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Abstract: In high dimension, the estimation of a density is difficult be-
cause the observed data gets increasingly sparse with the dimension. This
is known as the curse of dimensionality. For that reason, in high dimen-
sion, universally consistent estimators such as the kernel density estima-
tor are not practical. In this paper, we consider a class of multivariate
densities, within which a density function / can be expressed as / = goD
for some given notion of data depth D and some real function g. We pro-
pose a density estimator which is shown to be consistent within the class,
and it converges at the same rate as the univaήate kernel density esti-
mator.
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1 Introduction

Let Xi, . . ., Xn be an i.i.d. sample from an unknown density / : 1ZP

[0, oo). When p is large, a kernel density estimator of the form

1 n 1 /v Yy
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where h is the smoothing parameter, is impractical because of the extremely
large number of observations needed to "fill" the p-dimensional space in
order to ensure sufficient observations in each "bin" of the kernel. This
phenomenon of sparsity of data in high dimensional space is referred to as
the "curse of dimensionality" in Bellman (1961).

Many approaches have been developed in the literature in order to ad-
dress this problem, and in particular projection pursuit techniques (Fried-
man, Stuelzle and Schroeder, 1984). Projection pursuit avoids this problem
by working in low-dimensional linear projections. However, as pointed by
Huber (1985), projection pursuit is poorly suited to deal with highly non-
linear structures. For these reasons, the analysis of high-dimensional data
sets is often made under some additional restrictions. One common prac-
tice is to assume that the density / belongs to some parametric family, so
the estimation of the density amounts to the estimation of finitely many
parameters. For example, if the underlying density is normal, then one only
needs to estimate the mean and the variance. In the same spirit but without
the firm grip of parametric assumptions, the so-called "tailor-design density
estimates" (cf. Devroye, 1987) are designed to perform well for a particu-
lar class of densities. This class can but does not have to be parametric.
In general "tailor-design density estimates" are not universally consistent,
since they are tailored to suit a specific target class of densities. A typical
example is the Grenander estimator (Grenander, 1956) which concerns only
monotone densities.

In this paper we rely on the general nonparametric smoothing principle
to provide a multivariate density estimator, with the idea of enlarging the
neighbourhood for smoothing so as to include sufficiently many data points
even when the dimension is high. Roughly speaking, our approach may
be viewed as a generalized version of the following simple nonparametric
density estimator

mp{Mx))

where 1 denotes the indicator function, mp denotes the p-dimensional
Lebesgue measure and Ah(x) = {t 3 \\x — t\\ < h}. The above estimate
takes advantage of the smoothness of the unknown density / , and assumes
that / is nearly constant in the neighbourhood Ah{x). As indicated above,
the difficulty with this approach in p dimensions is that the volume of the
neighbourhood Ah(x) decreases rapidly with p. As a result, the variance
of the estimator increases rapidly with p and one is forced to increase the
bandwidth h to obtain a balance between the variance and the squared bias
of the estimator. On the other hand, Ah(x) is not the only set over which
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/ can be presumed constant. The density / is also nearly constant over
the larger set Bh(x) = {t 3 \\f(x) - f(t)\\ < h}. Used as a neighbourhood,
Bh{x) has a large volume even in high dimension, so one is not forced to
use a large bandwidth to obtain a balance between the variance and the
squared bias. In contrast with the neighbourhood Ah(x) which does not
depend on /, the neighbourhood Bh(x) does and needs to be estimated.
Of course, the estimation of the neighbourhood Bh(x) is difficult and may
very well offset the improvement resulting from enlarged neighbourhoods.

Our estimator is based on a neighbourhood which is between the above
two extreme cases corresponding to the sets A^ix) and Bh(x). Assume
that / = g o D for some g : TZ —> [0, oo) and some transformation D :
ΈP —> [0, oo) that may depend on /. Under this restriction, / is constant
whenever D is constant so that / is nearly constant over the set Ch(x) =
{t 3 H-D(̂ ) — -D(£)|| < h}. The estimator we propose essentially amounts
to using the set Ch(x) as the neighbourhood.

