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A reduction paradigm for multivariate
laws
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Abstract: A reduction paradigm is a theoretical framework which provides
a definition of structure for multivariate laws, and allows to simplify their
representation and statistical analysis. The main idea is to decompose a
law as the superposition of a structural term and a noise, so that the latter
can be neglected without loss of information on the structure. When the
structural term is supported by a lower-dimensional affine subspace, an
exhaustive dimension reduction is achieved. We describe the reduction
paradigm that results from selecting white noises, and convolution as
superposition mechanism.
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1 Introduction

A fc-variate law is a complex object whose structure embodies both marginal
and joint features. All those features can be translated, to some extent,
into geometric characterizations of an iid sample from the law, meant as a
cloud of points in ΊRk. Dimension does not affect the analysis of marginal
features, but as k increases it becomes progressively harder to conceive and
articulate the joint ones. For example, how does one conceive and articu-
late the interdependencies among, say, 10 or 100 coordinate components?
One is often forced to neglect high-order interactions, and/or to assume
hierarchies among them ι . At the same time, for k > 3, the data cannot

1 Conditional independence (see A.P. Dawid, 1979) provides a key to articulate inter-
dependencies; a very interesting representation of them through conditional independence
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be visualized as a whole; while graphical tools can still be used to investi-
gate low-dimensional marginals, a direct graphical investigation of the joint
features is impossible.

Producing inferences in high-dimensional settings can then become com-
plicated and challenging. A large variety of inference methods is available
once strong assumptions on the nature of the law are imposed; that is,
once a model for the law is chosen (see, among others, M.L. Eaton, 1983,
R.J. Muirhead, 1982, and G.A.F. Seber, 1984). But the intuition based
on graphical preliminary exploration that should precede the utilization of
model-based methods is impaired by the conceptual and practical difficul-
ties mentioned above.

These considerations, among others, justify the quest for simplified rep-
resentations of multivariate laws, especially ones allowing a reduction in
dimension. Simplified representations are often developed targeting some
(more or less restricted) features of interest. Exhaustiveness becomes then
an issue; once a target has been chosen, the information concerning it ought
to be preserved by simplification. More generally, it ought to be clear in
what relation the proposed simplified representation is to the target. If ex-
haustiveness is not always guaranteed, it should be possible to state under
what assumptions on the nature of the law it is, and/or to establish to what
extent the target is preserved (with or without assumptions).

These issues are very relevant in practice; the last thirty years have
witnessed the development of a large number of graphical exploration pro-
cedures for high-dimensional data sets. Think for example of Principal
Component Analysis, Factor Analysis (see G.A.F. Seber, 1984, and refer-
ences therein), Projection Pursuit (H.J. Friedman and J.W. Tuckey, 1974,
H.J. Friedman, 1987, and D. Cook, A. Buja, J. Cabrera and C. Hurley,
1995), or Grand Tours (D. Asimov, 1985, and A. Buja and D. Asimov,
1986). The theoretical rationale underlying any of these procedures can
be interpreted as a simplified representation of the multivariate law from
which the data are drawn; targets range anywhere from "variability", to
"linear interdependence structure" (correlation among the coordinate com-
ponents), to "non-linear structure" (defined as departure from normality),
to "structure" according to some other definition. Correspondingly, many
of the critiques to these procedures can be interpreted in terms of choice of
targets, and relations between simplified representations and targets. As
we proceed, it will become clear that the simplified representation under-
lying Factor Analysis is the closest in spirit to the one we will propose. In
fact, Factor Analysis differs from the other procedures mentioned above by

graphs is given by J. Whittaker, 1990.
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its reference to a latent factor entirely embodying the correlation target.
Our focus will not be on techniques to make inference on simplified

representations ("population" objects) based on data from a multivariate
law, but on the theoretical premises for these techniques; that is, on how
to define targets, and how to develop simplified representations guaranteed
to embody them exhaustively.

In Sections 1 and 2, we introduce the concept of reduction paradigm and
provide definitions and some key results. Section 3 concerns dimension re-
duction. We conclude with a brief summary and some remarks on inference
in Section 4. More details can be found in F. Chiaromonte, 1996.

