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Abstract: In this paper we consider the following problem. Let X =
{#i,..., xn} be a set of observation points endowed with a partial order
-<, and let yi,... ,yn be the values of the dependent variable y. We are
searching an isotonic function f : X —> R (i.e. Xi -< Xj implies that
f(χί) < f(xj)) that minimizes the Zp-error

We recall some general algorithms for solving this and related regression
problems and we present new polynomial algorithms for some versions of
the isotonic regression problem.
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1 Introduction

The basic isotonic regression problem can be formulated as follows: given
values y i , . . . , yn of the dependent variable y, corresponding to values x i , . . . ,
xn of the independent variable x, which constitute a set X with a partial
order -< (i.e., a reflexive, transitive and antisymmetric binary relation on
X), fit to the yi a best function y = f(x) which is non-decreasing (alias
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isotonic) with respect to -< . The error norm usually chosen is I2 : we are
seeking an isotonic function / on X that minimizes

2 = 1

Algorithms for this problem have received a great deal of attention and
a collection of them have been discussed in details in [3, 11, 25]. In the
case when -< is a total order on X all of the algorithms work in linear
time 0{n) provided -< is given. In particular we mention the simple Pool-
Adjacent-Violators algorithm introduced by Ayer et al. [1] and popularized
by Kruskal [18] under the name Up-and-Down Blocks algorithm. It has
been extended to rooted trees by Thompson [31] with the Minimum Vio-
lator algorithm. The Pool-Adjacent-Violators algorithm is also implicit in
van Eeden [9], who extended in [10] the procedures to regressions bounded
by two given functions.

The situation becomes much more complex if -< is a partial order, say
xi, . . . , xn are points in the ef-dimensional space and X{ -< Xj if and only if
Xi = (x\ \ . . . ,x\ ), Xj = (XJ , . . . , Xj ) andx^ < x̂  for each 1 < k < d.
Although some algorithms described in [3] are applicable in the general
case, their computational complexity is already exponential; see [8]. A
convergent numerical algorithm for I c R 2 has been proposed in [8]. Ge-
ometrically, one can formulate the ^-regression problem as the computing
of the projection of the vector y = (τ/i,..., yn) onto the convex cone K of
the isotonic functions on X. Since K is defined by a finite number of con-
straints, it is polyhedral. Therefore, one can use any algorithm for solving
a quadratic optimization problem, especially those established for project-
ing onto polyhedral cones, as, for example, that presented in [19]. The
alternative procedure of Dykstra [7] is also efficient for polyhedral cones.
However, several specific algorithms have been developed for regression
problems. The reader will find a vast literature on this topic.

Among other criteria, the choice of I2 as an error norm is due to the
connection with special estimates. Usually, the estimates studied in order
restricted statistical inference can be expressed by compact " max-min" for-
mulas (of course, being an useful tool in consistency proofs, these formulas
are not very appropriate for computing of the estimates). For instance, let
M(A) be the mean of a collection A of observations taken from a poset X.
Now, a subset L of X is called an upper layer if X{ £ L and X{ -< Xj imply
that Xj e L. Then

f(xi) = max{L: Xi£L} niin {L/ : x.^L,y M(L - L')
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is an isotonic function and could be used as an estimate. It is shown
in [3] that / provides the best Z2~^pproximation of t/i,..., yn and can be
calculated by a special minimum lower sets algorithm introduced by Brunk
etal. [5] (the complexity of the latter is exponential). A deep generalization
of this result to all Cauchy mean value functions has been obtained in
[28] (a function M defined on the nonempty subsets of X is said to be a
Cauchy mean value function [27, 28] if M(A U B) belongs to the segment
[M(A),M(B)] whenever A and B are nonempty and disjoint subsets of
X). A description of all linear Cauchy mean value functions has been given
in [21]. The result from [28] asserts that if M is such a function and the
error measure D(f) verifies three rather natural conditions, then / given
by the abovementioned "min-max" formula minimizes D(f) subject to the
restriction that / is isotonic on X. Moreover, / can be computed using a
refined version of the minimum lower set algorithm. As is noticed in [28],
this result includes all /^-regression problems (1 < p < oo) in their most
general form as special cases (however, the modal regression problem [29]
does not fit in this framework).