In recent years, the class of ellipsoidal densities / = g o D with D(x) —
(x — μ)τΣ~1(x — μ) for some function g has received considerable attention
because it enables an analysis of multivariate data which does not rely on
the validity of the classical multivariate normal theory. The estimator we
propose goes hand in hand with such developments, providing an estimate
of the density that outperforms other density estimators within that class.
The class of ellipsoidal densities is one example among other possible gen-
eralisations of the classical multivariate normal family. Various possibilities
will be discussed in what follows.

Let rrid denote the d-dimensional Lebesgue measure. Throughout the
paper, we will assume that the measure mp o Ό~x is absolutely continuous
with respect to m\ and CD will denote the Radon Nykodym derivative of
mp o D~ι with respect to m\. Under this assumption,

G A} g(D(t)) dt = ^ g(r) CD(r) dr

showing that D{X\) has a density, which we will denote /D, and that
fD — gCD. The relationship fD = gCD can also be expressed as

f{x)=g{D{x)) =
fD(D(x))
CD(D(x)Y

Thus, if D is a known transformation, we can estimate f(x) by

cD(D(x)) n έ ί CD(D(x)) '
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Example 1 Consider the case of a spherical density f. This assumption
is equivalent to the assumption f = g o D for D(x) = \\x\\2 and some
g : TZ —> 1Z. Here, D is a fixed transformation and does not need to be
estimated. It is easy to see that

C (r)
L°[r) ~ Γ(p/2)

is the Radon Nykodym derivative ofmpoD~ι with respect to πi\. Thus, in
the case of a spherical density f', we propose the estimator

f~(x;D,h) = * Ά (D(x)γ-r/*±Σ Kh(D(x) - D(Xt)).

The estimator f(x\ Z?, h) basically amounts to an estimator of the univariate
density fD so that we would expect a one-dimensional nonparametric rate
of convergence to f{x) for /(#; JD, h).

In general, D could depend on / and would then need to be estimated.

If D is an estimator of Z), we can estimate f{x) by

/>; D, h) =
Cb{D{x)) n ^ Cό(D(x))

Example 2 Consider the case of an ellipsoidal density f. This assumption
is equivalent to the assumption f = g o D for D(x) — {x — μ)ΎΈ~1(x — μ)
and some g : 1ZP —> TZ. Here, D depends on unknown parameters μ and Σ
that need to be estimated. It is easy to see that

nr P

rv/2-λ

is the Radon Nykodym derivative ofπipoD"1 with respect to mi. Thus, in
the case of an ellipsoidal density f we propose the estimator

/>; A h) =

where D{x) = (x — μ)ΎΈ~1(x — μ) and μ and Σ are some estimates of μ
and Σ. The transformation D involves parameters μ and Σ for which there
exist estimates converging at speed 1/y/n. Since the rate of convergence for
. is less than 1/y/n, we expect the asymptotic behaviour of f(x\ ί ) , h) to
be unaffected by the estimation of D and a one-dimensional nonparametric
rate of convergence to f(x) for f(x\ £), h).
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Stute and Werner (1991) focus on this last case and propose an estimate
of the density based on the above formula, using independent estimates of
μ and Σ (based on the data of some preliminary sample).

The above two examples are unusual in that an explicit expression for CD

is available. When deriving exact expressions for CD, the following relation-
ships are useful. Let D be some depth. If Dμ B(x) = D((x-μ)τΣ~1(x-μ)),
we have CD Σ(r) = λ/JΣJ£D(r). If p is a monotone transformation and if
Dp{x) = p(D(x)), we have CDp(r) = {CD/\ff\){P'\r)). Nevertheless, an
explicit expression for CD is usually not available and an approximation for
the denominator must be used. Note that provided CD is smooth,

CD(D(x)) = IKhf(D(x) - D(t)) dt

K(u) CD{D{x) - hfu) du -> CD(D(x))

as hf converges to 0. Thus, our purpose in this paper is to investigate the
properties of

f,-. „ » J r KhMx) - D(Xi))
' v > ' ' n^JKhf(D(x)-D(t))dt

and

where Kh(x) = K(x/h)/h for some kernel K : TZ —>• [0,oo) and some
bandwidths h and hf. The particular case with hf = 0 corresponds to
the situation where there exist an explicit expression for CD and, since
hf is merely used to provide a simple approximation for CD(D{x)), our
intention is to let hf converge to 0 faster that h does. The estimators
f(x] D, h) and /(x; £)n, h) are always non-negative but do not integrate to
1 and, in practice, they need to be normalized.