2 The reduction paradigm
Our analysis will be conducted at the level of laws on TRk, and we will not
distinguish among random vectors with the same distribution. The main
idea behind a reduction paradigm is to decompose a law L on ΊRk into two
terms, one of which does not contribute to the structure (the target) and
can therefore be neglected. In other words, the aim is to represent a law
as the superposition of a structural term and a noise, or no-structure term.
Hence, the specification of a reduction paradigm relies upon

• a definition of absence of structure; that is, a choice of noises
• a choice of superposition mechanism

which, conversely, determine a definition of structure. We have selected
white noises iVfc(0,/?/&), β G 1R+, and convolution. Hence, we write

L = Aβ(L)*Nk(0,βIk) (1)

or, in terms of characteristic functions

^(«) = ^ ( L )(«)e-fll t t l la : : , : :«€ll f c (2)

This is by no means the only possibility, but it is in line with much of the
statistical tradition and thus constitutes a very natural first step. In fact,
it expresses a situation in which an independent normal error is additively
superimposed to the object of interest. One can envision reproducing the
whole analysis we are about to develop with different noises and/or super-
position mechanisms, though. As far as noises are concerned, one could
take, for example, uniforms on hyper-spheres of radius p G IR+, or normals
with independent components iVfc(O,Diag(σ;)), σ G IR+. In the first case
one maintains the weakly spherical nature of white noises and loses inde-
pendence of the coordinate components, while in the second case one loses
weak sphericity and maintains independence. Regarding superposition, one
could explore, for example, multiplicative (instead of additive) schemes.
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Before proceeding let us remark that the reduction paradigm we have
selected, as well as any other conceivable one, while certainly constituting
a model for decomposing a law, does not require strong assumptions on the
nature of the law itself. A reduction paradigm can be applied without fixing
at the outset a model for the law] that is, without assuming at the outset
that the law belongs to a given (and possibly finally parameterized) class.
Furthermore, our reduction paradigm corresponds to the inverse problem
for heat-type diffusion of probability measures (for an easy introduction,
see G.M. Wing, 1991, and A. Friedman and W. Littman, 1994). Paradigms
resulting from a different choice of noises would correspond to inverse prob-
lems for processes with different kernels.

Indexing the structural term by β serves to stress the fact that the
decomposition in (1) and (2) is not unique, unless it holds only with β = 0,
and therefore Aβ(L) = L itself. The set

B(L) = [β G K | s.t. φL(.)e%ll^ll2 is a ch. fct.} C ΊR[

expresses the range of possible decompositions. It is always non-empty,

as it must contain 0, and is easily shown to be B(L) = [0,βo(L)}, where

βo{L) = supB(L) = maχβ(L). We call the corresponding structural terms

kβ(L) ~ φL{-)e^W\ βeB(L)

sources, βo{L) reduction coefficient, and ΛO(L) <-> φL( )e °2 IK')" primary
source of L. Notice that reduction coefficient and primary source are unique
by construction. If βo(L) = 0, so that the only (and thus primary) source
of L is L itself, we say that the law is irreducible. We call it reducible
otherwise.

All sources share the structure of L, and can be equivalently taken as
exhaustive "simplified" representations of the law. The primary source is
the one in which no error is superimposed to the structure; that is, the one
in which we have pushed simplification as far as possible. Hence, we will
select ΛO(L) as simplified representation of L, and write

L = Ao{L)*Nk(0,βo(L)Ik)

We can fix ideas using the normal case as an example. Here and in the fol-

lowing, P.} indicates the orthogonal projection operator onto the argument

subspace , with respect to the standard inner product on ΊRk. Let

2The reference, throughout our discussion, is to linear subspaces, and affine subspaces
obtained by translating them.
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where Yjj=\ ΉjPv. +vPv ^s the spectral decomposition of the covariance with
(distinct) eigenvalues 7/χ,... ,ηp,η in decreasing order, and corresponding
eigenspaces Vi,..., Vp, V. It is easy to show that

φL (n)ef Ml2 = exp J iu'μ - \u' ί f > , - β)PVj + (η - β)Pv J u \

is a characteristic function if and only if Σ?=1(ηj — β)Pv. + (η — β)Pv is
non-negative definite; that is, if and only if β < η. Hence, βo{L) — η and
correspondingly

It is then clear that a normal is irreducible if and only if the smallest
eigenvalue of its covariance is 0; the irreducible fc-variate normals are all
and only the ones supported by lower dimensional affine subspaces, and
they constitute the primary sources of non-singular normals.

Primary sources are irreducible by construction. The class of all irre-
ducible laws on IR* represents the repertoire of possible structures. The fol-
lowing proposition provides a sufficient condition for irreducibility, thereby
characterizing part of such repertoire.

Proposition 1 // there exists a measurable set B C IR* such that Leb(B)
> 0, but L(B) = 0, then L is irreducible.

