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Abstract: An asymptotic representation of the mean weighted integrated
squared error for the kernel estimator of the density under the Koziol-
Green model of proportional censorship is obtained for a bootstrap re-
sampling method. A new bandwidth selector based on the bootstrap
is consequently proposed. Simulation results for different models using
WARPed versions of the estimators show how the bootstrap selector be-
haves appreciably better than the classical cross-validation method. Fi-
nally a real example is analyzed.
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1 Introduction

A typical situation in survival analysis: let Y be the variable of interest with
continuous distribution function F, let C be the right-censoring variable
with continuous distribution function G, and let (Z, 6) be the observed pair,
i.e., Z = min(Y, C) and δ = l{y<c} The general random censorship model
assumes the independence between Y and C. Hence E(δ) = (1 — G)dF
and the (continuous) distribution function H of Z satisfies 1 J- H = (1 —

(l-G).
The Koziol-Green model of proportional censorship (Koziol and Green,
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1976) is an interesting sub-model of the above one obtained by imposing
the additional parametric assumption

1-G = (l-F)β for some β > 0. (1)

A crucial fact about (1) is that the independence between Z and δ char-
acterizes the model (Sethuraman, 1965); this allows to construct hypothesis
tests about such a model (see, for example, Herbst, 1992; Henze, 1993).

Under (1) it is true that 1 - F = (1 - H)Θ, with θ = (1 + β)~ι = E(δ).
This relation motivates the ACL (Abdushukurov, 1984; Cheng and Lin,
1984) estimator

1-Fn = (l-Hn)
θ\ (2)

where Hn is the empirical distribution function of the Z's and θn is the
sample mean of the <5's, given the initial sample {{Z\, δ\),..., (Zn, δn)}. The
estimator (2) is the maximum-likelihood estimator of the survival function
of interest under the model (1).

Here we are interested in the estimation of the density / of Y (assumed
to exist). A kernel estimator is defined in Section 2. How to choose the
bandwidth for it is our main question. Different procedures have been
considered and studied in the uncensored case. See Cao et al. (1994)
for a comparative study. Least squares cross-validation (LSCV) has been
adapted to density estimation under proportional censorship by Ghorai and
Pattanaik (1993). These authors have established asymptotic optimality,
in the sense

ISEw(hCy)
mίhGLnISEw(h) ~* a ' S ' '

where the cross-validation bandwidth hcv is the minimizer of the score
function (4) defined in Section 2, ISEW is the integrated squared error
ISEw(h) = {fh — /)2w, for a suitable weight function w (with the role
of eliminating endpoint effects), fh is the estimator defined in (3), and the
set Ln follows the usual regularity conditions (that can be found in the
mentioned work).

In a recent paper Gonzalez-Manteiga et al. (1996) motivate the search
for improved methods of bandwidth selection. Although the quality of the
resulting density estimator is the crucial question, the rate of convergence
for cross-validation type selectors is known to be very slow. In the re-
ferred work "smoothed bootstrap" ideas are the base of a new criterion
for choosing the bandwidth in censored hazard rate estimation. Here these
considerations are translated to the context of density estimation under the
Koziol-Green model. In Section 2 we introduce a bootstrap mechanism to
select the parameter h for the estimator fh.
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We discuss some fast algorithms based on WARP ideas (see Hardle, 1991;
Fan and Marron, 1994) in Section 3, introducing methods for computing
both the estimator (3) and also the two bandwidth selectors considered
here. In Section 4 we present our simulation results for different propor-
tional censorship models. As in Gonzalez-Manteiga et al. (1996), the boot-
strap selector behaves appreciably better than the classical cross-validation
method. We also present a real example that follows the Koziol-Green
model.

2 The estimator: LSCV and bootstrap
bandwidth selection

A natural kernel estimator for the true parameter of interest / is given by

fh(y) = ί Kh(y - v)Fn(dυ) ~ £ Kh(y - Z{)n~Hn{\ - H^Zi))6"'1 (3)
J -•_ -i

where Kh(-) = K(./h)/h is the rescaled kernel function K with smoothing
parameter h satisfying h —• 0 and nh —> oo as n —* oo. This estimator
was considered by Csόrgo and Mielniczuk (1988). These authors proved
results on strong consistency, asymptotic normality and Bickel-Rosenblatt
type confidence bands for (3).

