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Abstract: It is well-known that L\-estimators of autogressive parame-
ters are asymptotically Normal if the distribution function of the errors,
F(x), has ^'(0) = λ > 0. In this paper, we derive limiting distributions
of L\-estimators under more general assumptions on F. Second-order
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1 Introduction

L\ estimation provides a somewhat robust alternative to least squares

estimation for autoregressive models. Define a p-th order autoregressive

(AR(p)) process

Yt = Φo + ΦiYt-i + ••• + ΦpYt-p + εt (1)

where {βt} are independent, identically distributed (i.i.d.) random variables

such that (a) E(εl) < oo; (b) εt has median 0; (c) F(x) — P(εt < x) is

continuous at x = 0.

We will assume that the process {Yt} is stationary; for this, we require

that

for all complex z with modulus \z\ < 1. Throughout this paper, we will
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assume the model (1) with the intercept 0o; however, all of the results
given in the paper will go through (with appropriate modifications) if φo is
suppressed and only φ\, , φp are estimated.

Least squares (or some related method) is typically used to estimate the
parameters in the model (1). However, when the ε^s have heavy tails, least
squares is inefficient compared to some other methods; one such method
is Li-estimation. We define Lχ-estimators, φo, φ\, , φpi to minimize the
objective function

n

g(vo,vi, - ,υp) = Σ \Yt - vo - v\Yt-\ vpYt-p\. (2)
t=i

(This assumes that we have n + p observations but asymptotically has no
effect.) It is well-known (see Pollard, 1991; Wang and Wang, 1996) that
the asymptotic behaviour of L\ estimators depends on the behaviour of the
distribution function F(x) for x close to 0. For example, if F'(0) = λ > 0
then we have

n ~ Φ) -+d Np+ι(0,C/(4λ2)) as n -> oo

where C is a (p + 1) x (p + 1) matrix defined to be

C = E[XtXj] (3)

where Xt = (1, Yt-i, •, Yt-P)
τ Note that, contrary to popular belief,

it is not necessary for F to be absolutely continuous to have asymptotic
normality.

The assumption that ^'(0) = λ > 0 is quite strong in the sense that it is
difficult to verify; given even very large samples, it is difficult to distinguish
between a density which is finite at 0 and one which has a singularity at 0.
For the sample median (which is the Lχ-estimator of location), it has been
shown that (for example, by de Haan and Taconis-Haantjes, 1979) that the
rate of convergence depends on the behaviour of F{x) for x close to the
population median; see also Smirnov (1952) who derives the domains of
attraction for sample quantiles. Similarly, it is not necessary for F to be
differentiate in order to find a limiting distribution for the Li-estimator
φn. We will assume that for some sequence {an} with an —• oo, there exists
a strictly increasing function φ such that

rn(t) (4)

where rn(t) —• 0 as n —> oo for each t. Also define

Φ(t)= [tψ(s)ds (5)
Jo
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and
rt

= J rn(s)ds. (6)

Note that since ψ(t) is strictly increasing, Φ(i) will be strictly convex.

The formulation given above provides a great deal of flexibility. For
example, suppose that

F(x) - F(0) = \sgn(x)\x\"L(\x\)

for x in a neighbourhood of 0 where a > 0 and L is a slowly varying function
at 0. (sgn(x) = 1 if x is positive and - 1 if x is negative.) In this case, we
can take

an = nιI^L*{n) and ψ(t) = \sgn(t)\t\a

where L* is a slowly varying function at infinity. When F(x) is differentiate
at x = 0 with F'(0) = λ > 0 then ψ(t) = Xt and an = yfn\ however, if
F(x) - F(0) = λxlndxl"1) for x close to 0 then ψ(t) = λί with an =
y/nln(n)/2. If F(x) is not differentiate at x = 0 but has positive one-
sided derivatives λ+ and λ~ then