Namely, assume that with each element xι of a poset (X, -<) is associated
a set of numbers yn,..., yιri, corresponding, for example, to a sample from
the zth distribution. We are looking for an isotonic function / on X (i.e.,
Xi -< Xj implies f(xi) < f(xj)) that minimizes

2 = 1 / = 1

If p — 1 we obtain the isotonic median regression problem that corresponds
to the ii-error norm:

i=l 1=1

For I c R this problem have been investigated in [26, 24] (unfortunately,
the algorithm presented in [24] contains a serious gap, since its two steps
do not cover all possible cases). The minimum lower set algorithm from
[28], acting on the collection of upper layers, has an exponential complexity
already if this collection is of exponential cardinality. This is the case of
rather simple partial orders as rooted trees or series-parallel partial orders.
To our knowledge there are no polynomial time algorithms to find a best
isotonic /^-regression function (p < oo) in the general case of a partial
order or even in case when X C Rd, d > 2. It will be interesting and impor-
tant to know what instances of this problem, are NP-complete algorithmical
problems.
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2 Isotonic /^-regression problem for rooted trees
This section is devoted to the isotonic Zp-regression problem (1 < p < oo)

for partial orders whose covering graphs are rooted trees. We propose a

simple extension of the maximum (minimum) violator algorithm, originally

established for the ^-criterion. Let us consider a rooted tree, the vertices of

which are the elements x i , . . . , xn of a set X. The tree is here oriented from

the leaves to the root. To every vertex x^ a sample y^, . . . , y ^ is preas-

signed. We consider the /^-regression problem defined in the introduction:

minimize Dp(f) subject to the constraint that / is isotonic. The yu define

a vector of R r, where r — ΣΓ=i r * Noting θ{ = f{x%) and duplicating r*

times the θi, we get a current vector θ G Mr, and the minimization problem

may be written as: minimize \\y — 0||p, with equality and inequality con-

straints over θ. Such a problem corresponds to the projection onto a closed

polyhedral cone, with respect to a norm lp. That provides the existence of

a solution.

For every sample of real numbers A = { u i , . . . , ^ } , let us consider

the problem: m i n x [ ^ = 1 \x — UJ\P]P . It is well-known that such a problem

admits a solution. This is the mean for p = 2, the midrange for p — oo and

a median point for p = 1. Every solution lies between minuj and max'Uj,

and due to the convexity, the set of solutions is a closed interval. We denote

\ \]it by M(A) = [α,&]. Moreover, it is easy to see that [Σj=i \x ~ uj\p]* ι s

strictly decreasing when x varies from — oo to α, and is strictly increasing
when x varies from b to +oo. Again, given two samples A and A!, we
denote by A + A1 their amalgamation. Let M(A) = [α,6], M(A') = [α',ί/],
M(A + A') = [c,d\. Then, clearly M(A + A1) = M(A) Π M(A') provided
M(A)ΠM(A') φ 0. Moreover, it is easy to prove that M obeys the Cauchy
mean condition: if M(A)ΠM(A/) = 0 with, for instance, b < a!, then b < c
and d < a1.

Now we describe our algorithm. At a current step, we have a rooted
tree with a partition of X, say V, as a set of vertices. To every vertex Vi
of V, a sample A\ is assigned, where A{ stands for the amalgamation of
the samples {yji,l = 1,... ,r^} for all j such that Xj G V{. Initially, V is
the finest partition of X. For every V{ G V, denote M(Ai) = [ai,bi]. If for
every edge {yi,Vj) of the current tree with Vi -< Vj we have α̂  < α̂  , then
put f(xk) = a>i for every x^ G V{ and stop. Otherwise, find υo G V with
predecessors ^ i , . . . , vm obeying the following conditions

(i) αo < amax := maxi=i j... j mai;
(ii) for allz = 1,.. . , m if vi -< Vi then a\ < αo

Then aggregate vo and all vι such that aι = a^ax, and amalgamate

the corresponding samples AQ and A{. We get a new partition of X with
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^0 : ~ ^o U {vi : di = dmax) and all other subsets of V, and a new rooted
tree, to which we apply the same procedure.

Proposition 1 / obtained by this algorithm, minimizes the lp-criterion
function Dp(f) subject to the restriction that f is isotonic. The function f
can be defined in total 0(nr) number of operations.