The LSCV bandwidth hcv considered here is the minimizer of

CV(h) = j flw - 2 Σ fKi{Zi)n-ιθn{l - Hn^Zi))θn-ιw{Zi) (4)

where f^i and Hn^ are the "leave-one-out" versions of fh and Hn respec-
tively, given by

and

The function CV(h) is an estimator of MISEw(h) - / / V where

MISEw(h) = E j(fh - ϊfw (5)

is the mean weighted integrated squared error.

We obtain the next result, giving an asymptotic representation of (5).
We make the following assumptions: (i) the density / is continuous, (ii)
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the function w has compact support contained in (0,T), where T satisfies
1 — H(T) > 0, and (iii) the kernel K is a square integrable probability
density function with compact support.

Theorem 1 Under the assumptions (i)-(iii):

MISEw(h) = AMISEw{h) + o{(nh)-1)

where

AMISEw(h) = {nh)~ιR(K) ί 0(1 - H)Θ~ιfw + ί(Kh * / - f)2w

and R(K) = K2 (* denotes convolution).
J

From now on we define the bootstrap bandwidth selector h* as the min-
imizer of an estimated AMISEW. "Smoothed bootstraps" are required to
approximate the "bias" part of MISEW. We therefore propose the resam-
pling plan:

1. Draw bootstrap resamples {Z*, ...,#*} from Hn * Kg.

2. Generate independent bootstrap resamples {<$*,...,<$*} from a

Bernoulli distribution with parameter θn.

The distribution Hn*Kg denotes the one having density hg(y) = Kg(y —
v)Hn{dv). The bootstrap versions of the estimator (3) and the 4rror (5)
are respectively

f*h(y) =
t = l

and

where H£ is the empirical distribution function of the Z*'s and 0* is the
sample mean of the <5*'s. Similar arguments to those used in the proof of
Theorem 1 lead to:

AMISE*w(h) = (nh)-ιR(K) ίθn(l-Hn*Kg)
θ»-1fgw+ I\κh*fg-fg)

2w

()
where fg = θn(l — Hn * Kg)

θn ιhg is another estimator of / under (1).
Then h* is the minimizer of (6). This expresion shows that our bootstrap
design mimics the theoretical AMISEW in Theorem 1.

Remark 1 We opted to deal with the pilot estimator fg instead of the
theoretical bootstrap density fg in the definition of MISE^. An analogous
expression for the asymptotic MISE^ can be obtained using fg.
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3 Warping algorithms

Here we introduce fast algorithms to construct the estimator and to select
the bandwidth, both for the LSCV and the bootstrap methods. As in
Hardle (1991) and Fan and Marron (1994), the idea is to "bin" the data
into an equally spaced grid, so that the number of kernel evaluations can
be drastically reduced. Our bins are Bz = | | | , ^z~$h\ z e Z, where every
interval has length δ = h/M with M G Z+.We summarize the observed data
by the nz = Σ?=i 1BZ(ZI), Z G Z + , the number of observations in the bin
Bz. The large number of kernel differences Kh(y — Zι) is approximated by
the much smaller set of values WM{k) = K(k/M), for k = 1 — M,..., M — 1,
when K is supported on [—1,1]. Fan and Marron (1994) showed that this
results in computational speed savings of factors up to 100.

3.1 WARPing the kernel estimator

A WARPing approximation of fh at Bz is given by

M - l

fM(z) = (nδM)-1 Σ WMiJήθ^l-HMiz + k))9--1^^ (7)
k=l-M

where 1 — HM{Z) = n~1 Σk>z nk F°Γ a fixed h and letting M —> oo , we
have fM(y) —• fh(y) (the WARPing approximation error decreases with
the rounding error δ). This point is illustrated in Figure 1.

3.2 WARPing cross-validation

A WARPed version of the score function (4) in Section 2 involves essentially
replacing the conventional kernel estimators by their WARPed versions,
although additional work is required to get a rapidly computable version.
We define the "leave out bin counts" n~τ = Σj^i 1BZ{ZJ) , z £ Z, and we
define 1 - HJ*(z) = (n - I ) " 1 Σk>z < .

Now we use the approximations

[
J

and

n — 1
M(z)θn(l -
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where WM,h{z) denotes the value of w at the lower limit of Bz. Our ap-
proximated score function becomes

CV(M) =

(8)

Our proposal is to fix the rounding error δ and then to minimize the
function (8) in M.