Notions of multivariate depth are interesting candidates for D because
they can usually be estimated at the usual parametric rate 1/y/n. Since
fD is estimated at a one-dimensional nonparametric rate of convergence,
the estimation of D should not affect the overall rate of convergence. This
implies that for the class of densities such that / = g o D, we get a one-
dimensional nonparametric rate of convergence in a p-dimensional density
estimation problem. This assertion will be proved in the next Section.
Many notions of multivariate depth have been defined and studied in the
literature (see Small, 1990) , including
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• Mahalanobis depth (Mahalanobis, 1936)

• Tukey's depth (Tukey, 1975)

D{x) = inf j / dP(x) H is a closed half-space containing x\ .

• Simplicial depth (Liu, 1990) D{x) = Pr {x e S[Xl9..., Xp+i]}
where S[Xχ,... ,-Xp+i] is the simplex with vertices Xx, ..., Xp+χ.
• APL depth (Fraiman and Meloche, 1996) D(x) = KΊ * f(x) for some

kernel if and some fixed smoothing parameter 7.

All of the above depths can be estimated at the 1/y/n parametric rate
so that they can all be estimated at no cost in terms of the asymptotic
behaviour of /(x; Dn,h). The depth, however, does have an impact on the
asymptotic bias and variance of f(x;Dn,h). More importantly, the depth
D determines the class of densities / of the form f = go D. As described
in Example 2, for D(x) = (x - μ)τΣ-ι(x - μ), / = g o D if and only if /
is ellipsoidal. In the case of Simplicial depth, although we know the level
curves of D must be convex, it is not clear how large the class of densities
/ of the form / = g o D is. The level curves for APL depth don't even need
to be convex but the equation / = g o D does not appear to be satisfied
except for ellipsoidal densities.

As noted before, density estimators that perform particularly well under
some class of density are called "tailor design density estimate" by Devroye.
One can regard the estimator we propose as one that will take advantage
of the relationship / = g o D for a given notion of depth. The proposed
estimates are not universally consistent (they converge only if / = goD) but
they provide better performance than the universally consistent estimate
on the class of densities / of the form / = g o D.

2 Main Results
In this section, we present results concerning the strong convergence and
the asymptotic normality of
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where Dn is an estimator of D. We summarize below the assumptions that
are needed. Proofs can be found in the Appendix.

HO: The bandwidth sequence h = hn is such that nh5 —> β2 G (0,oo).
The bandwidth sequence hf = hnf converges to zero faster than h does:
hf/h -> 0.

H I : The kernel K is symmetric, has a bounded support, integrates to 1
and has three bounded and continuous derivatives.

H2: Xι, ..., Xn are i.i.d. with some density / : 1ZP —> [0,oo) such that
/ = g o D for some function g : ft —> [0, oo). Both g and / are bounded
and have two bounded and continuous derivatives.

H3: There exist a 1 — 1 and continuously differentiate transformation
T : ft x [O,!^-1 -> ftp such that D(T(r,θ)) = r for all r G ft and all
θ G [0, l ] p - 1 . The transformations T and its Jacobian Jτ have two bounded
and continuous partial derivatives with respect to r.

H4: The inverse image by D of a bounded set is bounded and x is in the
interior of the support of D.

Assumptions HO and H I are more or less the standard assumption for
the bandwidth and the kernel in kernel density estimation. The bounded
support of the kernel is not usually needed but simplifies the proofs. The
necessity of Assumptions H2 can be explained as follows. Since f{x\ D, h)
is a function of D{x) so that we can only hope to get consistency if / = goD
for some g : ft —> [0, oo). Note that, by virtue of H3,

e i } = / i{D(t)eA}g(D(t))dt
= ffl{D(T(r,θ)) € A] g{D(T(r,θ))) \Jτ(r,θ)\ dθdr
= JJl{reA}g(r)\Jτ(r,θ)\dθdr
= SA 9(r) CD(r) dr

where CD(r) = / \Jτ{r,θ)\ dθ. Thus, H3 implies that the random variable
D{X\) has the density fD = gCD.

