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Recent developments in PROGRESS
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Abstract: The least median of squares (LMS) regression method is highly
robust to outliers in the data. It can be computed by means of PROGRESS
(from Program for RObust reGRESSion). After ten years we have de-
veloped a new version of PROGRESS, which also computes the least
trimmed squares (LTS) method. We will discuss the various new fea-
tures of PROGRESS, with emphasis on the algorithmic aspects.
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1 Introduction
At the time when the least median of squares (LMS) regression method
was introduced (Rousseeuw, 1984), a program was needed to compute it in
practice. The first algorithm described in that paper was just for computing
the LMS line in simple regression, based on scanning over possible slopes
while adjusting the intercept each time.

However, it was clear from the start that an algorithm for LMS multiple
regression was required. The first version of PROGRESS (from Program
for RObust reGRESSion) was implemented in 1983. The 1984 paper al-
ready contained an example analyzed with PROGRESS and listed the pro-
gram's computation times on a CDC 750, one of the fastest mainframes of
that day but outperformed by today's PC's. During the next years, when
people began requesting the program, it was made more user-friendly with
interactive input and self-explanatory output. The use of the program was
explained in detail in (Rousseeuw and Leroy, 1987). Because that book
contained many sample outputs we refrained from making any substantial
modifications to PROGRESS, which remained essentially unchanged from
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1985 until 1995.
During that decade there were quite a few suggestions for modifications

and extensions. For instance, several people asked for the inclusion of the
least trimmed squares (LTS) method which had been proposed together
with LMS in (Rousseeuw, 1984) but which was not built in from the start
because it needed (a little) more computation time, which became less rel-
evant with the increasing speed of hardware. Another idea was to improve
the accuracy by carrying out intercept adjustments more often, and we
also wanted to allow the user to replace the 'median' in LMS by another
quantile. Therefore we finally gave up on the principle of keeping the out-
puts identical to those in the 1987 book, and created the modernized 1996
version of PROGRESS described in the present paper.

First of all, PROGRESS now allows the user to choose between two
robust estimators: the least quantile of squares (LQS) method which gen-
eralizes LMS, and the least trimmed squares (LTS) method. By definition,
these methods depend on a quantile h/n. In order to help the user make an
appropriate choice of /ι, the program provides a range of h-values for which
LQS and LTS have a breakdown value between 25% and 50%. (This means
that the method can resist that many contaminated observations.) Sec-
tion 2 describes the LQS and LTS, and Section 3 obtains their breakdown
value which depends on h.

Section 4 provides an outline of the algorithm used for the LQS and LTS.
Since their objective functions are difficult to minimize exactly, PROGRESS
performs an approximate resampling algorithm. Whereas the 1985 version
adjusted the intercept only once at the end, the intercept in now adjusted
in each step. This yields a lower objective function value, and in simple
regression we even find the exact minimum. The program now allows to
search over all subsets, as well as over a user-defined number of random
subsets.

In Section 5 we define a new version of the robust coefficient of deter-
mination (i?2) to make sure that it always takes on values in the interval
[0,1]. Finally, Section 6 discusses the robust diagnostics which the program
provides to identify outliers and leverage points. Section 7 explains how
the program can be obtained.

2 The estimators LQS and LTS

We consider the linear multiple regression model

yi = xnθi + xi2θ2 + ... + Xipθp + σβi = x*0 + σβi (1)

for i — 1,... ,n. The p-dimensional vectors x̂  contain the explanatory
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variables, yι is the response and σβi is the error term. The data set thus
consists of n observations and will be denoted by Z = (X,y). For a given
parameter estimate θ we denote the residuals as r{(θ) = yι — x*0. In a
regression model with intercept, the observations satisfy Xip = 1.

A robust regression method tries to estimate the regression parameter
vector θ in such a way that it fits the bulk of the data even when there are
outliers.