Weibull(2,1)

Figure 1: True density function (thick solid line) for a Weibull(2,l) model,
the kernel estimator (thin solid line) (computed directly on a sample of 100
uncensored observations of such a model), and two warping approximations
of this curve: 5=0.1 (dotted line) and 6=0.01 (dashed line). The role of the
rounding error becomes clear; the approximation to the kernel estimator
gets better as δ decreases to zero.

3.3 WARPing the smoothed bootstrap

A WARPed version of the function (6) is obtained similarly by replacing the
conventional kernel estimates with their corresponding WARPed versions.
An approximation of AMISE^ih) is given by

M - l

k)-fMl(z))2wMλ(z)
k=\-M

(9)
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where /MX and HM± are the WARPed approximations of fg and Hn * Kg

with parameter M\ = g/δ at Bz, given respectively by

M-l z

HMl(
z) = (nMι)~ι ]|Γ wMλ(k)nz+k, with nz = ^ n^ , and

k=l—M j=—oo

IMΛZ) = 0n(l - ^M 1(^)) 0 n" 1^M 1(^), where

M - l

])Γ WMl(
k)nz+k

k=l-M

4 Simulation study. Example

4.1 Simulation study

In this subsection we compare LSCV and bootstrap bandwidth selectors
for moderate sample sizes. We considered three underlying densities:

Weibull (α,λ) 0 The density of interest is taken as / = /α,λ> satisfying

f(x) = / Q | λ (χ) = αλCλx)*-^-^)0l [ 0,oo)(x) with α, λ>0.

Gumbel (α,λ). Its density is /(x) - /Qjλ(x) = αλe^-^^-^lp.oojίa:)
with α, λ>0.

Truncated normal modeL We consider the density of the random
variable Y = X \ X > 0 ,where X G N(μ,σ)\ that is,

/(*) = l -Φ^σtθ) 1 ^ 0 0 )^^ W h e r β ^ ' σ ( X ) = Φμ,σ(^) a n d ΦM,σ ™ the dlS-
tribution of JC.

This simulation study was carried out as in Gonzalez-Manteiga et al.
(1996) (see this article for details).

Table 1 contains the results of 1.000 trials of sample size 100 correspond-
ing to the following models:

- Weibull models with parameters λ = l and α=l,2,3 without censoring
(denoted by W(l,l), W(2,l) and W(3,l)) and also with 25% of censoring
(denoted by CW(1,1), CW(2,1) and CW(3,1)).

- Gumbel models with parameters λ = l and α=l,2,3 without censoring

(G(l,l), G(2,l) and G(3,l)) and with 25% of censoring (CG(1,1), CG(2,1)

and CG(3,1)).

- Truncated normal distributions with parameters μ=l and σ=0.5 for

an uncensored situation and also with a censoring of 25% (N(l,0.5), CN(1,

0.5)).



392 J. Una-Alvarez, W. Gonzalez-Manteiga and C. Cadarso-Suarez

Although the only sample size in the simulations presented here is n=100,
similar results were observed for n=50 and n=200. The triangular kernel
was used.

MODEL

W(l,l)
CW(1,1)
W(2,l)

CW(2,1)
W(3,l)

CW(3,1)

G(l,l)
CG(1,1)

G(2,l)
CG(2,1)
0(3,1)

CG(3,1)
N(l,0.5)

CN(l,0.5)

Mean
hcv h*

20.96
21.57
16.64
16.01
21.62
21.45
22.84
23.46
42.58
44.12
60.83
64.29
14.82
19.16

15.21
18.27
10.75
11.38
14.39
17.31
15.78
16.36
30.63
34.59
45.94
53.52
10.41
13.17

Std.Dev.
hcv h*

14.54
13.55
19.14
20.19
26.47
26.64
22.97
22.44
33.01
31.60
42.03
42.63
16.78
25.12

8.50
9.69
9.21
8.61
12.32
13.75
11.15
9.72
19.02
19.39
27.14
29.25
8.81
10.38

Table 1: Mean and standard deviation of the integrated squared error (L2-
norm) of the kernel density estimator with hcv and h* bandwidths along
1.000 trials of size 100.