Proof: Suppose βo(L) > 0. Then, for any choice of v G H*, Nk(v,βo(L)Ik)
is mutually absolutely continuous with respect to Leb. So Leb(B) > 0
implies

Nk(υ,βo(L)h)(B)>0, \fυeMk

and thus
L(B) = ί Nk(υ,βo(L)Ik)(B) Ao(L)(dv) > 0

contradicting our assumption. We can conclude that βo(L) = 0, and there-
fore that L is irreducible. D

Since we have selected white noises as no-structure terms, reducible
laws must be mutually absolutely continuous with respect to the Lebesgue
measure, because they "contain" a term that is. As a consequence, all laws
having "thick" holes with respect to the Lebesgue measure are irreducible
in ΊRk. In particular, laws whose affine support As(L) has dimension < k
are irreducible in IRfc; we saw an instance of this with irreducible normals.
So are laws whose closed support Cs(L) is bounded, regardless of whether
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the latter is full-dimensional or embedded in a subspace or affine subspace
of dimension < k.

Notice that existence of an everywhere positive density is not enough to
guarantee reducibility; again because of our choice of no-structure terms,
reducible laws' densities must have "thick enough" tails. It is easy to show
that a law with an everywhere positive density whose tails vanish too fast,
at least along some directions, will still be irreducible (see F. Chiaromonte,
1996).

3 Some affine actions, and marginalizations
We will now explore the effects on reduction of some affine actions and of
mar ginalizat ions.

Proposition 2 Let TrR[L] be the law of rRX — v, where X G ΊRk is
any random vector distributed according to L, v G TRk, r G IR *; and R is a
rotation o/K*. Then βo(TυrjL]) = βo(L) and Ao(TvrjL]) = TυτJAo(L)}.

Proof: For r = 0, the transformation yields a point-mass at — v, and the
statement is trivially true. Otherwise, using characteristic functions, one
has

so βo{TrR[L\) > r2βo(L), and Tυ^R[Ao(L)} is a source of TτjL}. But for
r φ 0 our transformation is invertible: T ~ 1 [-] = T_v 1 / r H , [•]• Hence

T IL])

and βo(L) > {l/r)2βo(TrjL}). We can conclude that βo (T r R[L]) =
r 2 βo(L), and therefore that T K[ΛO(L)] is indeed the primary source of

The reduction coefficient is not affected by rotations and translations,
and is multiplied by the square of a rescaling factor. Thus, rescalings,
rotations and translations of L result into corresponding rescalings, rota-
tions and translations of the primary source. In the following, we will use
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interchangeably the terms marginalization and projection. Besides the in-
tuitive correspondence, "invariance" under rotations makes this rigorous;
the choice of orthonormal basis does not matter.

In our discussion so far, we have considered the reduction of a law L on
IR^ in ΊRk. The reference to the space is important; laws on ΊRk that are
entirely concentrated on some subspace can also be meant as laws on such
subspace, and reducing them within the subspace can produce a different set
of sources, a different reduction coefficient and a different primary source.
Laws that are entirely concentrated on a subspace of dimension < k are
irreducible in IRfc, but they might still be reducible within the subspace.

The noises within a given subspace S C ΊRk are represented by iVfc(0, βPs),
β G 1R+. Notation-wise, when considering the reduction of a law L (entirely
concentrated on S) within £, we will write βo(L,S), ΛO(L, 5), etc.

Proposition 3 Let MS[L] be the law of PSX, where X G Έ& is any ran-
dom vector distributed according to L, and S C IR^ is a non-degenerate
subspace. Then βo(Ms[L],S) > βo(L) and

AO(MS[L],S) *Nk(0,aPs) = MS[AO(L)}

where a — βo(Ms[L],S) - βo(L). In particular, if Cs(Λo(L)) is bounded,
βo(Ms[L],S) = βo(L) and Ao(Ms[LlS) = MS[AO(L)}.

Proof: Using characteristic functions, one has

ΦMS[L](
U) = ΦΛPsu)

so βo(Ms[L],S) > βo(L), and MS[AO(L)} is a source of MS[L] within S.
Equating the right hand side above with the right hand side of

— ^ ~ s

we obtain

where a = βo{Ms [L},S) - βo(L); that is

AO(MS[L},S) * Nk(0,aPs) = MS[AO(L)}

Now, assume that Cs(Λo(L)) is bounded. We need to show that this implies
a = 0. Suppose a > 0. Then, because of the normal term

Cs(Ms[Ao(L)}) = Cs(Ao(Ms[L},S) * Nk(0,aPs)) = S
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But if Cs(Ms[Ao(L)}) is unbounded Cs(Λo(L)) must be unbounded, too,
contradicting our assumption. We can conclude that βo{Ms \L],S) = /?O(L),
and therefore that AO(MS[L],S) = Λ4S[ΛO(L)]. D

The reduction coefficient (within S) of the marginal of L, must be greater
than or equal to βo(L). Correspondingly, the marginal of ΛO(L) is a source
(within S) of the marginal of L, even though not necessarily the primary
one. Under the assumption that Cs(Λo(L)) is bounded, the reduction coef-
ficients coincide. Thus, the marginal of ΛO(L) is indeed the primary source
(within S) of the marginal of L. In other words, under the boundedness
assumption the reduction coefficient is not affected by marginalizations
(projections), and therefore marginalizations of L result into correspond-
ing marginalizations of the primary source.

