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Abstract: This paper considers target functional T, which are bias-
reduced functionals that can be obtained from a functional T in a para-
metric setting. It is shown that the L\-error of the corresponding target
estimator decreases and the asymptotic normality is obtained using von
Mises expansions with the Hadamard derivative. It is also shown that tar-
geting can improve robustness since the gross-error sensitivity decreases
under certain conditions. Applications to M-estimates of location, the
sample median, and simultaneous M-estimates of location and scale are
given.

Key words: Bias, influence function, Li-error, parametric family, statis-
tical functionals, target estimates, von Mises expansions.

AMS subject classification: Primary 62G99; secondary 62E20.

1 Introduction
Target estimation was introduced by Cabrera and Fernholz (1996) as a
procedure to reduce the bias and the variance of an estimator. In that
paper, the von Mises expansion of a statistical functional was used to obtain
conditions for this reduction in bias and variance. Moreover, it was also
shown that the bias of the target estimator can be expressed in terms of
the influence function of the original statistic. It is natural to ask what the
relationship is between the von Mises expansion of the original functional
and that of the target functional. This issue is addressed in the present
paper where the asymptotic distribution of the target functional will follow
from the corresponding von Mises expansion. The influnce function of the
target functional is also obtained and a condition is given for reducing the
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gross-error sensitivity.
The paper is organized as follows: In Section 2 we give a review of the

basic ideas behind target functionals and we consider the L\ error and
the mean square error of these functionals. In Section 3 we look at the
asymptotics and robustness of target functionals through the von Mises
expansion and the influence function. Applications to M-estimates of lo-
cation, the sample median, and simultaneous M-estimates of location and
scale are given in Section 4.

Throughout this paper we shall assume that T is a statistical functional
and the statistic T(Fn) estimates the parameter T(Fρ), where Fn is the
empirical d.f. corresponding to the sample X\,...,Xn of i.i.d. random
variables with common d.f. ify, with θ G θ, for θ an open subset of the
real numbers. When a statistical functional T satisfies T(Fβ) = θ, the
functional is said to be Fisher consistent.

We shall also assume that the expectation of Γ(Fn), gn(θ) = Eo(T(Fn)),
exists for all θ G θ, where EQ indicates the expectation with respect to FQ.
Moreover the function gn will be assumed to be one-to-one and diίferen-
tiable.

2 Target functionals

Definition 1 Let gn(θ) = Eg(T(Fn)) be a one-to-one function. The func-
tional Tn induced by T from the relation

9n\T) = fn (1)

will be called the target functional ofT. The statistic Tn(Fn) will be called
the target estimator .

The above definition was introduced by Cabrera and Fernholz (1996) where
the goal was the reduction of the bias and the variance of an estimator. Note
that when gn{θ) = αθ+b for o^O, then the corresponding target functional
is Tn — (Γ — 6)/α, which will always be unbiased and its variance will be
reduced if and only if α2 > 1. The variance of fn will remain unchanged
when \α\ = 1.
It should be noted that Rousseuw and Ronchetti (1981) used the function
gn to generate functionals p^x(T) in an entirely different context to study
the influence curve of statistics used in testing hypotheses.
The following two theorems refer to the reduction in the bias B~(θ) and
mean square error of target functionals.
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Theorem 1 If for a statistical functional T the function gn(θ) = Ee(T(Fn))
satisfies

(i) θ < gn(θ)

(ii) 1 < g'n(θ)<b

(in) 0 < g'i[θ)

then

a) Eθ{fn) <θ< EΘ(T) and b) \(Bψ (θ))\ < \(BT(Θ)\.

Theorem 2 If T is a statistical functional with variance Vr and gn(θ) =
Ee(T(Fn)) is differentiable with \g'n(θ)\ > 1 for all fiGθ, then the mean
square error of Tn satisfies

MSE~ <VT.
in

The proofs of the above theorems can be found in Cabrera and Fernholz
(1996). The other theorems in the current paper are new.
The following result refers to the Li-error of the target estimator Tn.

Theorem 3 If T is a statistical functional and gn(θ) is differentiable with

\g'n{θ)\ >lfor allθeθ , then

Eθ\fn-θ\<Eθ\T-Eθ{T)\.

