle of the parasitic lice occurs exclusively in the fur of
the host gophers, a natural hypothesis is that the organisms have coevolved,
and thus have a common branching structure in their phylogenies. On the other
hand, factors such as interaction among gopher species could produce differences
between louse and gopher trees. Using the HKY85 model of DNA substitution
discussed in Section 3, we compare the topological structure of host and parasite
phylogenies. Our approach is to integrate results from separate analyses of the
louse and gopher data.

The overall amount of DNA variation differs between gophers and lice, but
within each group a molecular clock assumption is reasonable (HRY97, p. 414).
By splitting the 26 taxa into two groups, we overcome the need to specifically
model violations of a molecular clock.

We allow the mutation rate θ to vary over codon position because of the
significant rate variation among sites (Table 2). It turns out that a model with
codon-specific mutation rates fits somewhat better than the one used by HRY97
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TABLE 2

Summary Statistics: Middle four columns show the observed base frequencies broken down by codon
position for both louse and gopher data sets. The total number of sites is decomposed into nc sites that
have constant base value among all species, and nv sites that exhibit variation.

data

lice

gopher

codon

1

2

3

all

1

2

3

all

π
α

0.281

0.136

0.321

0.246

0.314

0.160

0.386

0.287

0.362

0.196

0.185

0.248

0.300

0.172

0.051

0.174

0.101

0.202

0.112

0.138

0.121

0.230

0.232

0.195

0.254

0.464

0.388

0.369

0.262

0.435

0.337

0.345

n
c

101

120

2

223

113

122

14

249

n
υ

25

6

125

156

13

4

113

130

in which mutation rates follow a discretized Gamma distribution. Observed
base frequencies also vary over codon position, and so we similarly allow codon-
specific relative frequency parameters. In the calculations reported below, we
consider the base frequency parameters (Table 2) and the mutation rates to
be fixed at their estimated values. Actually, we use some preliminary MCMC
runs to estimate the mutation rate parameters, (0.136,0.026,2.838) for the lice
and (0.154,0.021,2.825) for the gophers. These mean 1 vectors are empirical
averages taken from long preliminary MCMC runs in which both the phylogeny
and the mutation rate parameters were updated. Small posterior variance lead
us to fix these rates at their estimated values.

HRY97 found evidence of transition/transversion bias, and so we follow suit,
allowing a free parameter K for each data set. Rather than fixing an estimated
value, we augment the MCMC algorithm, including K as an additional unknown,
having a flat prior on the positive line. We considered a model with codon-
specific K, but this did not significantly improve fits.

5.2. MCMC implementation. For each data set, our Monte Carlo estimate of
the posterior distribution over phylogenies is based on realizing four independent
Markov chains of length 1,020,000. In the first 20,000 cycles of each run, only
the phylogeny is updated, starting from a random tree drawn from the uniform
prior distribution, and K is fixed at a rough estimate obtained from prelimi-
nary runs (9.87 for lice, 11.45 for gophers). Subsequently, each cycle alternates
between an update of τ given K and an update of K given r, the latter based
on a simple uniform window proposal distribution. During the initial cycles, we
adaptively change the window size S for the τ update, ultimately fixing values of
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δ = 0.00625 and δ = 0.003125 for lice and gophers, respectively. Our automated
method increases δ if the recent acceptance rate is high, and decreases it other-
wise, but only adapts during the early burn-in phase. We routinely monitor the
loglikelihood of sampled trees throughout this burn-in period, noting a typical
pattern of dramatic increase followed by stability at some plateau. The pattern
is consistent across independent runs.

After burn in, each production run is subsampled every 20 cycles to reduce
the size of output used in estimating posterior probabilities. We calculated the
tree topology and loglikelihood of all subsampled phylogenies. Figures 3 and 4
show some diagnostic plots from a further one out of 20 subsampling of these
50,000 phylogenies from one of the four runs. At this level of subsampling, there
is very little within chain dependence both for the loglikelihood series and for
the binary series indicating whether or not top(τ) equals the most frequently
observed topology. Rather than show a simple time-series plot of this binary
variable, we use the cusum diagnostic suggested in Yu (1995). We simply plot
the cumulative sum of the binary time series, centered by a cumulative sum of
ones times the overall mean. Slow mixing can be diagnosed when we compare the
cusum plot to a similar plot calculated on a random permutation of the binary
series. Slow mixing is characterized by long excursions and a fairly smooth plot.
Rapid mixing is indicated by these plots.