The new version of PROGRESS provides two such robust regression
methods: the least quantile of squares (LQS) and the least trimmed squares
(LTS) estimator. Whereas classical least squares (LS) minimizes the sum
of the squared residuals, LQS and LTS minimize a certain quantile, resp.
a trimmed sum, of the squared residuals. Their exact definition is given
below. (For any numbers u\,... ,un the notation u^n stands for the z-th
order statistic.)

Definition 1 Let Z — (X,y) be a data set of n observations in IRP+1.
Then for all p < h < n, the least quantile of squares (LQS) estimate
ΘLQS(Z) and the least trimmed squares (LTS) estimate ΘLTS(Z) are defined
by

= argmin{r2{θ))h:n = argmin\r(θ)\hm (2)
θ θ

and
h

ΘLTS(Z) = argmin^2(r2(θ))i:n. (3)
θ i=i

It is easy to see that LQS generalizes the LMS method which minimizes
the median of the squared residuals. Indeed, for n odd and h = [n/2] + 1
the LQS becomes the LMS.

With the parameter estimates ΘLQS(Z) and ΘLTS(Z)
 w e c a n associate

estimators of the error scale σ:

SLQS(Z) = sLQS(X,y) = cKn\rφLQS(Z))\h:n (4)

and
h

2 = 1

The constants c^ n

 a n d d^n are chosen to make the scale estimators con-
sistent at the gaussian model, which gives

SLTS(Z) = SLTs(X,y) = dh,n\
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Moreover, SLQS is multiplied by a finite-sample correction factor. For h =
fn/2] + 1 this factor equals 1 + -£-.

More efficient scale estimates, based on the preliminary ones, are then
given by

σ =

where
ί 0 if >2.5

[ 1 otherwise.

Here the notation scorns' stands for SLQS or SLTSI whichever is used.

3 Breakdown value and choice of h
In the next theorem we derive the breakdown value of LQS and LTS, which
says how many of the n observations need to be replaced before the estimate
is carried away. The finite-sample breakdown value (Donoho and Huber,
1983) of any regression estimator T(Z) = T(X, y) is given by

TΠ

ε*n = ε*n(T, Z) = min {-; sup ||Γ(Z')|| = 00}
n z'

where Z' = (X^y') ranges over all data sets obtained by replacing any m
observations of Z — (X,y) by arbitrary points. We will assume that the
original X is in general position. This means that no p of the x̂  lie on
a p - 1 dimensional plane through the origin. For simple regression with
intercept {p = 2) this says that no two X{ coincide. For simple regression
without intercept {p — 1) it says that none of the Xi are zero.

Theorem 1 // the x̂  are in general position, then the finite-sample break-
down value of the LQS and the LTS is

f ( Λ _p+l)/ n if p<h<[n±EΪl]
6 I ++1

The proof is given in the Appendix.

Corollary 1 // the x̂  are in general position, then the maximal finite-
sample breakdown value of the LQS and the LTS equals

n

and is achieved for
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When n+p is even we have [(π+p)/2] = [(n+p+ί)/2] hence the optimal
h is unique. When n+p is odd, it turns out that choosing h = [(n+p+l)/2]
gives the better finite-sample efficiency. Therefore, we will always define
the optimal h as

This is also the default value of h in PROGRESS. If the user prefers to
use another quantile, the program displays a range of h-values for which a
breakdown value of at least 25% is attained. The lowest h-value allowed in
the program is

hmin = [n/2] + 1.

(This is because for each h < hmin there exists some h > hmin with the
same breakdown value and a higher finite-sample efficiency.)

Remark 1 Ifp=l and Xip — 1 for all observations, the regression model
reduces to the uniυariate model yι = μ + σβi. In that case Theorem 1 is still
valid, whereas the LQS and LTS become much easier to compute. In the
univariate setting, a fast algorithm is available to compute the exact LQS
and LTS estimates of the location parameter μ and the scale parameter σ.

1. input the data and all options
2. treatment of missing data
3. standardize the data
4. LS analysis
5. compute LQS or LTS
6. RLS analysis

Table 1: Overview of the program PROGRESS.