Proof: Using the mean value theorem for gn we have

for some ξ between θ and Tn(Fn). Since by definition gn{Tn) — T, we have

~ T-gn(θ)
Tn~θ-~liMΓ

By taking absolute values and their expectation of this last equation, we

obtain

E\fn-Θ\ = E\l/g'n(ξ)\\T-gn(θ)\

< E\T-E(T)\,

and the theorem is proved since 1^(0)1 > 1. •

An immediate consequence of this theorem is the following corollary that

relates the Li-errors of T and T with the median, MΘ(T), of the distribution

ofΓ.



366 Luisa Turrin Fernholz

Corollary 4 Under the conditions of Theorem 3 we have

E\fn -θ\< E\T -θ\ + \MΘ(T) - EΘ(T)\

Proof: It follows directly from Theorem 3 since

E\fn-Θ\ < E\T-MΘ(T)\ + \MΘ{T)-EΘ(T)\

< E\T-Θ\ + \MΘ(T)-EΘ(T)\

by the Li-minimizing property of the median. D

This corollary shows that when T has a symmetric sampling distribution,
the target functional T has smaller Li-error.

3 Asymptotics and robustness

The results presented in Section 2 refer to the statistic Tn{Fn). But for
each target functional Tn we can consider the statistic Tn(Fm) where n and
m do not necessarily coincide. For this purpose, let FQ be a parametric
family and T be a Fisher consistent statistical functional. For each n and
gn(θ) as above, we obtain the sequencejrf target functional Tn = g~λ(T),
each one of them generating statistics Tn{Fm) for a sample X\,... ,Xm.
Let T be a Fisher consistent functional with influence function φ\ (see
Hampel, 1974). For a sample Xχ,...,Xm from FQ, the first order von
Mises expansion of T(Fm) is

-j m

T(Fm) = θ + -Σφ1(Xi) + Remm. (2)
2 = 1

With Hadamard or Frechet differentiability under certain regularity con-
ditions, we have Remm = op( m"*) and T is asymptotically normal with
variance σ2 = E{φι(X))2 (see Fernholz, 1983).
The following result gives the von Mises expansion of Tn

Lemma 5 Let T be a statistical functional and for a fixed n let Tn be the
corresponding target functional. If T is Hadamard differentiate at FQ with
von Mises expansion as in (2), then Tn is also Hadamard differentiate at
FQ with von Mises expansion

1 m

Tn(Fm) = gΰ\θ) + - D V ί / n ί W l M + Remrn (3)
2 = 1
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Proof: First note that fn{FΘ)=g-ι{T{Fθ))j=g-1{θ). Since Γ is Hadamard
differentiate, the composition gΰl(T) = fn will be Hadamard differen-
t ia te for a differentiate real function gn by the chain rule (see Fernholz,
1983). Therefore the influence function of fn is (l/g^θ^φ^x) and the
lemma is proved. D

In general we would be interested in using target estimates when T is such
that gn{θ) φ θ. This clearly implies that when T is Fisher consistent then
Tn will not be. However, Tn has less bias than T when gn satisfies certain
conditions.
When n = m, the expansion in (3) provides a linear approximation of
the statistic Tn{Fn) with the influence function given by (l/g'n(θ))φι(x).
If we now compare the influence functions of Tn and Γ we can conclude
immediately that, when 1^(^)1 > 1, Tn is more robust than T in terms of
gross-error sensitivity (see Hampel et al., 1986) since we have

When the function g(θ) = aθ + b is linear, T = (T — b)/a and the cor-
responding influence function satisfies φ\{x) = φ\(x)/a. The gross-error
sensitivity of T will be smaller than that of T when \a\ > 1.
The expansion in (3) above is useful to derive the asymptotic normality
and efficiency of Tn as we see in

Theorem 6 Let T and Tn be as in Lemma 4- IfTis Hadamard differen-
tiate at F — FQ with von Mises expansion as in (2) then, for fixed n and
m —> oo we have :
a) Tn is asymptotically normal with

Λ/m(Γn(Fm)-fn(F)) -2+ N(0,σ2

n)

where the asymptotic variance ofTn is σ% = (l/g'n(θ))2σ2;
b) If 1^(0)1 > 1, Tn is asymptotically more efficient than T.