ί f o r ί > 0

\ f o r ί < 0 *

(This occurs, for example, if the density has a jump at 0.)
In Section 2, we will determine the limiting distribution of the L\-

estimator under the general conditions on F described above, we will define

Zn(u) - ^ Σ [|e* - uτXt/an\ - \εt\] . (7)

Note that Zn is minimized at u = an(φn — φ). Zn is a convex function and

hence if the finite dimensional distributions converge weakly to those of a

convex function Z, it follows that

an(Φn ~ Φ) -+d argmin(Z)

provided argmin(Z) is almost surely unique (Geyer, 1996). What is inter-
esting is that only finite dimensional weak convergence is needed and not
any sort of functional weak convergence (although this is implied by the
finite dimensional convergence for convex functions).

In Section 3, we will obtain an "in distribution" Bahadur-Kiefer repre-
sentation for the Li-estimator under the general conditions described above.
This will be done by approximating Zn by an appropriate function Z* and
looking at the limiting behaviour of n 1/ 4(Zn - Z*).
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2 Limiting distributions
In order to derive the limiting distributions of the L\ estimators, we will
assume the following regularity conditions.

(Al) {εi\ are 0 median, finite variance i.i.d. random variables with distribu-
tion function F satisfying (4) for some ψ(t) and rn(t).

(A2) For each u,
E[V(uτXt)] = τ{u) < oo

where Φ(i) is defined in (5) and r(u) is a strictly convex function.

(A3) For each u,

asn-^oo where Rn(t) is defined in (6).

Note that condition (Al) implies that E[{uτXt)2] < oo; thus, depending
on the exact form of Φ, condition (A2) may be implied by (Al). A sufficient
condition for (A3) is E[\Rn(uτXt)\] -> 0.

Theorem 1 Suppose that {Yt} is an AR(p) process satisfying (1) and that
Zn{u) is as defined in (7). Then under conditions (Al), (A2) and (A3),

(Zn(tii), , Zn(uk)) ^d (Z(ui), • , Z{uk))

as n —> oo where
Z(u) = uτW + 2τ(u)

with W a (p+l)-υariate Normal random vector with mean 0 and covariance
matrix C defined in (3).

Proof: We will use the identity

\x - y\ - \χ\ = y[I(χ < 0) - I(x > 0)] + 2 Γ [I(x <s)- I(x < 0)] ds
Jo

which is valid for x /=0. (I(A) is the indicator function of the set A.) Now

where

( = i
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and zM(u) = ^J2ζntlI(εt<s)-I(εt<0)]ds

(with vnt = Xju/an). Since, for each u, the summands in Zn (u) are
stationary martingale differences with finite variance, it follows from a mar-
tingale central limit theorem that

and the convergence in distribution holds for any finite collection of it's.
For Zn \u)i we have

t=l t=\

Letting vt = Xju = anvnt, it follows that

t=l v ί=l
pvt

= IΣ Γ d s

t=l

- 2τ(«)

where Rn is defined in (6). For the remainder term in Zn (tx), we have
(since the summands are again martingale differences)

Vzτ(Zn

2\u)) = f>[(Z$(u)~

2 τ

 n

< —f= max IXi u
- ^ l<t<n ' t

Ju] is stationary with finite second moment and so

max \XTu\ —>p 0.
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Thus

))-+p0 a s n ^ o o

and so Z\ (u) —>p 2τ(u). Thus we have

Zn{u) ^d uτW + 2τ{u) = Z(u)

and the finite dimensional convergence holds trivially. •
The following corollary gives us a representation of the limiting distri-

bution of an(φn — φ).

Corollary 2 Let φn minimize (2). Under the assumptions of Theorem 1,

an(Φn - Φ) ~^d argmin(Z)

as n —> oo.

Proof: Since r is strictly convex, Za is strictly convex and so has a unique
minimum. The result follows from Geyer (1996). •

The limiting distribution given in Corollary 2 will not be normal unless
the function τ(u) is quadratic. In the following example, we illustrate the
computation of the limiting distribution in a special case.

