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Abstract: In this paper we study a class of Gaussian processes which
typically appear as limits of marked empirical processes when compos-
ite models need to be checked. A transformation to their martingale
part is derived which when applied to the empirical process gives rise to
asymptotically distribution-free tests for composite models.
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1 Introduction

In this paper we will develop a general methodology for nonparametri-
cally testing the goodness-of-fit of a parametric or a semiparametric model.
To begin with the simplest example, assume one observes independent
identically distributed (i.i.d.) random variables Xχ, . . . ,X n on the real
line, from some unknown distribution function (d.f.) F. Furthermore, let
F = {FQ : θ G θ } be a given family of distribution functions parametrized
by some vector θ € θ C TRk. To keep the discussion as simple as possi-
ble, we will assume that no nuisance parameters are present so that FQ is
uniquely determined by θ. The problem of how to test for the hypothesis

has attracted many researchers over the past decades. Most of the test

statistics are certain functionals of the underlying empirical process. More
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precisely, denote with

2 = 1

the empirical distribution function of the data. The by now classical invari-
ance principle of Donsker (1952) then asserts that the empirical process

an(x) = nL/2[Fn(x)-F(x)], (1)

in the Skorokhod space D[—00,00], converges in distribution to

αoo := B° o F.

Here, JB° is a Brownian Bridge on the unit interval, i.e., a centered
Gaussian process with covariance function

Cαv[B°(θ), JB°(t)] = min(s,t) - st.

For details and extensions, see Gaenssler and Stute (1979) and Shorack
and Wellner (1986). To test for a simple hypothesis, F = Fe0, one needs to
replace F in (1) by FQQ SO that under HQ

equals an. In particular, critical values if not available for finite sample
size may be obtained from the distribution of the limit αoo For com-
posite hypotheses, things unfortunately become more complicated. Under
Ho,F = FQQ for some unknown #o £ Θ, the true parameter. Since now ΘQ
remains unspecified, it needs to be estimated from the data by some #n,
say. We thus come up with the so-called empirical process with estimated
parameters

This process may be viewed as a basic device to measure the deviance
between a completely nonparametric and a parametric fit. It has been ex-
tensively studied by Durbin (1973). To briefly recall its ingredients, assume
that θn has, under iϊo, a linear expansion

nι'\θn - θ0) = n-^fi^floj+opίl),

where I is a proper vector-valued function with expectation zero and finite
covariance matrix. Then, under appropriate smoothness assumptions,

άn(x) = an(x) - G\x, θ0) ί l(y, θo)an(dy) + op(l)
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uniformly in x, where

G(x) = G(χ,θo) =
dθ

Prom this we readily get

άn-^B°oF-GtV = ά,

with
= Jl(y,θ0)B°oF(dy).

The limit άoo is again a centered Gaussian process, but its covariance func-
tion is more complicated, and tables for critical values may and will depend
on #o and are not readily available. In such a situation a parametric boot-
strap may offer a useful possibility to approximate the distribution of άn

under HQ; see Stute et al. (1993).
Though from a computational point of view, this seems to be quite

satisfactory, it is worthwhile considering also another approach which not
only provides an approximation in distribution, but also leads to a deeper
understanding of the involved processes. For ά n, this approach has been
initiated, in a landmark paper, by Khmaladze (1981). As to this, recall
that B° has the representation

B°(t) = B(t) - tS(l), 0 < t < 1,

in terms of a Brownian Motion B and, vice versa,

B(t)=B°(t) + [Ip^dx. (2)
J l — x
0

In the latter equation B may be viewed as the innovation martingale and the
integral as the compensator in the Doob-Meyer decomposition of B°. Now,
Khmaladze (1981) was able to also find the corresponding decomposition
for άoo Replacing άoo by its innovation martingale then leads to a new
process, say Tάoo, which is a Gaussian martingale and hence a Brownian
Motion w.r.t. proper time. In particular, this process is distribution-free
modulo a transformation in time and therefore is a good candidate for
giving rise to distribution-free test statistics.

It is the purpose of the present paper to extend Khmaladze's (1981) ap-
proach to a much more general setting. This will enable us to design model
checks in the context of regression, times series, multivariate analysis and
survival analysis, among others. Now, rather than (2), our starting point
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will be the following representation of B° in terms of B, which incorporates
a transformation in time and a scale factor:

B°(t) = (1 - t)B (Λ-^ . (3)

To show that the right hand side has the same covariance structure as £?°,
just use the monotonicity of the time transformation and apply

Cov[B(s),J3(t)] = min(s,t).