The values in Table 1 are the mean and the standard deviation of
the ISEW (L2-norm) / (/- — f)2w along the 1.000 samples of size 100.
The columns headed hcv report the ISEW for estimates based on cross-
validation bandwidths (resulting from the minimization of CV(M) in ex-
pression (8)) and the columns headed h* report the ISEW for estimates
based on bootstrap bandwidths (resulting from the minimization of
AMISE*(M) in expression (9)). Both minimizers were taken as the global
minimizer over a fine grid. In both cases the rounding error in the WARP
approximation was 6=0.01 and the weighting function was
w(u) — I[if-i(o.θ5),if-1(o.95))('u) Finally, the pilot bandwidth g used is given
by g= J(K")2μ2(K)-ιa-ιn-ι}ll\ where a is the estimator of Ahψ)2 (hz

the density of Z) and μ2(K) = t2K(t)dt. For a sample from a normal
density, the pilot bandwidth g is asymptotically optimal for the purpose of
estimating the density curvature by the curvature of the kernel estimator
(for details see Cao et al., 1994).
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MODEL
W(l,l)

CW(1,1)
W(2,l)

CW(2,1)
W(3,l)

CW(3,1)
G(l,l)

CG(1,1)
0(2,1)

CG(2,1)
G(3,l)

CG(3,1)
N(l,0.5)

CN(l,0.5)

Mean
hcv h*

146.55
135.03
105.86
96.92
102.39
96.80
113.94
107.99
124.45
117.35
128.52
120.48
102.81
91.17

128.70
117.97
89.47
89.27
87.54
93.93
101.83
91.20
112.14
101.75
117.05
106.84
89.58
82.61

Std.
hcv

49.91
45.48
51.91
50.09
50.99
48.93
50.01
47.25
47.86
44.32
45.89
42.83
49.98
48.10

Dev.
h*

38.19
33.95
38.91
35.47
38.23
39.09
38.84
30.21
37.88
31.47
37.47
32.25
38.96
33.43

Table 2: Mean and standard deviation of the integrated absolute error (Li-
norm) of the kernel density estimator with hcv an<i ^* bandwidths along
1.000 trials of size 100.

Weibull(1,1) - Uncensored Case

Figure 2: Kernel estimator of the densities of hcv (dashed line) and h*
(solid line) using Gaussian kernel and smooth cross-validation bandwidth,
based on 1.000 trials of size 100 of a Weibull(l,l) model (uncensored case).
The vertical lines represent the values of h\2 (solid line) and h\\ (dotted
line).

Table 2 is devoted to the Li-norm I / - - / | w. Tables 1 and 2 show
that the Li and L2 norms are more concentrated around their means for
the bootstrap selector than for the cross-validation bandwidth. The Li and
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L2 norms tend to be smaller with the bootstrap bandwidth than that with
cross-validation. To show the accuracy of both bandwidth selectors figures
2 (uncensored case) and 3 (censored) present the kernel estimators of the
densities of the two selectors hcv and /ι*, using Gaussian kernel and smooth
cross-validation bandwidth, based on a sample of 1.000 different values
from the models W(l,l) and CW(1,1), as well as some approximations of
the /IL2,W

 a n d Λ-Li,™ bandwidths. These bandwidths were computed by
minimizing the Monte Carlo approximation, based on 1.000 trials of the
MISEW, E (fh - f)2w, a n d t h e MIAEW, E \fh-f\w, over a g r i d of
h values, ranging from 0.1 to 1.1 with a step ofθ.05. We conclude that the
performance of /ι* is far superior to that of hcv This is what we expected,
because as noted in Cao et al. (1994) at least in the uncensored case we
have

f hf

where hf denotes the optimum bandwidth which minimizes MISE.

Weibull(1,1) - 25% Censoring

Figure 3: Kernel estimator of the densities of hcv (dashed line) and h*
(solid line) using Gaussian kernel and smooth cross-validation bandwidth,
based on 1.000 trials of size 100 of a Weibull(l,l) model (25% censoring).
The vertical lines represent the values of /i/2 (solid line) and hu (dotted
line).