Example 1 Consider the AR(1) process

Yt = Φo + ΦiYt-i + εt

where the εt's are i.i.d. random variables with density

Jay J 2Γ(α)

for some a > 0. (This is a two-sided Gamma distribution.) For x close to
0, we have

Fa(x) - Fβ(0) «

and so setting αn = n 1 ^ 2 ^ , we get

MFα(t/αn) - Fβ(0)) -

with

/αn) - Fα(0)) - φα(t)\ < fc(α)
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It is easy to verify that conditions (Al), (A2) and (A3) are all satisfied
(since jE[|Yt|r] < °° f°r a ^ r > 0) a n d so for given </>0, φ\, the limiting
objective function in Theorem 1 is

Za{u^Uι) = uoWo + uxWi + \ί}λE[\uo+u1Y1\
a+1]

where Wo and W\ are zero mean Normal random variables with Var(WΌ) =
1, Vax(Wi) - E(Y?) and Cov(Wp,Wi) = E(Yλ). By differentiation, we
determine the minimizers of Za, Uo and Uι, to satisfy the equations

= 0

where

and

{) = E [sgn(txo

(sgn(x) = 1 or — 1 depending on whether x is positive or negative.)
If fwiwoiWi) is the joint density of (Wo, Wi), it then follows that the

joint density of (J7o, U\) (that is, the limiting density of an(φn — φ)) is

where

and

The density fu cannot easily be computed analytically (unless φ\ = 0) but
can be computed feasibly using Monte Carlo sampling.

3 Second order properties

It follows from the proof of Theorem 1 that we can approximate Zn by the
function

Z*n(u) = - - ^ f ^ x f n[/(εt > 0) - I(εt < 0)] + 2τ(n). (8)
n

ί = i
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It is easy to see that we can approximate an(φn — φ) by the minimizer of
Z^. For example, if ψ(t) = λt (for some λ > 0) and an = yjn, it follows
that τ(u) = \uτCu/2 and so we can approximate y/n{<φn — φ) by

lj^C-ιXt[I{εt > 0) - I(εt < 0)].

More generally, we have

On(Φn ~ Φ) ~ Al̂

where h(u) is the gradient of τ(n), h,"1 its inverse and

Wn = 4= Σ χt Met > 0) - /(et < 0)]. (9)

(Typically, Λ(u) = E[Xtψ(uτXt)].) Theorems which deal with the asymp-
totic behaviour of this approximation error are commonly known as Bahadur-
Kiefer theorems due to their connection with the work of Bahadur (1966)
and Kiefer (1967) for sample quantiles. What will be proved below is an "in
distribution" (as opposed to "almost sure") Bahadur-Kiefer theorem. The
following lemma will be useful in determining the asymptotic behaviour of
the approximation error.

Lemma 3 Define

9n(u) = -x^u + pn(u) hn(u) = -x^u + p(u)

and let un = argmin(gn), υn = argmin(hn). Suppose that

(i) xn —• xo;

(ii) u n - v n ^ 0;

(Hi) for any t, u and w,

rt

pn(u + tw) - ρn(u) = / wτψn(u + sw) ds
Jo

and
ί T

p(u + tw) — p(u) = / w ψ(u + sw)ds
Jo

for some functions {/0n} and Ψ where Ψ is one-to-one.

(iv) VQ = Φ~1(XQ) exists and for some a > 0
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for all u, v in a neighbourhood of vo;

(v) For some sequence {bn} with bn —> oo and any compact set K,

sup \\bn(ψn(u) - ψ(u)) - do(u)|| -> 0
u£K

where do is a continuous function.

Then

K{ψ{un) - ψ(vn)) -• -do(υo)

where vo = /Φ~1(XQ).