Proof: The current step corresponds to the new isotonic /^-regression
problem:

(P) : minimize \ΣVi£V ΣyeAi \θ% ~v\p]^-> w ^ ^ the constraints: V{ -< Vj
implies θι < θj.

We prove by induction that every solution θ of the reduced problem

furnishes a solution / of the initial problem by letting f(xk) = Q% provided

Xk £v{. Clearly, that is true at the initial step. Suppose that at a current

step, there is vo obeying the conditions of the algorithm.

First, we show that there is a solution θ of (P) verifying §o — θj for some

j G {1, . . . , 777,}. Suppose there is a solution θ* of (P) verifying: ΘQ > θ* for

a l i i = 1,. . . , m. Then α̂  < θ* < ΘQ < 6Q for all i = 1,. . . , ra. Indeed, if

for some i, θ* < ai, defining θf by Q\ ~ θ* + δ and θ' :— 0* otherwise,

θ' should satisfy the isotony constraints and should reduce the value of

the criterion for δ > 0 sufficiently small. Similarly, if ΘQ > bo, defining θ"

by ΘQ := ΘQ — δ and θ" :— θ* otherwise, θ" should satisfy the constraints

and should reduce the value of the criterion for δ > 0 sufficiently small,

establishing our assertion.

Let θj realize max{0* : i = 1,. . ., 777,}. Then αo < maxα^ < θj < ΘQ < bo-

Define θ by θj ~ θj and θ = θ* otherwise. Then clearly θ satisfies the

isotony constraints and preserves the value of the criterion. Thus, θ is a

solution of a problem obtained from (P) by adding another constraint ΘQ —

θj, which is clearly equivalent to a reduced problem of (P) by aggregating VQ

and Vj, by amalgamating Ao and Aj to Af

0 and by joining the predecessors

of Vj to i>ό := VQUVJ. The hypotheses show that a'Q < amax, where M{A'Q) =

[αό,6o]. By induction and previous assertion one can deduce that there is

a solution θ of (P) verifying θo = θi for every i such that α; = α m α x . Since

every solution of the reduced problem defined by the algorithm is a solution

of (P) satisfying those new constraints, the induction is proved. Moreover,

at the end of the algorithm, θ defined by θ{ :— aι is clearly a solution of

(P). D

The condition required in the algorithm for pooling two adjacent vertices
indicates that we must start from leaves and proceed in an up-and-down
way. However, when we have a total order, the proof shows that we may
aggregate any pair of consecutive vertices violating isotony condition, as in
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the Pool-Adjacent-Violator algorithm.

3 Isotonic /^-regression problem and its variants

In this section we consider the isotonic regression problem with the Zoo-
error norm (i.e. the well-known uniform or Chebychev measure of error);
for algorithmic approaches to similar approximation problems see [4, 15, 14]
and the references there. For this problem we present a strikingly simple
optimal estimate which can be computed in time proportional to the size
of the covering graph of the poset (X, <). If X C Rd and \X\ = n the
computational complexity to compute this estimate is O(dn2). The result
is due to Ubhaya [32, 33] and was rediscovered by one of the authors of
this note. Also we consider the p-isotonic regression problem with the
Chebychev norm and show how to reduce it to a graph-theoretical problem.
In the particular case p = 2 this allows to present a polynomial algorithm.

3.1 Isotonic /^-regression problem

Let X — {#i,..., xn} be a set of observation points endowed with a partial

order -< and let y\,..., yn be the corresponding values of the dependent

variable y. The simplest (and the most economical way) to present a partial

order is to define its covering graph G = (X, E) : in G two elements Xi and

Xj are joined by an arc if X{ -< Xj and there is no other element Xk so

that Xi -< Xk -< Xj. The goal of the isotonic regression problem with the

Zoo-norm is to determine an isotonic function / : X —•> R that minimizes

the Zoo-error

Doo(/) = maXα-GxIyi - f(xi)\

(in [12] the history of using this and other criteria in estimation procedures

has been discussed).

For an element X{ G X consider the order ideals

L^{xi) = {XJ e X : Xj -< Xi},Ly(xi) = {XJ G X : x% -< Xj}

Let

f*(xi) =

and
/•(a;*) = min{% : Xj G Ly(xi)}.

The reflexivity of -< implies that L^(xi) Π Ly(xi) = {xi}. In particular,

f*(xi) > Λ(xi).