To illustrate the computational cost of the WARPing approximation
when used in the algorithms for finding h* and hcv, the CPU times (relative
to the minimum of all of them) are summarized in Table 3. While CPU
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time increases slowly with the sample size, n, a sharp increase occurs when
the rounding error, δ, gets small. We suggest the choice <5=0.01 in practice.
This seems to give a good approximation of the kernel estimator (see Figure
1) at a reasonable computational cost. (See Fan and Marron, 1994) for a
comparative study of the CPU time of the WARPing approximation and
the kernel estimator).

Sample
Size

n=50

n=100

n=500

<5=O.O5
hCV h*

1.33

5.46

5.65

1.00

1.17

1.35

(5=0.01
hCV h*

23.78

91.88

107.68

14.08
21.12
20.54

<5=O.OO5
hCV h*

97.82

373.83

433.19

52.69

81.70

107.95

Table 3: Relative CPU times of the computations of LSCV and bootstrap
bandwidths for samples of sizes n=50, 100 and 500 and rounding errors
£=0.05, 0.01 and 0.005 in the WARPing approximation.

4.2 Example: PCB-Liver data

Between January, 1974, and May, 1984, the Mayo Clinic conducted a
double-blinded randomized trial in Primary Biliary Cirrhosis (PCB) of the
liver. A total of n=312 patients agreed to participate in this clinical trial.
The data were analyzed in 1986 for presentation in clinical literature (see
Fleming et al, 1991). By July, 1986, 125 of the 312 patients had died,
resulting in a high proportion of censoring data (60%).

GROUP I
GROUP II
GROUP III
GROUP IV

TOTAL

Sample
Size
163
63

50
36

312

Deaths

32
31

31
31

125

Censored (%)

131 (80.37%)
32 (50.79%)
19 (38.00%)
5 (13.89%)

187 (59.44%)

OR (95% CI)

1 Reference
3.5 (2.2,5.8)

6.45 (3.9,10.7)
18.9 (11.0,32.5)

Median

*

7.66
4.63
2.35

Mean

10.41
7.22
5.47
2.60

* More than 50% people aliving at the closing date

Table 4: Sample size, number of deaths, percentage of censoring, Odds-
Ratio and estimated median and mean for the four groups of patients
considered in the PCB-Liver data example according to their prognosis
bilirubin levels (<1.45, 1.45-3.25, 3.25-6.75 and >6.75).

One of the most important risk factor for the survivorship of PCB is the
serum bilirubin level (Fleming et al, 1991). As in the referred work, we
shall consider four groups of patients, according to their prognosis bilirubin
levels: Group I (bilirubin<1.45), Group II (1.45-3.25), Group III (3.25-6.75)
and Group IV (>6.75). Descriptive statistics appear in Table 4, reveal-
ing that the survival time decreases as albumin level increases. Whereas
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Group I presents an 80.3% of censored data, Group II has an amount
around 50.6%, Group III 38% and Group IV, only 14%. The four groups
were tested to follow the Koziol-Green model using the test proposed by
Henze (1993). The approximated p-values were 0.1627, 0.1552, 0.1765 and
0.46764, respectively, failing to reject the proportional censoring model for
each group. The estimator (3) of each density function can therefore be
safely used. In all cases, a gaussian kernel was chosen. For each group,
the weighting function considered here was w{u) = l[ab](u) where a and
b are, respectively, the 5% and 95% percentiles of the corresponding ob-
served survival time. The selected bootstrap bandwidth minimizing their
respective function AMISE*(M) (with rounding error <5=0.1) were /i}=3.9,
Λ,*7=4.01, /ij/7=3.3 and h}v=1.73. The density functions estimates are
plotted together in Figure 4. Looking at this figure, one observes that the
density estimates reflect the behaviour of the survival time, revealing a
great amount of probability around the median values, in agreement with
results presented above.

Figure 4: Kernel density estimators for the groups in the PCB-Liver data
example: bilirubin > 6.75 (solid line), 3.25-6.75 (dashed line), 1.45-3.25
(dotted line) and <1.45 (dashed-dotted line). The figure supports the nu-
merical results in Table 4.

5 Conclusions
We proposed a smoothed bootstrap selector of the smoothing parameter
in kernel density estimation when the Koziol-Green model of proportional
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censorship holds. We presented a mathematical analysis supported by sim-
ulation. It turned out that our proposal behaves convincingly better than
the cross-validation selector. We gave fast implementation using WARP-
ing methods. We showed the practical interest of the introduced techniques
through the analysis of real medical data sets.
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