A proof of Lemma 3 will not be given here. Note that if the function
ψ(u) has continuous partial derivatives at u = vo then under the conditions
of Lemma 3 we have

bn{un - vn) -> -H^ivojdoiυo)

provided Hp{u), the Hessian of p, is invertible at u = VQ.
Lemma 3 will be applied to sequences of random elements by appealing

to a Skorokhod-type arguments (see, for example, van der Vaart and Well-
ner, 1996) to construct almost surely convergent sequences. To do this, we
will define a space Br(Rd) of locally bounded i?r-valued functions defined
on Rd. (By "locally bounded" we mean bounded on compact sets.) If {gn}
and g are elements of Br(Rd) then we will say that {gn} converges to g if

for all compact subsets K of Rd. A possible metric for this topology is

where
)= sup \\g(u) - h(u)\\.

\\u\\<k

We also define Cr(Rd) to be the space of i?r-valued continuous functions
on Rd; Cr(Rd) is a separable subset of Br(Rd). If {Dn} and D are random
elements of Br(Rd) such that Dn —•<* D and D is (with probability 1) a
random element of Cr{Rd) then it is possible find almost surely convergent
representations of {Dn} and D.
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(A4) For each compact set K,

sapnVA\\E[Xtrn(uτXt)]\\

as n —* oo.

(A5) For each compact set K, we have

sup
ueK n t=i

as n —> oo.

(A6) For each u, E [xf Xt\ψ(uτXt)\\ is finite.

Theorem 4 Suppose that {Yt} is an AR(p) process satisfying (1) with Zn

and Z* defined as in (7) and (8). Then under conditions (Al)-(A6), we
have

nχl\Zn{u) - Z^{u)) ->d V{u) asn-±oo

on Cι(Rp+1) where

rt

V(u + tw) - V(u) = 2 wτD(u + sw) ds
Jo

and D(u) is a zero mean Gaussian process with D(0) = 0 and

E [(D(«) - D(v))(D(u) - D(v))τ] = E [xtXj\φ(uτXt) - φ(vτXt)\] .

Proof: Define
Vn(u) = nl'\Zn(u) - ZZ(u))

and note that Vn(0) = 0 for all n. We also have

rt
Vn(u + tw) - Vn{u) = 2 ί wτDn(u + sw) ds

Jo

where
Dn(u) =

-I(εt < 0)) - n

since our assumptions imply that the gradient of τ(u) — E[Ψ(uτXt)] is
E[Xtψ(uτXt)]. Clearly, Dn(0) = 0 for all n and applying an appropriate
martingale central limit theorem (Hall and Heyde, 1980), it follows that
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the finite dimensional distributions of Dn converge to those of D. It is also
straightforward to verify that on each compact set K,

limlimsupP ( sup \\Dn(u) - Dn(υ)\\ > e) = 0
d|0 n->oo \\\u-υ\\<δ;u,υeK )

for every e > 0 by using an appropriate moment condition. Hence Dn —>d

D on Bp+ι(Rp+1) and the conclusion follows. D

Theorem 5 Assume the conditions of Theorem 4 and let h(u) be the gra-
dient of τ(u) with inverse h~ι. IfU minimizes Z and

\\h(u) - h(υ)\\ < k\\u - v\\a (a > 0)

for all u, v in a neighbourhood of U (k and a may depend on U) then

n1/* (h{an{φn - φ)) - ^ ) ^d -D{h~\W/2))

asn —> oo where Wn is defined in (9), D is the Gaussian process defined in
Theorem 4 and W is a (p+l)-υariate Normal random vector (independent
of D) with mean 0 and covariance matrix C.