Proof: Part a) is an immediate consequence of Lemma 5 since the Hadamard
differentiability of fn implies the asymptotic normality of Tn (see Fernholz,
1983).
For part b), note that when \g'n{β)\ > 1, the asymptotic variance of Γn,
satisfies

σl = (l/g'n(θ))2<τ2 < σ2- •

Theorem 6 refers to the asymptotic normality of Tn(Fm) for fixed n when
m tends to infinity. When n = m is large, we have
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Theorem 7 Let T and Tn be as in Theorem 6. If m = n tends to infinity
and for all θ ^Jn(gn(θ) - θ) -> 0 , and y/n(\/gfn(θ) - 1) -+ 0, then for all θ
it holds that

fFn)-θ)^ N(0,σ2).

Proof: From the expansions (2) and (3) above we obtain

= ^(Tn(Fn)-T(Fn)+T(Fn)-θ)

fFn) - T(Fn)) + -L
n

Since T is Hadamard differentiate, we have

\fnRemn—>0

and

Hence, it suffices to show that the first term in (4) converges to zero in
probability. But in

n(Fn) - T{Fn)) =

+\/n(Remn — Remn) (5)

the first term tends to zero by hypothesis and the third term converges to
zero by the Hadamard differentiability of T and Tn. For the second term
in (5), Markov's inequality implies that for any e > 0

- l\E\φ

which tends to zero when n tends to infinity since by hypothesis
y/n(l/g'n(θ) — 1) —* 0 and the theorem is proved. D

From Theorems 6 and 7 we can see that, when n = m is large, there is little
gain for the target estimators in terms of gross-error sensitivity. However
these theorems insure that there will be no loss in gross-error sensitivity
when we use targeting to reduce bias.
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4 Examples

4.1 M-estimates of location

Since in this section the sample size n will always be fixed, we shall simplify
the notation by using g(θ) instead of gn(θ) and f for the target functionals.
For a parametric family FQ, let the functional T(FQ) = θbe defined implic-
itly as a solution of

' ψ(x-θ)dFθ(x) =

The corresponding statistic T(Fn) is the well known M-estimate of location.
When the parametric family satisfies FQ(X) — F{x—Θ) for all θ and some d.f.
F, the corresponding M-estimate is location equivariant, that is T(FQ) =
θ + T(F). It was shown in Cabrera and Fernholz (1996) that the bias of
an M-estimate of location is constant. So g(θ) = θ + B, and the influence
functions of T and T coincide.

4.2 The sample median

The functional T(FQ) = Ff1 (1/2) = θ corresponds to the sample median
T(Fn) = F~1(l/2). When FQ is not symmetric about θ the sample median
is biased. The second order von Mises expansion of T (see Fernholz, 1996;
Fankhauser, 1996) gives

g(β) =

Its derivative is

hence for θ such that f'(θ) < 0, we have g'{θ) > 1. In this case T satisfies
the hypotheses of most of the theorems presented above. The target estima-
tor g~1(F~1 (1/2)) will have smaller bias, MSE, and gross-error sensitivity
thanF- x ( l/2).

4.3 Simultaneous M-estimates of location and scale.

Consider a family of d.f.'s FQ with θ = (μ,σ) and the two-dimensional
functional T{FΘ) = (Ti(Fθ),T2(Fθ)) defined implicitly by
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where φ = (φi,φ2). The corresponding statistic T{Fn) = (Γi(Fn),Γ2(Fn))
satisfies a system of equations and is called an M-estimate of location and
scale. See Huber (1981) and Hampel et al (1986).
When the family of distributions is such that FQ(X) = F ( - ^ ^ ) for some
fixed d.f. F, the functional T satisfies T(Fμ,σ) = (μ + σTi(F), σT2(F)) and
is said to be location-scale equivariant (see Hampel et al , 1986). In this
case, it can be shown that

g(θ)=g(μ,σ) = (μ + σCuσC2)

where C\ and C2 are constants independent of μ and σ. Now, the target
functional is f = (fi,Γ2) with

Γi = Γi - (Ci/C2)Γ2.