It is more relevant to consider dependence properties within each production
run of 50,000 phylogenies than within the subsamples in Figures 3 and 4 because
our Monte Carlo approximations arise from the former. Nevertheless, the plots
provide some indication of sampler behavior and demonstrate adequate mixing
on several summary quantities.

That four independent runs produce comparable results suggests that any
posterior multimodality is not adversely affecting the sampler. Furthermore, the
four independent runs provide simple Monte Carlo standard error estimates in
place of the somewhat more complicated within-chain methods (Geyer, 1992).

5.3. Posterior summaries. Tables 3 and 4 summarize our Monte Carlo esti-
mates of the posterior distribution over tree topologies separately for the lice
and gophers. In each run, the posterior probability of a topology is calculated
simply as its empirical relative frequency. Over the four runs, the average of
these proportions is our reported Monte Carlo estimate, and the standard devi-
ation divided by two is our reported Monte Carlo standard error. Tables 3 and 4
take advantage of clear subtopological structure and also report only topologies
in an 80% credible set.

The most probable tree topologies that we find agree with those determined
by approximate maximum likelihood in HRY97 (their Figure 4). The best louse



156 M.A. NEWTON, B. MAU AND B. LARGET

TABLE 3

Posterior Distribution over Topologies, Lice: Subtopologies are A\ = (((1,2), (3,4)), 11),
((1, 2), ((3, 4), 11)) , Bi = (5,13), d = (7,8), and Dι = (9,10).

Rank Topology top(τ) p[top(τ) I data] ± se cumulative

2
3
4
5
6

0.514
0.101
0.073
0.044
0.043
0.027

±
±
±
±
±
±

0.005
0.002

0.001
0.001
0.002
0.003

0.514
0.615
0.688
0.732
0.775
0.803

TABLE 4

Posterior Distribution over Topologies, Gophers: Subtopologies are E\ = ( 1 , ( 2 , ( 3 , 4 ) ) ) , F\ =

(6, ((7,8), (9,10))), andd =(11,12).

Rank
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Topology top(τ)

((Ei.FiMfrGO.U))
(((^WMGi.tf))
(((El)F1)^}Gι)),l3)
((£i,Fi)f(5,(Gi,13)))
((((£! ,FO,5),Gi),13)
((E11F1),((5Λ3),GI))

(((^FO.ttMδ.Gi))
((((^.FO^α^.Gi)
((^i.lSJ^ίδ.GO.Fi))
((E!,(5,Fi)),(Gi,13))
((^.^.((δ^O.Gi))
(^,((5,00,(^,13)))
((Ei,((5,Gi),F1)),13)
(^,(((5,^)^0,13))

(^.(((δ.GO.FO.ia))
(^,(((5,00,13),^))
((E1|((δ,F1)lGi)),13)
(((EuFiUb,13)),Gι)
(^,((5,(^,13)),^))
(((^^(^Fi^.Gi),^)
((Ei,(e,Gi)),(Fi,13))
((E^iFulSMδ^))
(((EuFMGuW)),!*)
(((Eu ( δ . F ! ) ) , ^ ) , ^ )

p[top(τ) 1 data] ± se
0.118 ±0.003
0.084 =b 0.003
0.082 ± 0.001
0.062 ± 0.003
0.055 ± 0.001
0.050 ± 0.002
0.043 ± 0.001
0.033 ± 0.002
0.032 ± 0.003
0.027 ± 0.003
0.024 ± 0.001
0.023 ± 0.001
0.021 ± 0.002
0.020 ± 0.001
0.019 ± 0.001
0.018 ± 0.002
0.015 ± 0.001
0.015 ±0.001
0.011 ±0.001
0.011 ± 0.001
0.010 ± 0.001
0.010 ± 0.001
0.009 ± 0.001
0.009 ± 0.001