Proof: Let Un = an(φn — φ) minimize Zn. Then it is easy to verify that

(un,nV\Zn - Z*n)) ̂ d (h~\W/2),v)

as n —> cx> on the space Rp+1 x Bι(Rp+1) where W and V are independent.
Since the limit is concentrated on a separable subset of Rp+1 x B\{RpJtl)
(namely Rp+ι x Ci(i?p + 1)), we can construct a probability space and almost
surely convergent versions of {Un} and {n1/4(Zrι - Z*)}. The conclusion
follows by applying Lemma 3 to each convergent sequence. •

If h(u) is one-to-one (with inverse h~ι) and continuously differentiate
then it follows that (under the conditions of Theorem 5)

n1/4 [an(φn -φ)- h-\Wn/2)\ ^d -H-\h-\W/2))D{h-\W/2))

provided that H(u), the Hessian of r, is invertible outside of a set of
Lebesgue measure 0 in i? p + 1. This suggests the asymptotic expansion

an(φn-φ) = h-\Wn/2)
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(As before, Wn is defined as in (9).) Whether this expansion is particularly
useful is an open question.

Evaluating the limiting distribution in Theorem 5 is tedious but not
overly difficult (provided, of course, that everything about {Yt} is known).
For a given tx, D(u) is (p + l)-variate Normal with mean 0 and covariance
matrix

K(u) = E[XtXj\ψ{uτXt)\}.

If K(u) is positive definition for u outside of a set of Lebesgue mea-
sure 0 then since W is independent of D, it follows that the density of
-D(hr\W/2)) is

\H(u)\ Γ 1 1

where
7i(aj,n) =

and the integration is over Rp+1 with | | denoting determinant. Likewise
the density of -H-1(h,-1(W/2))D(h-1(W/2)) is

1 r IWΛ.ΛI2

Ϊ2{X) =

where

In the following example, we derive the density /2 in a simple case.

Example 2O Let Yt = βt where {et} are i.i.d. random variables with
distribution function F satisfying F'(0) — λ > 0. Suppose that we estimate
only the parameter φ\ of an AR(1) model; call this estimator φn. We then
have

τ(u) = -\σ2u2

where σ2 = E{ε\). We also have C = σ2 and fl-(u) = τ"(«) = λσ2. Finally,
K(u) — XΊ\U\ where 7 = .E[|εt|

3]. It follows from Theorems 4 and 5 that

> 0) - I(εt < 0))) ^ 5
t=i /

where S has density
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S has a symmetric distribution with moment generating function

where Φ is the standard Normal distribution function.

4 Final comments
In this paper, we have derived first- and second-order limiting distributions
for the Li-estimators of the parameters of an AR(p) process under fairly
general conditions on the error distribution. From a statistical point of
view, the fact that the asymptotic behaviour of the Li-estimators is so sen-
sitive to the behaviour of F(x) for x close to 0 is somewhat troubling. One
possible non-parametric approach to estimating the sampling distribution
of φn is to bootstrap the AR(p) process by sampling with replacement from
the residuals et = Yt — Xfφn. However, it is possible to show that, asymp-
totically, this bootstrap procedure is correct to first order only if ψ(t) is
a linear function and is never correct to second order. This is similar to
the results of Hall and Martin (1988) and Huang et al (1996) for sample
quantiles of i.i.d. random variables. However, other approaches to boot-
strapping time series, such as frequency domain bootstrapping, may prove
to be more fruitful in this problem.

It may also be possible to exploit Lemma 3 to obtain an "almost sure"
Bahadur-Kiefer representation. Arcones (1996a, 1996b) and He and Shao
(1996) derive such representations for Lp-estimators in linear regression
models. However, these papers assume that F(x), the distribution function
of the errors, is linear in a neighbourhood of x = 0. Using the notation
of Theorems 4 and 5, we can conjecture that, under appropriate regularity
conditions,

(n/ lnαn(n)))1/4 h(bn(φn - φ)) - n = 0(1) (10)
Y 2y/m{m{n)) J

with probability 1 where bn satisfies the condition

lim Jn/\n(\n(n)){F(t/bn) - F(0)) = ψ(t)
n—>oo v

and the set of limit points of the left hand side of (10) is non-trivial.
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