Proposition 2 The function f (xi) = l(f*(xi) + f*(xi)) minimizes D^f)
subject to the restriction that f is isotonic. Given the covering graph G,
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the values of f can be computed in total time O(\E\). If X C Rd, then the
commutation of f can be performed in O(dn2) time.

Proof: Let (x{,Xj) be an arbitrary edge of G, and assume X{ -< Xj. Since
L^(xi) C L^(XJ) and Ly(xj) C Ly(xi), we conclude that f*(xj) > f*{xi)
and f*(xj) > /*(#z), yielding that / is isotonic on X.

Suppose by way of contradiction that D^g) < Ax>(/) for an isotonic
function g. Let e = Ax>(/) and consider an element Xi such that e =
\f{xi) - y%\. Let f*(xi) = yj and f*(xi) = yk for elements Xj e L^(xi)
and Xk G Ly(xi). Suppose without loss of generality that iji belongs to the
segment [yk, f(xί)} Since \g{x%) — y%\ < e and g{xj) < g(xi) we immediately
obtain that g{xj) < f(xi). But then \g(xj) —yj\ > yj — f(xi) > e, contrary
to the choice of g.

The values of /* can be computed recursively, starting from the minimal
elements of X. If we know /* for all predecessors of x̂ , then f*(xi) is the
maximum among the y\ and max{/*(xj) : [x^Xi) G E}. Analogously,
the values of /* can be computed recursively starting from the maximal
elements of X. If /* is computed for all successors of â , then f*(xi) is the
minimum among the yi and min{/*(xj) : (xi,Xj) G E}. Evidently, this can
be done in O(|£7|) time. If X C Rd, then the covering graph of the resulting
poset can be computed in O(dn2) time. •

In Figure 1 we present an example of application of Proposition 2 (the
optimal error is e* = 4).

o 6

FIGURE l.

With few efforts one can present an optimal estimate to the general
isotonic Zoo-regression problem. Assume as before that with each element
Xi of (X, -<) is associated a set of (distinct) numbers yn,..., yin, and we
wish to find an isotonic function / on X that minimizes

- f(xi)\>
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For an element xι G X set

f*(xi) =max a ϊ . e L H { ( a . i ) maxι = i r . yjt

and

We assert that the function f{xi) — \(f*{xi) + f*(xi)) minimizes £>oo(/)
subject to the restriction that / is isotonic. For this we extend the partial
order -< from X to the multiset {yu : i — l , . . . ,n,Z = l,...,r^} : set
Vil -< Vjt if and only if xι -< Xj or i = j and yu > yjt. Let f(yu) be the
function defined as in Proposition 2. One can easily note that f(yu) = f(xi)
for all yu (Z = 1,. . . , r^). From this and Proposition 2 we deduce that f(xi)
minimizes Aχ)(/) The values of / can be computed in O(|£7| + Σi=ι ri)
number of operations.

3.2 p—Isotonic Z^—regression problem

In some recent papers [22, 2, 20] new generalizations of the classical linear

regression problem have been given. For example, [20] presents an effi-

cient algorithm for partitioning a planar set 5 = {si = (xi,yi), , s n =

(xn^Vn)} into two parts S\ and S2 such that

is minimized, where /1 and fi are the regression lines of the sets S± and
S2 (the multidimensional case is treated in [16]). Agarwal and Sharir [2]
presented an algorithm with complexity O{n2log5n) for solving a simi-
lar problem, replacing the Z2~criterion function by the Zoo-error function.
Namely, they are searching a bipartition of a planar set S such that their
maximum width is as small as possible. Recall that the width of a set is
the smallest distance between a pair of parallel supporting lines. Equiv-
alently, it is neccesary to find two linear functions f\ and /2, such that
maxSjG5{mini=i j2|yj — fί{%j)\} is minimized (one can formulate this prob-
lem for p-partitions as is done in [22]). For isotonic regressions, this leads
us to the following general formulation.

As before let X = {xi,... ,xn} be a set with a partial order -<, and
let y i , . . . ,2/n be the corresponding values of the variable y. We wish to
find a partition X\,..., Xp of X and the isotonic functions f \ , . . . , fp on
Xi , . . . , Xp, respectively, such that the i^-error

€ χ p | ^ - fp(xi)\}
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is minimized. Below we will show how to reduce this problem to a special
graph-theoretic problem and how to solve it efficiently for p = 2. Define
a symmetric matrix D = (cfij), where d{j — \{y% — yj) if Xi -< Xj and
y% > Vj, a n d d^ = 0 otherwise. Let e* be the minimum of the function
Ax>(/i> , fP) From Proposition 1 we obtain the following result.