cumulative
0.118
0.202
0.284
0.346
0.400
0.451
0.494
0.526
0.558
0.585
0.609
0.632
0.653
0.673
0.692
0.710
0.725
0.740
0.752
0.763
0.773
0.783
0.792
0.801
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topology is well supported, with a posterior probability of 51.4%. Here, most
of the uncertainty involves the placement of taxon 12, and to a lesser extent,
taxon 6. Marginally, the most probable subtopology for the remaining 11 taxa
has probability 74.3%, and only ten subtopologies are in a 99% credible set.
Monophyletic groups, or clades, A = {1,2,3,4,11}, B = {5,13}, C = {7,8},
and D = {9,10}, occur with probability exceeding 99.4%. Collapsing subtopolo-
gies within clades is another type of marginalization that leads to succinct sum-
maries of the posterior. Ignoring taxa 6 and 12, these clades are grouped as
either ((A, 5 ) , (C, £>)), ((A, (C, £>)), 5 ) , or (A, ( 5 , (C, D))) with probabilities
88.1%, 9.5%, and 2.3% respectively (and a 0.1% probability that not all these
clades appear).

Somewhat greater uncertainty is present in the gopher phylogeny (Table 4),
with 24 topologies in the 80% credible set, and the most probable one of prob-
ability only 11.8%. Much of the uncertainty lies in the positioning of taxa 5
and 13. Marginally for the remaining 11 taxa, the best gopher subtopology has
probability 65.6%, and only six subtopologies are necessary to form a 99% cred-
ible set. Three clades are identified with posterior probability 1: E = {1,2,3,4},
F = {6,7,8,9,10}, and G = {11,12}. Ignoring variation in subtree topology
within clades and the placement of taxa 5 and 13, the clades are joined as ei-
ther ((£7, G), F) , (£ , (F, G)) or ((£, F) , G) with probabilities 67.8%, 27.5%, and
4.7% respectively.

While there is substantial structural similarity for most of the sampled trees
from both posterior distributions, there is no single tree topology which appears
in both samples. The absence of posterior overlap provides evidence against
strict coevolution of the hosts and parasites, similar to the conclusion in HRY97.
From our posterior sample, we can infer more. In particular, we are able to iso-
late and quantify those species pairs where coevolution appears to fail. The
unanimous placement of taxa 11 and 12 as nearest relatives with probability 1
in the gopher posterior contrasts markedly with the highly variable placement
of taxa 12 in the louse posterior. Similarly, taxa 5 and 13, bound together in
the louse posterior, vary wildly between clades in the gopher posterior. These
gopher/louse pairs are the most likely candidates for an alternate evolutionary
pathway. In contrast, we can identify the largest set of gopher/louse pairs sup-
porting strict cospeciation. The common subtopology of seven stably attached
taxa is ((1, (3,4)), ((7,8), (9,10))) and has marginal posterior probability 99.5%
for lice and 99.6% for gophers. Having a large Monte Carlo sample makes such
a determination fairly straightforward.

Without pursuing it further, we note that parameter estimation and model
building are effectively carried out with the help of an MCMC sampler. We
settled upon codon-specific mutation rates and a single transition/transversion
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FlG. 3. Output Analysis, Lice: Panels on the right are autocorrelation functions for two summaries
of the phylogeny sequence sampled by MCMC: loglikelihood, and indicator of best topology. For the
loglikelihood series, the left panel shows simple time series plots of the output. A cusum plot is given in
the left panel for the binary indicator of best topology. The dotted curve is the cusum plot of a random
permutation of the series.
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FIG. 4. Output Analysis, Gophers: Same diagnostics as Figure 3.
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bias parameter by simply rerunning our chains using different likelihood eval-
uation routines, and allowing simultaneous parameter updating. Importantly,
final parameter estimates do not condition on an estimated phylogeny, and no
optimization methods are used.