Theorem 1 // H0-H3 hold,

N (- B fu2K(u) du fp(D(x^ f K2(ΊΛ dv f^ λiM i 2 p j u J\\U) au £^(D(x)) 'J -^ \u) a u CD(D(x)) )
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The asymptotic distribution of /(x; D, h) should be compared to that of
the multivariate kernel density estimator /(x; h) which is well known to be

Vnh* {/(x Λ) - f(x)\ -±+N (\ β ίu2K{u) du V2/(z), f K2(u) du f(x)\
^ * \2, J J /

Table 1 provides the asymptotic bias and variance for both f(x;h) and
/(x; D, h). The most striking difference is the rate of the convergence to 0
for the asymptotic variance. The asymptotic bias has the same rate of the
convergence to 0, but the constants depend on / in different ways. In the
table, α = / u2K{u) du and β = J K2(u) du.

Table 1: The asymptotic bias and variance for /(x; h) and /(x; D, h).

•Estimator Asymptotic Bias Asymptotic Variance

v2/(χ)
/£(P(*)
CD(D(x)

u\x) — \x μ\ \p—ί) 4an jn{u\x)) n h 2

x-Dh) i a / ι2 KW*)) 0 f(x)
x,",n) 2an CD(D(x)) nh C (D(x))

Our proof of the asymptotic normality for /(x; Dn, h) uses a three term
Taylor series approximation for f(x',Dn,h). We prove that provided y/nh
\\Dn - DWlc = op{h%

Vnh [ffaDn,h)-f{x\D,h)} -^0.

Note that for the kernel density estimator, the optimal bandwidth is of the
order n" 1 / 5 so that if ||Λι - £>||oo = Op(l/y/n), the condition \fnh \\Dn -
Dll^j = Op(/ι̂ ) amounts to h/(n2h8f) —> 0 and can be satisfied for the
optimal bandwidth h and a slightly faster hf. A higher order Taylor series
approximation for /(x;Z)n,/ι) would result in weaker restrictions on the
bandwidths h and hf but at the cost of additional smoothness requirements
onK, Γand J τ .

Theorem 2 Assum,e H0-H4 hold and define

Hnk(s,t) =nE{Ak

n(x,X1)Ak

n(x,X2)\Xi = s,X2 = t}

and

where An{x,y) = ((Dn(x) - Dn(y)) - (D(x) - D(y))). If Hnk and Gnk

have two countinuous and uniformly bounded derivatives for k = 1,2 and
if Vnh \\Dn - DWlc = op(hj), f{x\bn,h) and f(x;D,h) have the same
asymptotic distribution.



Multivariate density estimation by probing depth 423

Besides the smoothness assumption (H2) made on / and g, the ap-
plication of Theorem 2 requires the verification of H3, the existence of a
smooth change of variable transformation T such that D(T(r, θ)) = r. The
existence of such a transformation is guaranteed whenever D has a unique
global maximum M (such a global maximum can be regarded as the deep-
est point or a median) and is decreasing along every ray originating from
M. In such circumstances, we can define T as the inverse of the "polar
transformation" (D, θ) where D is replacing the usual norm and where the
angles θ are determined about the maximum M. The smoothness of the
resulting T is equivalent to the smoothness of D. Thus, we can reformulate
all the smoothness assumptions in terms of the smoothness of g and D.

3 Simulation
In this section, we present a small simulation that compares f(x; Dn, h) to
the kernel density estimator f(x,h) in cases where the underlying density
/ is of the form / = goD. The simulation involves the Mahalanobis depth.
It involves 100 samples of 50 observations i.i.d. with distribution

y 'vo .9 l.o

For the Mahalanobis depth, D(x, y) = (x — μ)ΎΣ~1(x — μ) and Dn(x, y) =
{x — μ) τΣ~ 1(x — μ) with the usual sample moment estimators μ and Σ. In
this case we know CD (r) up to a normalizing factor and we use hf = 0. We
evaluate both f(x;Dn,h) and f(x,h) with their respective ASE-optimal
bandwidth determined by minimizing over h

1 5 0

ASE(f(x; Dn,h),h) = - Σ (f(Xi; Dn,h) -

1 5 0

ASE(f(x;h),h) = wΣ
2 = 1

respectively.
Note that the numerator of f{x\Dn,h) is in fact a kernel density esti-

mate for the data Dn(Xι), ..., Dn(Xn) evaluated at Dn(x). In practice,
a boundary correction kernel must be used because Dn has a bounded
range. It is also possible to use a transformation to avoid having to make
a boundary correction. The simulation uses a boundary correction kernel.