Monotonicity will also be a crucial issue in the examples which will be
shortly discussed. In each case the limit process will be of the following
type:

ROQ = G1Bo>ψ-GϊλV. (4)

Here, G\ and G<χ are two deterministic functions, ψ denotes the aforemen-
tioned nondecreasing nonnegative time transformation and V is a normal
vector, which may and will depend on B. Conclude from the introductory
remarks that for ϋoo = άoo, i.e., for the empirical process with estimated
parameters,

Gλ = 1 - F <ψ = F/(l - F)

at θ =

In our second example we discuss a situation which typically comes up when
the X-data represent lifetimes. Under random right censorship one ob-
serves, due to other causes of failure, variables Z{ = mm(Xi,Yi), 1 < ί < n,
where the censoring variables are independent and also independent of the
X% with the common d.f. G. Also available are 0-1 variables δ{ = l ^ ^ i ; }
indicating whether X{ has been observed or not. Since under censorship Fn

may not be available, it needs to be replaced by the nonparametric MLE
adapted to the new framework:

This is the famous product-limit estimator due to Kaplan-Meier (1958). In
(5), Z\:n < .. . < Zn:n are the order statistics of the observed Z's. Finally
<5[i:nj denotes the δ-variable associated with Z^n. Note that Fn boils down
to Fn if all <5's equal one. Breslow and Crowley (1974) extended Donsker's
invariance principle to the present setup. They showed that the so-called
Kaplan-Meier process

βn(x)=n1'2[Fn(x)-F(x)]



Model checks in statistics: An innovation process approach 377

converges in distribution to a centered Gaussian process β^. In our nota-
tion it admits the representation

where, under a continuity assumption,

X

0 ; i-G(y))

Hence, in terms of (4), the Kaplan-Meier process with estimated parameters
converges to RQQ with

Gi = 1 - F and ψ = C.

The function G2 is the same as before. A detailed analysis of this example
may be found in Nikabadze and Stute (1997).

In our next example, we will discuss the important problem of model
checks in regression. For this, let (X, Y) be a bivariate random vector such
that Έ\Y\ < 00. Denote with

m(x) = ΊE{Y\X = x)

the regression function of Y w.r.t. X = x. Also, let Λ4 = {mo : θ G Θ} be
a given parametric family of candidates for m. For example, the mo's may
consist of all functions spanned by a given basis pi, ...,#&:

mθ(x) = θιgι{x) + ... + θkgk(x).

This includes, e.g., all polynomials or trigonometric polynomials with a
given bound on the degree. To test for the hypothesis

Ho'.meM,

let θn be, under Ho, any estimator of 0Oί computed from a sample of inde-
pendent replicates of (X,Y), admitting a representation

n

n1/2(θn - θ0) = n-V2Σι(χi>γi>θo) -
t = l

The residuals
έin = Yi-mθn(Xi), l<i<n,
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traditionally play an important role in model diagnostics for regression. In
our approach they will be embedded into a marked point process

n

%(x) = n'1'2 £

Under Ho, one can show that

where

and

φ(x) = ί σ2(u)F(du)

with σ2{u) — Var{y|X = u\ denoting the conditional variance and F being
the marginal distribution of X. See Stute (1997) and Stute, Thies and Zhu
(1996) for details. We thus see that (4) applies again with Gι = 1 and
G21Ψ from above.

Another example to which our methodology will apply is in a time series
context. For this, let X\,X<ι,... be a stationary sequence of observations.
We are interested in the dynamics of the process. One possibility would be
to decompose a future observation Xi into the part explained by the past
observations and the i-th innovation:

Thus m is the regression function of Xi given Tχ-\ = σ(Xi_i,Xi_2,.. •)•
If we are, e.g., interested in testing whether the X-sequence is first order
autoregressive with m G M, a pre-specified parametric model, we could
form, similar to the regression case, the process

δn(x) = n-V2
2 = 1

Due to dependencies some little extra work is needed to show that also
in this case δn —> <5oo, where 5^ is of type (4) with G\ = 1 and some
appropriate ip and G2.. Note that the stationary distribution now also
depends on ΘQ. See Koul and Stute (1997) for details.

Our final example concerns a generalized linear model. Here one ob-
serves a sequence of multivariate data (Xi,Yj),l < i < n, from fc
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for which it is assumed that the regression function of Yί given Xι has a
decomposition into a linear form of X\ and a specified link function h:

m(x) = E[Yi|Xi = x] = h(θlox! + ... + θkoxk).

The associated process for testing that m is of this form becomes

έn(x) = n-1'

where θn is an estimator of θ0 = (#io, . Ao) and < , > is the scalar
product in ΊRk.