4 The structural subspace, and exhaustive
dimension reduction

The affine support of ΛO(L) represents the smallest affine subspace sup-
porting the structure of L, as defined by our reduction paradigm. We
call the subspace underlying it the structural subspace of the law SO(L) =
As(X[Λo(L)]), where υ is any element of Cs(Λo(L)), and Ύv stands for TυlI .
Correspondingly, we call do(L) = dim(5o(L)) the structural dimension.
Whenever do(L) < fc, our (exhaustive) simplified representation of L im-
plies a drop in dimension.

This allows us to define an exhaustive dimension reduction. Let us see
how. Suppose we know v £ Cs(Λo(L)). Then, the exercise of identifying
ΛO(L) is equivalent to that of identifying AO(%[L]). In fact, by Proposition 2

ΛO(L) = T_vTv[Ko{L)] = T_v[Ao(Tv[L})}

Now, suppose SO(L) is known, too. Then, we can marginalize Tυ[L] to SO{L)
preserving all the information relative to the structure, as defined by our
reduction paradigm. In fact, again by Proposition 2

SO{L) = As(X[Λo(L)]) = As(Λo(X[L]))

so that indeed ko(Tv[L)) is supported by the structural subspace 3, and

AO(X[L}) = MSo(L)[Ao(Tv[L})}

3Notice that, by Proposition 2, the structural subspace is invariant under translations
of L : So(%[L]) = So(L). When translating by an element of Cs(Λo(L)) we obtain a law
which is actually supported by the subspace itself, instead of an affine subspace parallel
to it.
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But then, by Proposition 3

Ao(%[L]) = A0(MSo(L)Tv[LLS0(L)) * 7V fc(0,aPSo{L))

Ao(%[L]) is a source for MSo(L)%[L] within SO(L). Furthermore, if we can

assume Cs(Λo(L)), and therefore of Cs(Ao(X[L])), to be bounded

= Ao(MSo(L)X[L],So(L))
So(L)

that is, Ko{Tv[L}) is the primary source of MSo{L)Tv[L] within SO{L). This
gives an even stronger meaning to the exhaustiveness of our marginaliza-
tion; not only no structural information is lost marginalizing %[L], but the
exercise of identifying KO(TV[L]) (to be performed in k dimensions) would
actually correspond to that of identifying Ko{λΛs ,L)%[L],SO(L)) (to be
performed in -possibly- smaller dimension).

The question becomes then how to identify translation term and struc-
tural subspace. Clearly, existence of finite moments of a certain order for
L implies that of the corresponding moments for ΛO(L). If L admits finite
first order moments E(ΛO(L)) = E(L), and one can take as translation term
v = E(L) G Cs(Λo(L)). Furthermore, if L admits finite second order mo-
ments, structural subspace and structural dimension can be related to the
spectral decomposition of the covariance. We will need the following

Lemma 1 If L admits finite second order moments, then As(TE.L)[L\) =

Span(Coυ(L)).

Proof: Consider the orthogonal complement of Span(Cov(L)) with respect

to the standard inner product, and Λ4 S p a n ( C o v ( L ))±^ ( L ) [L] . Easy calcula-

tions give

E ( > ί S p a n ( C o v ( L ) ) ± 7 ; ( L ) [ L ] ) = 0, Cov(Λ4S p a n ( C o v ( L ) )x7; ( L )[L]) - 0

Thus, Λ4S p a n(C o v(L))±^ζ ( L )[L] is a point-mass at 0, which implies Span

(Cov(L)) D As(3^L)[L]). On the other hand, using the definition of co-

variance we have

Cov(L)z =

which implies Span(Cov(L)) C As(Cζ(L)[L]). The statement follows. D

Now, denoting by Ind( ) the indicator function of the argument condi-

tion, we have
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Proposition 4 Suppose L admits finite second order moments. Let η(L)
be the smallest eigenvalue of Coυ(L), andV(L) the corresponding eigenspace.
Then βo(L) < η(L) and

SO(L) = ViL^ Θ Ind(η(L) - βo{L) > O)V(L)

with do(L) = k- Ind(η(L) - βo{L) = O)dim(V(L)).