Table 2 below summarizes the results. With the Mahalanobis depth,
f(x] Dn, h) clearly outperforms f(x, h). The average ASE for /(x; Dn, h) is
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about three times smaller than the average ASE for f(x,h). According to
the theoretical results of the previous section, for such elliptical densities,
the difference between the performance of f{x\Dn,h) and /(x,/ι) should
grow with the dimension.

Table 2: ASE of /(z, h) and f(χ Dn, h).

Mahalanobis

Average 0.96 0.32
S.D. 0.28 0.19

Figure 1 illustrates a very typical outcome of the above simulation. Fig-
ure 1 a) displays the 50 observations, Figure 1 b) displays the true density,
Figure 1 c) displays the kernel density estimate f(x,h) and Figure 1 d)
displays f(x\ί)n,h) for the Mahalanobis depth. The estimate f(x;Dn,h)
is by construction perfectly ellipsoidal and the spurious bumps and dips
found in f{x,h) have disappeared. Also the bandwidth minimizing the
ASE for the kernel density estimate is much smaller than the bandwidth
minimizing the ASE for the Mahalanobis depth density estimate.

4 Conclusion
In cases where the unknown density / satisfies / = ^ o ΰ , our theoretical
results show that, in high dimension, f(x\ Dn, h) has better asymptotic per-
formance than the usual kernel density estimator /(x, h). Our simulations
suggest this is true in two dimension, even for small samples.

The theoretical results also make smoothness assumptions that excludes
cases where the unknown density / is multimodal. Even though the smooth-
ness assumptions can be reduced to include such cases, an important prac-
tical problem remains. For multimodal densities, fD (estimated by the nu-
merator of f(x) Dn,h)) and CD (estimated by the denominator of /(x; Dn,h))
are discontinuous functions. Depth based estimation for such densities
would require the development of a reasonably good density estimator for
discontinuous densities.

Appendix: Proofs of Theorems 1 and 2
This section is devoted to the proof of Theorems 1 and 2.

Proof of Theorem 1: Define

n t=i
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I

Figure 1: Outcome of the simulation.
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CD(r) = I Khf(r - D(t)) dt = j K(u) CD(r - hfu) du

and
/ » = E Kh(r - D(Xi)) = J K(u) fD(r - hu) du.

With this notation,

/ ( ' ' } " CD(D(x))

and /D(^; h) is clearly a kernel density estimator of fD(r). The asymptotic
normality of the kernel density estimator is well know so that

^h {fD(r;h)-JD(r)}

Therefore (since g = fD/CD),

The stated asymptotic normality for /(x; I?, h) follows because

/ g (r) ΓjlD{r)CD{r) - fD(r)CD{r)
HΈJ) ~ τj7)] ~ Vnk CD(r)CD(r)

) ( ) ( ) }

CD(r)CD(r)

Lemma A Let ηn be some sequence that converges to infinity and assume
that

If 7«(Λ. - On) -^ 0, 7 n(B» - bn) ^ 0 and B n -^ b > 0, then

Proof: Simply write

An

note that

J An an Ί 7 n

I #71 0n ) ΰn

αn

Όn
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and apply Slutsky Theorem. •

Lemma B If / ( # ( 2 ) ( ^ ) ) du < oo and if the density fD of D(Xχ) is
bounded,

sup h2kEh (κP{r - ΰ(Xi))) 2 < oo.
h v '

Proof: Note that

τ - D(X1))f = h™^ J (κ{k\r - t)f fD(t) dt

(k+V (κW{ψ)f fD(t)dt

= ίλ

h(κ{k)(rf))2 fD(t)dt

= S(κW{u)f fD(r-hu)dt

< \\foWoo I (K^(u)f dt D

Lemma 1 Assume that H 3 holds. If Gn : Έ? —> TZ has two continuous
and uniformly bounded derivatives, then for fc G {1,2},

sup J J Gn(x,y) Kik\u - D(x)) Kik\v - D{y)) dxdy< oo.