4 Outline of the PROGRESS algorithm
PROGRESS not only computes the LQS and LTS. First, the LS estimates
and inferences about the regression parameters are obtained. And after
the LQS or LTS is found, a reweighted least squares (RLS) is carried out
with weights based on LQS or LTS. Table 1 gives a schematic overview of
the complete program. Since the essential algorithmic changes have been
made in step 5, we will focus on that part here. We refer to (Rousseeuw
and Leroy, 1987) for all details about the treatment of missing data, the
standardization procedure, and the LS and RLS estimates.
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1

2

3

4

5

ACTION
draw a (random) subset of p observations
compute hyperplane through these p observations
if regression with intercept
=> adjust intercept

evaluate the objective function at this estimate

repeat steps 1 until 4, and keep the
estimate with lowest objective function value

RESULT

0 = ( 0 ! , . . . , 0 p - i , 0 P )
θ = (θlt...,θp-liθ'p)

\r(θ)\h:nor^r^(θ)i:n

ΘLQS or ΘLTS

Table 2: Summary of the algorithm for LQS and LTS.

In general the objective functions of LQS and LTS are difficult to
minimize exactly since they have several local minima. For this reason
PROGRESS uses an approximate resampling algorithm (which does yield
the exact solution in simple regression). Table 2 summarizes the main steps
of this algorithm.

n

small
intermediate

large

mechanism
all subsets
all subsets
random
random

number of p-subsets used

Cξ
default (Table 4) or user-defined
default or user-defined

Table 3: Subsampling mechanism in PROGRESS.

We will describe the first three steps more extensively.

draw a (random) subset of p observations

The drawing mechanism now implemented in PROGRESS is displayed
in Table 3. According to the sample size n and the number of variables p,
PROGRESS checks whether or not it is feasible to draw all subsets of p
observations out of n.

For small values of n (see Table 4) the program automatically generates
all possible subsets of p observations, of which there are Cζ = (n). For each
of these p-subsets, steps 1 to 4 of Table 2 are carried out.

If n is large for the p involved, the binomial coefficient would exceed
1,000,000 and then PROGRESS switches to a random selection of p-subsets.
It is possible for the user to preset the number of p-subsets to be considered.
The more p-subsets you take, the lower the objective function will be, but
at the cost of more computation time. On the other hand, one must select
enough ^-subsets for the probability of drawing at least one uncontami-
nated p-subset to be close to 1 (otherwise, the fit could be based on bad
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observations only). In (Rousseeuw and Leroy, 1987, page 198) this minimal
number of p-subsets is expressed in function of the number of variables and
the allowed percentage of contamination. The default number of subsets
drawn in PROGRESS can be found in Table 4. For p < 9 these numbers
exceed the required minimum, whereas for larger p the default is fixed at
3000 subsets so as to avoid extremely long calculations. But as already
mentioned, the user can always modify the proposed number of p-subsets.

Finally, for all intermediate values of n the user can choose between
considering all p-subsets or drawing a certain number of random p-subsets.
As always, the program applies default choices unless the user explicitly
asks to override them.

n is 'small' if n <
n is ' large' if n >

default number
of p-subsets used

1

500
106

500

2

50
1414

1000

3

22
182

1500

4

17
71

2000

5

15
43

2500

p
6

14
32

3000

7

0
27

3000

8

0
24

3000

9

0
23

3000

10

0
22

3000

Table 4: Sample sizes n which are considered to be small or large (for
a given p). Also the default number of p-subsets used in PROGRESS is
listed.

2o compute hyperplane through these p observations

If the x; are in general position then every p-subset determines a unique
hyperplane, that is found by solving the linear system formed by these p
observations.

In practice also a singular p-subset can occur, and then PROGRESS
draws a new p-subset. The output then reports the total number of singu-
lar p-subsets that were encountered.