T2 = (1/C2)Γ2,

and so the corresponding two-dimensional influence function is φ — (0χ, φ2)
where

01 (a:) - Φi(x)-(C1/C2)φ2(x)

φ2(x) = (1/C2)φ2(x).

If we let II || denote the Euclidean norm, then for each x

\2\\φ(x)\\2 = \φ[(x)\2+ \φ2(x)\2

= l^i(x) - (C1/C2) 02(α:)|2 + |(1/C2) φ2(x)\2

< ifaix)]2 + |(Ci/c2)
 2

- | ^ ( x ) | 2 + ( ( d / C 2 ) 2 + (1/C2)
2)

when Cj + 1 < C2 Therefore the gross-error sensitivity of T will be smaller
than that of T when C\ + 1 < C\.

5 Closing remarks.

We should note that the regularity conditions of the theorems in Sections
2 and 3 are not too stringent as shown by the examples and applications of
target estimation presented in Section 4 as well as in Cabrera and Fernholz
(1996). Moreover, the hypotheses of Theorem 7 are not as restrictive as
they may seem. The condition {gn{β) — θ) = o(l/y/n) is equivalent to
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Eθ(Remn) = o(l/y/n) which is quite plausible since Remn = op(l/v/n)
for Hadamard differentiate functionals. The condition referring to the
derivative of gn is also satisfied by the most reasonable statistics. The
examples presented in Section 4 all satisfy these conditions.
Target estimation is a computer intensive procedure that has proved to be
very effective in reducing the bias and the variance of estimators. Target
estimation can also be performed when the function gn(θ) is the median
of the statistic, as was first presented in Cabrera and Watson (1997). The
examples given in Cabrera and Fernholz (1996) and Cabrera and Watson
(1997), as well as the applications to practical problems in computer vision
of Cabrera and Meer (1996), reveal that target estimation is an effective
method of bias and variance reduction in many situations. This paper
shows the additional gain in robustness due to targeting.
Although the problems of bias reduction and robustness of an estimator
seem to be two independent issues, we showed in this paper that the con-
ditions for bias and variance reduction will assure a smaller bound for
the influence function of the bias-reduced functional, which means smaller
gross-error sensitivity for the target estimator. The von Mises expansions
proved to be a powerful tool to approach the theoretical issues of target
estimation. Simulations and practical applications need to be performed
now to evaluate more precisely the gain in robustness when estimators are
targeted. This is a topic of ongoing research.

References

[1] Cabrera, J. and Fernholz, L.T. (1996). Target estimation for bias and
varance reduction. Submitted for publication.

[2] Cabrera, J. and Meer , P. (1996). Unbiased Estimation of Ellipses by
Bootstrapping. In Press.

[3] Cabrera, J. and Watson, G.S.(1997). Simulation methods for mean
and median bias reduction in parametric estimation. J. Statist. Plann.
Infer. 57 143-152

[4] Fankhauser, E. (1996). Etude du developpement de von Mises au
deuxieme ordre. Ph.D. dissertation. Ecole Polytechnique Federate, Lau-
sanne, Switzerland.

[5] Fernholz, L. T. (1983). Von Mises Calculus for Statistical Functionals.
Lecture Notes in Statistics Vol. 19. New York: Springer Verlag.

[6] Fernholz, L.T. (1996). On higher order von Mises expansions. Technical
Report 96-04, Temple University, Dept. Statistics.

[7] Hampel, F. (1974). The influence curve and its role in robust estima-



372 Luisa Turrin Fernholz

tion. J. Am. Statis. Assoc. 69 383-393.
[8] Hampel, F., Ronchetti, E., Rousseeuw, P., Stahel, W. (1986). Robust

Statistics. The Approach Based on the Influence Function. New York:
Wiley.

[9] Huber, P. (1981). Robust Statistics. New York: Wiley.
[10] Rousseeuw, P. and Ronchetti, E. (1981). Influence curves of general

statistics. Journal of Computational and Applied Mathematics 7 161-
166.