6. Concluding remarks. Much remains to be done before we understand
the utility of Bayesian methods for evolutionary biology. They may be helpful
for studying cospeciation because the scientific questions of interest relate to
topological structure of the phylogeny, and more classical statistical methods
do not provide completely satisfactory results. Inference based on likelihood
ratio tests may be effective, but frequency calibration typically requires fixing
parameter estimates and phylogenies, and hence exact significance levels are
unknown. Other tests ask if the similarity between host and parasite estimated
phylogenies is more than can be attributed to chance, under a model of phyloge-
nesis (e.g., Page 1988), but the reference measure here appears to have little to
do with the cospeciation hypothesis. A Bayesian approach, on the other hand,
allows us to make direct probabilistic statements concerning relevant aspects of
phylogeny structure.

Even the most simple questions require sophisticated computation, and so
we have started our investigation by trying to approximate the posterior distri-
bution over phylogeny space within the context of a standard parametric model
of evolution. Initial experimentation with these computations is cause for some
optimism. The problem with Markov chain Monte Carlo is not so much in de-
veloping an algorithm as it is in developing a reasonably efficient algorithm,
and we think that our simple technique of perturbing speciation times shows
promise. Further research is needed to uncover the relative merits of competing
algorithms. In addition, it may be helpful to clarify the relationship of Bayesian
and bootstrap methodology, so that biologists will with more confidence be able
to assess uncertainty in evolutionary hypotheses.

REFERENCES
BERNARDO, J.M. and SMITH, A.F.M (1994). Bayesian Theory. Wiley, New York.
BESAG, J., GREEN, P.J., HiGDON, D. and MENGERSEN, K. (1995). Bayesian computation and

stochastic systems. Statistical Science 10 3-66.
BROWN, J.M.K. (1994). Probabilities of evolutionary trees. Systematic Biology 43 78-91.
COWLES, M.K. and CARLIN, B.P. (1996). MCMC convergence diagnostics: A comparative review.

Journal of the American Statistical Association, 91 883-904.
CHERNOFF, H. (1997). Invited Lecture. IMA Summer Research Program on Statistics in the Health

Sciences. Minneapolis, July, 1997.
EFRON, B., HALLORAN, B. and HOLMES, S. (1996). Bootstrap confidence levels for phylogenetic

trees. Proceedings of the National Academy of Sciences of the USA 13429-13434.
FELSENSTEIN, J. (1973). Maximum likelihood and minimum-steps methods for estimating evolution-

ary trees from data on discrete characters. Systematic Zoology 22 240-249.



MCMC FOR EVOLUTIONARY TREES 161

FELSENSTEIN, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach.
Journal of Molecular Evolution 17 368-376.

FELSENSTEIN, J. (1983). Statistical inference of phylogenies (with discussion). Journal of the Royal
Statistical Society, Series A, 146 246-272.

FELSENSTEIN, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution
39 783-791.

FELSENSTEIN, J. (1995). PHYLIP (phylogeny inference package) version 3.5c. Computer program
distributed by the University of Washington.

FELSENSTEIN, J. and KISHINO, H. (1993). Is there something wrong with the bootstrap? A reply to
Hillis and Bull. Systematic Biology 42 193-200.

GEYER, C.J. (1992). Practical Markov chain Monte Carlo (with discussion). Statistical Science 7
437-511.

GOLDMAN, N. (1990). Maximum likelihood inference of phylogenetic trees, with special reference to a
Poisson process model of DNA substitution and to parsimony analyses. Systematic Zoology
39 345-361.

HAFNER, M.S., SUDMAN, P.D., VILLABLANCA, F.X., SPRADLING, T.A., DEMASTES, J.W. and
NADLER, S.A. (1994). Disparate rates of molecular evolution in cospeciating hosts and
parasites. Science 265 1087-1090.

HASEGAWA, M , KISHINO, H. and YANO, T. (1985). Dating the Human-Ape Splitting by a Molecular
Colck of Mitochondrial DNA. Journal of Molecular Evolution 22 160-174.