3o if regression with intercept => adjust intercept

Here, 'intercept adjustment' stands for a technique which decreases the
objective value of a given fit. We will apply it to each p—subset. After the
hyperplane through the p observations is determined, we have an initial
estimate of the slope and the intercept, given by θ = (0χ,... ,θp-ι,θp)
where θp is the intercept. The corresponding objective value for LQS then
equals

\rφ)\h:n = \Vj ~ Xjlθl - . . . - Xj^-lθp^ - θp\h:n. (7)

For LTS we can rewrite (3) accordingly. The adjusted intercept θp is then
defined as the LQS (resp. LTS) location estimate applied to the univariate



208 Peter J. Rousseeuw and Mia Hubert

data set {U = yι — xnθ\ — . . . — x^p-.ιθp-ι\i = 1,...,n}, i.e.

ΘL = argmin \tj - μ\h:n (8)
μ

for LQS. By construction, (8) yields a lower objective value than (7). In
simple regression (p = 2), it follows from (Steele and Steiger, 1986) that if
all 2-subsets are used and their intercept is adjusted each time, we obtain
the exact LQS.

As indicated in Remark 1, the LQS and LTS location estimates can be
found by an explicit algorithm. For LQS it is the midpoint of the shortest
interval that contains h observations, as was proved in (Rousseeuw, 1984,
page 873). We thus have to order the univariate observations {ίi,... ,tn}
to t\:n < ... < tn:n and then compute the length of the contiguous intervals
that contain h points. When the smallest length is attained by several
intervals, we take the median of the corresponding midpoints.

The univariate LTS estimator corresponds to the mean of the subset that
contains h observations and that has the smallest sum of squares. This sum
of squares is defined as the sum of the squared deviations from the subset
mean: given an /i-subset ti:n,... ,ti+h-.ι:n with mean ίW we have

i+h-l

Note that the selected /i-subset has to consist of successive observations,
which is why we had to order the t\,..., tn first.

For a recent study of the effect of intercept adjustment on the perfor-
mance of LTS regression, see Croux et al. (1996).

In order to adjust the intercepts the univariate LQS and LTS methods
were included into PROGRESS, which also allows the user to analyze data
sets that were univariate from the start. As in the regression situation, the
preliminary scale is then defined by (4) resp. (5), both of which come out
of the univariate algorithms. For LQS it is half the length of the shortest
interval, whereas for LTS it is the square root of the smallest sum of squares
divided by h. We then obtain the final scale estimate as in (6).

5 Coefficient of determination (R2)
Let us first consider the regression model with intercept. Along with the
classical least squares (LS) comes the coefficient of determination, which
measures the proportion of the variance of the response variable explained
by the linear model, i.e.

0 < R> = y Q r ( g ~V^ = 1 - \μp\ < 1. (9)
Var(yi) Var(y)
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The denominator in this expression measures the variability of the response
in a model without explanatory variables, which in this case is the univari-
ate model yι = μ+σei. If we denote the LS coefficient estimate of a sample
(X,y) by §Ls(X,y)i and use the scale estimate given by

sLS(X, y) = ^ — - }2(yi - *iθLS(X, y))2, (10)

we can rewrite (9) as

By analogy, we propose the robust counterpart given by

Note that when using definition (12), the robust coefficient of determi-
nation always falls in the interval [0,1]. This was not guaranteed by the
earlier version of R2 defined in (Rousseeuw and Leroy, 1987, page 44) and
implemented in the first version of PROGRESS. There the denominator
(mady)2 = (med^ \yι — medjyj\)2 was used, whereas now SLQs(l,y) =
\y — θLQs(l >y)\h:n which is just the scale estimate of the univariate LQS
applied to the response.

An analogous reasoning works for the regression model without inter-
cept. In that case, the model without explanatory variables reduces to
yi z= σβi without any location parameter. For LS,

ΓLT C = ± ό—z r- = 1 — o
s (o y) Σ y

and we propose the following robust counterparts:

>|2\,
)h:n

^ = i- 7τ° ,J = i -

and

_ Ί _ SLTS(X,y) _ . _ Σ,U{
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6 Diagnostics
Observations in regression data essentially belong to four types:

regular observations with internal x̂  and well-fitting ŷ ,
vertical outliers with internal x; and non-fitting y;,

good leverage points with outlying x̂  and well-fitting y^
bad leverage points with outlying x; and non-fitting y;.