Proof: By virtue of H3,

Gn(x, y) K{k\u - D(x)) K<£\v - D{y)) dxdy

= III! GnCΓMO.ϊUfc)) K(k\u - D(T(s,θ1))) iff \υ - D(T(t,θ2)))
|JΓ(«,0i)| \Jτ(t,θ2)\ dθλdθ2 dsdt

= JJGn(s, t) K{k\u - s) K{k\υ -1) dsdt

with

Gn{s,t) = J J Gn(T(s,θ1),T(t,θ2)) | J τ M i ) | |JT(t,02)| dθ1dθ2.

Since T, Jτ and Gn have two continuous and uniformly bounded deriva-
tives, so does Gn and the result easily follows from

n(x, y) K{k\u - D(x)) K{k\v - D(y)) dxdy

= JJGn(s,t) K[k\u - s) K{k\v-t) dsdt

= J f & £ε Gn(s,t) Kh{u - s) Kh(υ -1) dsdt

= ff faj& °n(u ~s,υ-t) Kh(s) Kh(t) dsdt
\ \ \ \ . π
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Lemma 2 Assume that H3 holds. If Hn : Έ? —> ΊZ has two continuous and
uniformly bounded derivatives, and if / has two continuous and bounded
derivatives, then for fc E {1,2},

sup τ? Ή (Y- Y"} τr(kh*. _ nίvΛλ τr(khE Hn(X1,X2) Kζ\u - D(Xi)) K£}(υ - D(X2))\ < oo.

Proof: Note that

E Hn(XuX2) K%\u - DiXi)) K^\v - D{X2))

= ff Hn{x,y) K^\u - D(x)) KΪΪ\v - D(y)) f{x)f(y) dxdy

and apply Lemma 1 to Gn(x,y) = Hn(x,y)f(x)f(y). •

Proof of Theorem 2: First note that \An(u,υ)\ < 2\\Dn - DW^ and
that y/nh \\Dn - Dψ^ = op(hj) implies y/nh \\Dn - D]^ = op(h4) and
\\Dn — D\\oo = Op(/ι). Using Lemma A, we can prove that /(#; Dn, h) and
f{x\D,h) have the same asymptotic distribution by showing

V^h{fB(Dn(x); h) - fD(D(x); h)} £ 0 (1)

and

y/nh{Zdφn{x)) - CD(D(x))} Z 0 (2)

We use Taylor series approximations for the numerator (1) and the denom-
inator (2) separately. For the numerator,

fΰφn(x)',h) = £ l
k=0 U

n

for some θ on the segment joining D(x) — D{Xi) to Dn(x) — Dn{Xi). For
the remainder, we have

< 8\\ί)n -

and \fnh \Όn — -D||̂ o = °P(^4) ensures that the remainder is negligible.
Thus, (1) follows from

nhE (lΈ Ak

n(x,Xi)κP(D(x)-D(Xi)ή - 0
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for k = 1,2. The above can be written as a double sum over all indices i
and j . For i = j , we have

nh % E Af{x,Xλ)
2A;

which converges to zero (invoke Lemma B) provided \\Dn — £>||oo = Op(h)
(a consequence of \fnh~ \\ί)n - Dψ^ = op(h4)). When i φ j , we have

nh 2ί^ll E Ak

n(x,X1) Kik)(D(x) - Όfr)) Ak

n(x,X2) K£\D(X) - D(X2))
= hE Hnk(XuX2) κP(D(x) - DiX^K^iDix) - D(X2))

which converges to zero as well because according to Lemma 2,

sup |E HnkiX^X^K^iDix) - D(X{))K£\D{X) - D(X2))\ < oo.
n

For the denominator, we consider the expansion

I n & ) ™ ( ( ) ( ) ) +ί 3

n(,) {ξφt) dt
k=0 J J

n{x)) = Σ I An&t) K™(D(x)-D(t)) dt+ί A3

n(x,
k=0 J J

for some θt on the segment joining D{x) — D{t) to Dn{x) — Dn(t)> Note
that since K has a bounded support, H4 implies that for n large enough,
K^ (θt) almost surely vanishes outside of a bounded set so that (2) follows
from

Vnh Al(x,t)K{ξφt)^Q

for almost all t and

nh E ( I Ak

n(x,t) K™{D(x) - D{t)) dtj - 0

for k = 1,2. The proof of the above is similar to the one we made for the
numerator but uses Lemma 1 instead of Lemma 2. •
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