L e m m a 1 e* is an element of the matrix D.

To find an optimal partition of X with respect to the criterion function
Ax)(/i> , fp) we proceed as follows (the idea is borrowed from the meth-
ods of solving center location problems; see for example [17, 30]). We sort
the elements of the matrix D in the increasing order and search the obtained
list for the minimum value which is feasible in the following sense. A value
e is feasible if there is a p-partition X\,..., Xp of X and the isotonic func-
tions / i , . . . , fp on Xi , . . . , Xp, respectively, such that .Doo(/i, , fp) < e.
To decide if a value e G D is feasible we define a new graph Γe. The vertices
of Γe are the elements of X, and two vertices X{ and Xj are adjacent in Γe

if and only if either Xi and Xj are incomparable or xι -< Xj are comparable
and yι — y3 < 2 e. A clique of Γe is a subset of pairwise adjacent vertices.

L e m m a 2 e is a feasible value if and only if the vertices of Γ e can be
covered with at most p cliques.

Proof: First, assume that Aχ>(/i, - ,fp) < e for isotonic functions / i , . . . , fp

defined on classes X\,..., Xp of a partition of X. We assert that each X^
is a clique of the graph Γ€. Assume the contrary, i.e. yι — yj>2-e for some
Xi, Xj G Xk,Xi ~< Xj- We can suppose without loss of generality that yj is the
smallest value in {ys : xs G Ly(xi)} ΠXk> Additionaly, we can assume that
fk if defined as in Proposition 2. By this result fk(xi) — \{yj + 2/t), where
yt is the largest value in {ys : xs € L^(xi)} Π Xk Since \yι — fk{xi)\ < e
and fkixί) <ί fk{xj)-> from y% — yj > 2 e one can easily deduce that
\Vj ~ fk{xj)\ > 65 contrary to feasibility of e. Therefore, if e is feasible,
then XL, . . . , Xp are cliques of the graph Γe.

Conversely, let X\,..., Xpt be a covering of the vertices of Γ€ with p'
cliques (pr < p). Let fk be the isotonic function on Xk defined in Proposition
2. Pick an arbitrary element X{ G Xk Then fk(xi) — \{yj + yt) where yj
is the smallest value in {ys : xs G Ly(xi)} Π Xk and yt is the largest value
in {ys : xs G L^(xi)} Π Jffc. Since xt •< x% •< Xj and z^z?' G Xt we deduce
that 0 < yj — yt < 2 e. Since ^ G [yt,2/j] we immediately obtain that
|y* - fk(xi)\ < £• Therefore Doo(/i, . . - , / , / ) < e, i.e. e is feasible. •

The problem of covering of a graph with a given number of cliques is
known to be TVP-complete [13], however in the particular case p — 2 it can
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be easily solved. Indeed, a graph can be covered with two cliques if and
only if its complement is bipartite. To find a bipartition (alias bicolouring)
of the complement Γ€ of Γe one can simply use the breadth-first search; see
[13] for details. We can construct directly Γ€ : two elements Xi,Xj G X are
adjacent in Γ€ if and only if X{ -< Xj and yi—yj > 2 e. Therefore, to solve the
initial regression problem by Lemma 1 we must find the smallest feasible
value in D. We use the binary search in the ordered matrix D. Namely, we
start from a median e of this list. We construct the graph Γ€ and check if
this graph has a covering with p cliques. If the answer is "yes" we continue
the search in the first half of the list (removing the second sublist from
further considerations). Otherwise, if the answer is "not", then we remove
the first half and continue the search in the sublist of D containing the
elements larger that e. In the current list we take a median element as a
current e and check if it is feasible. We continue the procedure, until we
arrive at a list containing only one element e*. This is the optimal error
for the formulated regression problem, while any covering X i , . . . , X p of
Γe* with at most p cliques and the isotonic functions f \ , . . . , fp defined on
XL, . . . , Xp according to Proposition 2, represent the optimal solution. To
find it, we must perform O(logn) feasibility tests (namely, logn2 such tests)
in the sorted matrix D (to order the elements of D we need O(n2logn)
operations). The graph Γ€ can be constructed in 0{n2) time. If p = 2
within the same time bounds one can decide if Γe is bipartite. Therefore,
the whole complexity of the algorithm for p = 2 is O{n2logn).