Figure 1 shows these four types in simple regression. Regression diag-
nostics aim to detect observations of one or more of these types. Here we
will consider three robust diagnostics: standardized residuals, the resistant
diagnostic, and the diagnostic plot.

vertical outlier

regular data

*••

good leverage point

bad leverage point

Figure 1: Simple regression data with points of all four types.

lo Standardized residuals are defined as ri{θ)/s{θ) where s(θ) de-
notes a robust scale estimate based on the residuals. Here we will use
SLQS(Θ) = cfcιn|r(0)|fcn or sLTS(θ) = dh}n^Σir2(θ)i:n. Standardized
residuals help us to distinguish between well-fitting and non-fitting obser-
vations by comparing their absolute values to some yardstick, e.g.

compare \n(θ)\/s(θ) to 2.5.

We use the yardstick 2.5 since it would determine a (roughly) 99% tolerance
interval for the ê  if they had a standard gaussian distribution. Since the
standardized residuals approximate the ê , we will consider an observation
as non-fitting if its standardized residual lies (far) outside this tolerance
region.
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5
o

X
regular observations

X

vertical outliers
+

bad leverage points

good leverage points

vertical outliers
+

bad leverage points

resistant diagnostic

Figure 2: Classification of observations by plotting the standardized resid-
uals versus their resistant diagnostics.

2o The resistant diagnostic Non-regular observations have the property
that they are 'far away' from some hyperplane in iRp + 1 (that is, further
away than the majority of the observations). The vertical outliers and the
bad leverage points are clearly far away from the ideal regression plane given
by y = x^. But also a good leverage point lies far away, relative to some
other hyperplane that goes through the center of the regular observations.
To define the 'distance' of an observation (xi,ί/t) to a plane y = x*0 we can
use its absolute standardized residual. If we now define

\n(θ)\
li = sup

θ
or i = sup

7 SLTS{Θ)

we expect outliers to have a large Ui. Since the Ui are difficult to compute
exactly, we approximate them by taking the maximum over all θ that are
computed inside the LQS/LTS algorithm. For each observation, this yields
the value

Ui = maxJ!j^l o r t l ί = m a x J ^ M . (14)
θ sLQS(θ) θ sLTs{θ)

Therefore we only need to store one array (u\,... ,un) that has to be up-
dated at each p-subset. Finally, we define the resistant diagnostic for each
observation by standardizing the u^ yielding

resistant diagnostic^ =
med

(15)
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In the new version of PROGRESS the resistant diagnostic is available for
both LQS and LTS, and it is based on the trial estimates θ after location
adjustment. From (14) it is clear that non-regular observations will have
a large U{ and consequently a large resistant diagnostic. Simulations have
indicated that we may consider (15) as 'large' if it exceeds 2.5. Combining
the standardized residuals with the resistant diagnostic leads to the dia-
gram in Figure 2. However, a disadvantage of Figure 2 is that it cannot
distinguish between vertical outliers and bad leverage points.

3o The diagnostic plot makes the complete classification into the four
types. Since leverage points are outlying in the space of the regressors x ,̂
one can distinguish them from vertical outliers by analyzing their x—compo-
nents. For this we can run MINVOL OVLX — {x̂ ; 1 < i < n). This program
computes the Minimum Volume Ellipsoid (MVE) location estimate T{X)
and scatter matrix C(X). The MVE is a highly robust estimator of lo-
cation and scatter, introduced by Rousseeuw (1985). The corresponding
robust distance of an observation to the center is then given by

Since the squares of these distances roughly have a chi-squared distribution
when there are no outliers among the x ,̂ we will classify an observation as
a leverage point if its RDfa) exceeds the cutoff value Λ/X^O.975- ^ w e

combine this information with the standardized LQS or LTS residual, we
obtain the diagnostic plot of (Rousseeuw and van Zomeren, 1990) shown
in Figure 3.

cutoff

1

vertical outliers

regular observations

vertical outliers

bad leverage points

good leverage points

bad leverage points

robust distance RD(x,)

Figure 3: Diagnostic plot, obtained by plotting the standardized robust
residuals versus the robust distances
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7 Software availability

The programs PROGRESS and MINVOL can be obtained from our website
http://win-www.uia.ac.be/u/statis

Questions or remarks about the implementation can be directed to
Mia.Hubert@uia.ua.ac.be.