HUELSENBECK, J.P. and RANNALA, B. (1997). Phylogenetic methods come of age: Testing hypotheses
in an evolutionary context. Science 276 227-232.

HUELSENBECK, J.P., RANNALA, B., and YANG, Z. (1997). Statistical tests of host-parasite cospecia-
tion. Evolution 51 410-419.

JUKES, G.H. and CANTOR, C.R. (1969). Evolution of protein molecules. In Mammalian Protein
Metabolism, Munroe, H.N. (ed.), pp. 21-132. Academic Press, New York.

KIMURA, M. (1980). A simple method for estimating rates of base substitutions through comparative
studies ofnucleotide sequences. Journal of Molecular Evolution 16 111-120.

KlNGMAN, J.F.C. (1982). The Coalescent. Stochastic Processes and their Applications 13 235-248.
KUHNER, M.K., YAMATO, J. and FELSENSTEIN, J. (1995). Estimating effective population size and

mutation rate from sequence data using Metropolis-Hastings sampling. Genetics 140 1421-
1430.

LAPOINTE, F.-J. and LEGENDRE, P. (1991). The generation of random ultrametric matrices repre-
senting dendograms. Journal of Classification 8 177-200.

Li, S., PEARL, D.K. and Doss, H. (1996). Phylogenetic tree construction using Markov chain Monte
Carlo. Technical Report 583, Department of Statistics, Ohio State University.

MAU, B. and NEWTON, M.A. (1997). Phylogenetic inference for binary data on dendograms using
Markov chain Monte Carlo. Journal of Computational and Graphical Statistics, 6 122-131.

MAU, B., NEWTON, M.A. and LARGET, B. (1998). Bayesian phylogenetic inference via Markov chain
Monte Carlo methods. Biometrics, to appear.

NEWTON, M.A. (1996). Bootstrapping phylogenies: Large deviations and dispersion effects.
Biometrika 83 315-328.

OLSEN, G.J., MATSUDA, H., HAGSTROM, R. and OVERBECK R.(1994). FastDNAml: a tool for the
construction of phylogenetic trees of DNA sequences using maximun likelihood. CABIOS
10 41-48.

PAGE, R.D.M. (1988). Quantitative cladistic biogeography: Constructing and comparing area clado-
grams. Systematic Zoology 37 254-270.

SlNSHElMER, J.S., LAKE, J.A. and LITTLE, R.J.A. (1996). Bayesian hypothesis testing of four-taxon
topologies using molecular sequence data. Biometrics 52 193-210.

SWOFFORD, D.L. (1996). PAUP: Phylogenetic analysis using parsimony and other methods, Sinauer,
Sunderland, MA.

TlERNEY, L. (1994). Markov chains for exploring posterior distributions (with discussion). Annals of



162 M.A. NEWTON, B. MAU AND B. LARGET

Statistics 22 1701-1762.
YANG, Z., GOLDMAN, N. and FRIDAY, A. (1995). Maximum likelihood trees from DNA sequences:

A peculiar statistical estimation problem. Systematic Biology 44 384-399.
YANG, Z. and RANNALA, B.(1997). Bayesian Phylogenetic Inference Using DNA Sequences: A Markov

Chain Monte Carlo Method. Molecular Biology and Evolution 14 717-724.
Yu, B.(1995). Comment: extracting more diagnostic information from a single run using the cusum

path plot. Statistical Science 10 54-58.

DEPARTMENT OF STATISTICS
UNIVERSITY OF WISCONSIN-MADISON
1210 WEST DAYTON ST.
MADISON WI, 53706-1685
NEWTON@STAT.WISC.EDU

DEPARTMENT OF GENETICS
UNIVERSITY OF WISCONSIN-MADISON
445 HENRY MALL
MADISON WI, 53792
ROBERTM@GENETICS.WISC.EDU

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
DUQUESNE UNIVERSITY
440 COLLEGE HALL
PITTSBURGH PA 15282
LARGET@MATHCS.DUQ.EDU