Proof: Writing Cov(L) = ΣP

j=i Vj(L)PVj{L) + η(L)Pv{L) one has

Cov(Λo(L)) = Cov(L) - βo{L)Ik

= J2(Vj(L) - βo(L))PVj{L) + (η(L) - βo(L))Pv{L)

3=1

But then βo(L) < η(L) is implied by non-negative definiteness of Cov(Λo(L)),
and the expression for the structural subspace follows from Lemma 1 ap-
plied to ΛO(L). A drop in dimension occurs if and only if βo(L) = η(L),
and when it occurs do(L) — k — dim(V(L)), where dim(y(L)) represents
the multiplicity of η(L). D

Given the spectral decomposition of Cov(L), the above proposition pro-
vides an upper bound for the reduction coefficient and a lower bound for
the structural subspace; namely, the smallest eigenvalue of Cov(L) and the
orthogonal complement of its eigenspace. The spectral decomposition of
Cov(L) is not enough to identify the structural subspace, though; we still
need to know whether the reduction coefficient is strictly smaller than, or
equal to, the smallest eigenvalue.

Remember that for a normal law βo(L) = η. Thus, under normality the
drop in dimension always occurs, and one has SO(L) = V1- with do(L) =
k—dim(V) < k — 1. It is important to remark that coincidence of βo(L) with
η(L) (and therefore the drop in dimension) is not guaranteed in general.
Identifying the reduction coefficient with the smallest eigenvalue of the
covariance can actually be very misleading. Take for example a "noisy"
uniform on a hyper-cube L = Un(\-Θ,θ)k) * ΛΓfc(0,τ7fc), θ,τ E IR| \ {0}.
For such a law one has βo(L) — τ < ^- + τ = η(L) and SO(L) = TRh

Z) {0} = V{L)L, as the multiplicity of ̂  + r is k.

5 A brief summary with some remarks on

inference

The ultimate aim within the framework defined by a reduction paradigm is
that of making inference about the (unobservable) ΛO(L), which constitutes
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our simplified and yet exhaustive representation of the original law. As we
have seen, if we can assume that L is normal, βo(L) = η and

which is entirely identified through the mean vector and the spectral decom-
position of the covariance. Hence, if the data are consistent with normality,
we could estimate the primary source based on estimates of those. Also, if
the data can be transformed to approximate normality, the primary source
could be estimated on the transformed scale. What can we do when the
data contradicts normality on the original scale, and fails to approximate
it also after applying normalizing transformations?

An intermediate aim is constituted by estimating a, v £ Cs(Λo(L)) and
SO(L). Besides the intrinsic interest, if indeed our simplified representa-
tion implied a drop in dimension, having such estimates would allow us to
perform an exhaustive dimension reduction.

Given the results in the previous sections, we are clearly at an advantage
if we are willing to assume boundedness of Cs(Λo(L)). Since the latter
implies existence and finiteness for all the moments of L, we would have
E(L) e Cs(Ao(L)) and (Proposition 4)

SO(L) = V(L)L Θlnd(τ/(L) - βo(L) > O)V(L)

Furthermore, we could restrict inference on the reduction coefficient to
any arbitrarily small non-degenerate subspace. In fact, by Proposition 3
βo(L) — βo(λίt[L],t), where t is any line in ΊRk. Thus, we could take E(L)
as translation term, and produce an estimate of the structural subspace
based on ή(L), V(L) and βo(Mt[L],t). Methods to estimate E(L), and, less
trivially, η(L) and V(L), exist in the literature and are not affected by how
large k is (see M.L. Eaton and D. Tyler, 1994, and E. Bura, 1996).

As a matter of fact, in order to produce an estimate of the structural
subspace we would only have to assess, selecting for example t c y , whether
βo(Mt[L],t) is strictly smaller than, or coincides with var(Λ^[L]) = η(L).
This, in turn, is equivalent to assessing whether ΛΊJL] is a 1-dimensional
normal.

Under the assumption that Cs(Ao(L)) is bounded, we also have that

Ao(L)=Tv[Ao(MSo(L)Tυ[LlSo(L))}

Hence, we could center the data cloud translating it by E(L), and restrict
any further analysis to the projection of the centered cloud onto SO(L);
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all the structural features (except for location, which is captured by E{L))
would be preserved. If indeed do(L) = dim(5o(L)) < fc, we would have
achieved an exhaustive dimension reduction.
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