The LMS, LTS and MVE methods are also available in S-PLUS as the
functions lmsreg, l t s r e g and cov.mve. Moreover, the functions LMS,
LTS and MVE based on the recent versions of PROGRESS and MINVOL
have been incorporated into SAS/IML (Version 6.12) in 1996. Their docu-
mentation can be obtained by writing to sasaxsOunx.sas.com.

Appendix: Proof of Theorem 1

We show that the proof of the breakdown value of the LMS (Rousseeuw,
1984, page 878) remains valid after making the necessary modifications.
The proofs for LQS and LTS are very similar, so we will mainly consider
the LQS estimator.

First suppose h < [n+P+ 1]. We obtain the lower bound on ε* by re-
placing h — p + 1 — 1 = h — p observations of Z, yielding Z'. Define
θ = ΘLQS(Z) and ff — ΘLQS(Z'). The n-h+p>h original points (x»,y»)
then satisfy |ri(0)| = \yι — Xi0| < M = max^ K(0)| such that for the cor-
rupted data set Z1, \ri(θf)\h:n < \ri(θ)\h:n < M. For p > 1 we refer to the
geometrical construction of (Rousseeuw, 1984). In his notation, the set
Z'\A contains at most n — {n — h + p — (p — I)) = h — 1 observations. If
we assume ||0' - θ\\ > 2(||0|| + M/», this implies

\riψ')\h:n>M, (16)

a contradiction. Therefore, ||07|| remains bounded. For p = 1 we set

C = 2M/N = 2M/minz\xi\. Now suppose |0 - θ'\ > C. For all non-

contaminated observations we have that \ri(θ) — ri(θ')\ = \yι — xiθ — yi —

Xiff\ = \Xi\\θ - θ'\ > NC = 2M, from which we get 1^(0')! > \n{θ) -

ri(θf)\ - \ri(θ)\ > 2M - M = M. Again this implies (16) and thus a

bounded θr. The upper bound on ε^ follows from the fact that we can put

h — p + 1 bad observations on a hyperplane that contains p — 1 original

points. Then (h - p + 1) + (p - 1) = h observations satisfy y[ = x^0r, and

thus ff — ΘLQS(Z'). Making the hyperplane steeper will break down the

estimator.
For h > [n +P+ 1], we obtain the lower bound analogously to the previous

case. Just observe that we now have n — in — h + I) + I — h original
observations, and that Z' \ A has at most n - (h - (p - 1)) = n - h +
p — I < h — 1 points. The remaining inequality ε* < (n — h + l)/ra can
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be proved as follows. Take some M > \\θ\\. Then we show that we can
always construct a corrupted sample Z1 with n — h + 1 bad observations,
such that ||<9'|| = PLQS(^ ' )II > M. Letting M go to infinity will then
cause the LQS to break down. Define M j = max; ||x*||. Now we set all the
n — h + 1 replaced observations equal to the point (x, y) = (x, 2MχM + K)
for which ||x|| = M.χ and K > 0. These replaced observations satisfy
M l < ||xi||||0|| < ||x||M = MXM < y and thus 1^(0)| - \y{ - x^ | >
\y\ - \κθ\ > MXM + K. A s n - h + l > n - h this yields \ri(θ)\hm >

MxM + K. Since we can choose K arbitrarily large, the minimum of the
objective function of LQS will not be reached for ||β|| < M. Consequently
IÎ ΊI = IrLQsC^OII has to be larger than M, which ends the proof. Finally
we note that using the same construction, the objective function of LTS
satisfies

Σ(r2(θ))i..n>(MxM + K)2

yielding the same result.
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