Proposition 3 For p = 2 the optimal bipartition of X with respect to the
loo-criterion function can be constructed in 0{n logn) number of opera-
tions.

In Figure 2 we present an optimal bipartition of the poset from Figure
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1. Note that the optimal error is e* = 1.

3.3 Isotonic /^-regression problem with a given number
of values

Some papers [4, 15, 14] consider the following approximation problem:
given an integer p and (x1 ? yλ),..., (xn, yn) in E 2 with xλ < . . . < xn find a
piecewise-linear function / with at most p links such that maxi=iv.. j n |/(:ci) —
yi\ is minimized. Efficient algorithms for solving this problem are presented
in [15, 14], for motivation see [4, 15]. If instead of piecewise-linear functions
we consider stepwise functions with a fixed number of steps we obtain a
particular case of the rectilinear center trajectory problem investigated in
[6] (for the latter problem [6] presents an algorithm with the complexity
O(np)). In this section we consider the following regression problem: con-
sider the numbers x\ < . . . , xn, and, assume that with each Xi is associated
a set of (distinct) numbers y^,. . . , yiri. Given an integer p we wish to find
an isotonic stepwise function / that minimizes

i r.. ) r i |^/ - f(xi)\

subject to the restriction that / takes at most p distinct values. Let α̂  =
min/=iv>>jr iy^ and bi = max/=ir.. jΓiyi/. The key observation is that, as in the
previous section, the optimal error e* of D^ is an element of the matrix
D — (dij), where dij = \bι — dj\. Therefore we can use a binary search
in the ordered list of the elements of D. With a current e G D we must
answer the following question: "There is an isotonic function / with at
most p steps such that JDOO(/) < 6 ?" To perform this test we proceed
as follows. For a given Xi denote by Si the intersection of the segments
[a,i — e, α̂  + e] and [b{ — e, bi + e]. We sweep the list x i , . . . , xn from left to
right. We need three parameters S, q and S whose meaning shall became
clear immediately. Initially, let S := SΊ, q :— 0 and S = (—oo, xι\. At point
Xi we do the following. Find S Π Si. If this intersection is nonempty, then
set S ~ S Π Si, S = S U (xi-ι,Xi\ and go to the point Xi+i Otherwise,
if S Π Si — 0, then for all x G S define /(x) := s, where s is an arbitrary
value from the segment S. If Xi < s, then stop: the test has a negative
answer. Otherwise, set S := Si, q := q + 1, S = (xΐ-i, xi\ and consider the
next point x +i (of course, if i = n we simply put /(x;) = y% and finish
the procedure). After n steps we return answer "yes" if q < p and the
answer "no", otherwise. The complexity of this procedure is 0{n). The
proof of correctness is straighforward. To find an optimal isotonic function
/ with at most p values we must perform O(logn) feasibility tests in the
ordered matrix D. If we simply sort the matrix D, the total complexity
of the algorithm will be O(n2logn) (actually, this is the time to sort D,
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because the complexity of testing is only Oinlogn). We can improve the
whole complexity of our algorithm. Instead of constructing and sorting
the matrix Z), we can use the selection algorithm of [23]. It presents an
O(nlog2n) time algorithm for computing the fcth largest element in the
set of all simple paths in a tree. One can view the sorted list of numbers
{α ,̂ bi : i = 1, . . . , n} as a path; therefore, we can apply the algorithm from
[23] O(logn) times, leading us to an algorithm with the total complexity
O(nlog3n).

Proposition 4 Given a total order x\ < . . . < xn and an integer p >
0 an isotonic function f minimizing the l^-criterion function subject to
the restriction that f has at m,ost p distinct values can be constructed in
O(nlogn3) number of operations.

Most likely, using the parametric search as in [2, 14] one can solve this

problem more efficiently. We leave open the question whether a similar

problem for all partial orders is ΛΓP-complete. Finally note that within

the same time bounds we can solve the problem of approximating with a

stepwise function with at most p distinct values. Again, the optimal Zoo-

error is an element of the matrix D. We can apply the same test, but in

case S Π Si = 0 it is not necessary to check whether X{ < s.
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