Again it can be shown that under standard regularity assumptions έn

in the limit is of the form (4). The case when h is unspecified requires
nonparametric estimation of the (univariate) link function.

This list of examples indicates that the class of Gaussian processes con-
sidered in (4) is rich enough to cover many interesting cases which typically
appear as limit processes when parameters need to be estimated. Since their
distributional character is not readily understood, we propose to transform
Roo from (4) to another process, which has a much nicer structure, namely
a Brownian Motion in proper time. This will be the content of the following
section.

2 Transformation of Gaussian processes
As we have seen in the first section Gaussian processes of type (4)

R^ = GiB oψ- G\V

frequently appear as limits of certain marked empirical processes when
parameters need to be estimated. In this section we introduce a transfor-
mation Γ which maps Roo into a Brownian Motion in proper time. This
transformation will be a composition of two linear operators T\ and T<ι
which will be defined now.

Assume that G\ is a function of bounded variation which is positive
on its support. For the sake of simplicity only a continuous G\ will be
considered. Put

(TMx) = f(x) - j -^-fΛdy). (6)
—oo

Here / varies in the class of functions for which the integral is defined.
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Lemma 1 The stochastic process T\G\B o φ is a Brownian Motion w.r.t.
time

φ(x) = I GΪ(y)ψ(dy).
— OO

Proof: We have
X X

TιGιBoψ(χ) = G1Boψ(χ)- [ BoψdGi= f GidBoψ.
—oo —oo

It follows that T\G\B o φ is a centered Gaussian process with covariance
function m\τ\.{φ(x\),φ(x2)} at £i,#2 E

For the empirical process and the Kaplan-Meier process the function G\
equals 1 — F so that

which corresponds to (2). For the other examples, G\ = 1 in which case
the integral in (6) vanishes and T\ reduces to the identity operator.

Since T\ is a linear operator and since V does not depend on x, we
obtain

say, where

/

G2

provided the Radon-Nikodym derivative of G2 w.r.t. G\ exists. In the next
step we construct a linear operator T2 with the following two properties:

Γ 2 G 3 = 0 (7)

T2B o φ = B o φ in distribution. (8)

Putting Γ = T2 o Γi we therefore get in distribution

TRoo = T2(B oφ- G\V) =Boφ,

i.e., TRoo is a Brownian Motion w.r.t. time φ.
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To define Γ2, let i?^ — Boφ be a Brownian Motion w.r.t. time φ. Also,
let G be a given vector-valued function. Define the matrix

and

(f
assuming that A is nonsingular.

Lemma 2 We have

(i)

Ly

ψ{dy) (9)

(ii) in distribution

Proof: (i) is trivial; as to (ii), we have for s < t,

Cαv[Γ2R°)(s),T2R°)(t)] = E[R°,

—oo
t

- IE

+ IE

dipj

S t
ly
oo

L2/i

L2/2

Λ( ,ίdG_
\dφ

φ(dy)

φ(dy)

The first expectation equals φ(s), while the second is easily seen to be

/ (f ί'ω '̂ω/f
- o o 2/

Finally, the third and fourth expectations equal
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and

s t

/

respectively. Summation and an application of Pubini complete the proof.
D

Theorem 1 Assume that

i?oo = GiB oψ- G\V.

Define Tλ through (6) and T2 through (9), with G = GS. Then T = T2oT1

satisfies

= B o φ in distmbution.

Proof: Apply Lemma 1, (7) and (8). •

We now briefly discuss further issues needed before Theorem 1 can be
applied to a real data situation. Let Rn be one of the processes άn — έn

considered in the previous section, or any other marked empirical process
admitting a limit ROQ as given in (4). The next step to verify is that along
with

one has

= Boφ. (10)

Finally, observe that typically T incorporates quantities which are unknown
in practice and need to be estimated from the data. Hence we come up
with a random operator Tn, for which it remains to show that

TnRn-^Boφ. (11)

The proof of (10) and (11) requires some extra work and uses special prop-
erties of the underlying processes. It is therefore beyond the scope of the
present paper. For the aforementioned examples technical details as well
as simulation results may be found in the cited papers.

We finally discuss an application of (11) which is designed to derive tests
for HQ when the alternative is specified. As has been noted by Stute (1997)
in the regression case, the Radon-Nikodym derivative of the underlying
test process Rn w.r.t. the hypothesis and local alternatives may often
be expressed, in the limit, in terms of the principal components of i?oo
While these are not readily available and some numerical work is required
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to approximate them, the transformed processes converge to a Brownian
Motion, for which the principal components are readily available. In other
words, Theorem 1 together with (11) may be used to yield optimal Neyman-
Pearson tests for composite models when local alternatives are specified.
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