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Abstract: This paper is a comparison of two methods for computing
L\ estimates of the parameter vector β in the linear model. The main
methods in the comparison are in two groups: special purpose linear
programming (LP) methods which exploit the structure of the objective
function and iteratively re-weighted least squares (IRLS). The special
purpose LP methods included in the review are: (i) the Barrodale and
Roberts (BR) algorithm and (ii) the modified form due to Bloomfield and
Steiger (BS). The IRLS methods is a new development which exploits the
piece wise differentiability of the objective function and which avoids the
difficulties previously associated with least squares based schemes. All
algorithms have been implemented in a common language, in order to
provide a better basis for comparison. To summarise: we found that our
implementations of the BR & BS algorithms are generally quicker than
existing implementations and general purpose LP solvers; the new IRLS
algorithm is faster in circumstances where the number of observations is
very large relative to the number of parameters to be estimated.
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1 Introduction

The method of minimum absolute deviation (MAD) or L\ estimation, to
give it one of the many names by which the technique is known, is a robust
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method for estimating the parameters in the linear model:

The objective function to be minimised is:

f(β) = Σ\yi-βτχi\ (i)

where β G 1Zk. Minimising /(/?) will also give maximum likelihood es-
timators of β when the {yι\ are random sample from the double sided
exponential distribution. In this paper it is assumed that the function is
not degenerate, in which case it will possess a unique minimiser, β* say, at
which up to k of the residuals:

n^yi-β^xi (2)

will satisfy:

T{ = 0, i e B, say (3)

The set B defines a set of basis vectors X{ which span TZk. If the subsets of

{yi\ and {x{} defined by B are denoted by y* and X*, then β* satisfies:

X*β* = y* (4)

There are two general types of algorithm for calculating MAD estimates
of the parameters of a linear model. The first type relies on the fact that
the objective function /(/?) at equation (1) can be formulated as a linear
program, Charnes et al (1955). This type of method includes a procedure
due originally to Barrodale and Roberts (1973) [henceforth BR] which ex-
ploits the fact that the MAD objective function may be written as an LP
with special structure. Other LP methods, which also exploit the special
structure, have been reported by Bloomfield h Steiger (1980) and Seneta &
Steiger (1984). The second type of procedure uses iteratively re-weighted
least squares (IRLS). This method was reported by Schlossmacher (1973)
and Fair (1974). According to Bloomfield and Steiger (1984, page 259)
[henceforth BS], however, it was due originally to Beaton Sz Tukey (1974),
Comparative studies are reported in BS. There is a comprehensive review
of algorithms in Dielman (1992).

One of the motivations for this paper is that, although there are very
strong similarities between the special purpose LP solvers mentioned above,
comparisons are limited by the fact to date, and to the best of our knowl-
edge, the software implementations are quite distinct. Self evidently, com-
parison is greatly facilitated if the software is written in the same language
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and meets similar design criteria. A second motivation is our wish to de-
velop algorithms to minimise mixed objective functions of the form:

Ydβ
τXj\. (5)

2 = 1 j=l

These objective functions arise in other robust methods and in dynamic
estimation schemes in which the current parameter estimates are (approx-
imately or asymptotically) normally distributed. Robust estimation meth-
ods using similar convex objective functions, in which there is a modulus
term, have been studied by Dodge Sz Jureckova (1991 and 1992) and related
computational aspects are reported in Dodge et al (1991). Objective func-
tions of the form in (5) also arise in portfolio optimisation when the conven-
tional quadratic programming formulation is extended by the inclusion of
transactions costs. In the case of portfolio optimisation, the minimisation
of /(/?) is invariably carried out subject to a number of linear inequality
constraints of the values of the parameter vector β. Algorithms to minimise
/(/?) given at equation (5) may use IRLS methods - see Adcock h Meade
(1995) for an example of IRLS used in portfolio optimisation. However, the
well reported deficiencies of IRLS have prompted us to consider the general
question of algorithms for MAD estimation ab initio.

The purpose of this paper is therefore to compare the solutions times
of the main established special purpose LP and IRLS algorithms for MAD
estimation. We use new implementations of the Barrodale and Roberts
and the Bloomfield and Steiger algorithms. We also present a new proce-
dure for IRLS. The algorithm that we describe in Section 3 of this paper is
different from the scheme developed by Schlossmacher and others in that
it exploits the piecewise differentiability of the objective function. All al-
gorithms included in the comparison have been re-implemented in a single
programming language and in a similar programming style. The aim is to
provide a fair basis for comparison of the solution times. In addition, and
as reported below, we have found that our new code offers performance
improvements over existing software.

The structure of the paper is as follows. Section 2 describes methods
based on special purpose linear programming methods. Section 3 presents
our scheme which uses iteratively re-weighted least squares. We compare
performance using a number of different data sets in Section 4. The final
section of the paper contains a summary and concluding remarks.

2 Linear programming methods

Following Charnes et al (1955), the objective function at (1) may be written
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exactly as:

f(β) = Σ\yi-βTXi\ = Σ,\eΐ + e7\ (6)

where:

ef,e~>0 (7)

and where the corresponding n-vectors e + and e~ satisfy:

y-Xβ = e+-e~ (8)

Minimisation of /(/?) is now a linear programming problem involving the
2n+p variables e+, e~ and /?, together with the n equality constraints at (8)
and the 2n non-negativity constraints at (7). Calculation of the minimiser
β* may be undertaken using standard LP solvers. However, these methods
are very slow when compared with special purpose solvers which can exploit
the structure of the LP formulation of the objective function. The following
results are summarised from BS who provide further details and proof of
the properties of the algorithms.

2.1 The Barrodale and Roberts (BR) algorithm

The BR algorithm may be viewed as row and column operations on a

(n + k) * (k + 1) matrix A. The initial value of A is:

A = X y
I 0

In the steps below the elements of A are {α^}. Note that in this notation i

indexes columns and j rows rather than the more conventional arrangement.

Step 1 compute:

l ^ l ' 3 o v e r

3

hi = Σ α i * ' si9n{ajk+i)
j

li = min(gi - /ii, ft + hi)

where: i = l(l)fc and j = l(l)n.

Step 2 determine:

p = I where lj = mi
i

If Z/ > 0 then go to Step 5
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Step 3 determine the pivot row q by finding the MAD estimate of t in:

~ tajP\

ie, find ί* = yq/xqp. It should be noted that this requires a sort routine
and that suitable choice of sorter can affect algorithm timings.

Step 4 pivot on row q column p, ie compute new columns ol of A:

a' p = a p/aqp

a'j = a 3 ~ aqja p 3 Φv

and go to Step 1.

Step 5 The minimiser β* may be recovered from the block of A corre-
sponding to the initial zero vector, ie in column k + 1 rows n + 1 through
n + fc, together with a sign reversal. Specifically: β* = — an+ik+i.

2.2 Bloomfield and Steiger (BS) algorithm

There are two modifications to the BR algorithm which are described in BS.

One is due to Bloomfield & Steiger (1980) themselves. It is the essentially

the same as BR except that in Step 1 a heuristic is used to compute gι and

hi. In an obvious notation:

BS _ oBRιSΓ^\ I hBS -hBR/SΓ\a-\

3 3

According to Bloomfield h Steiger, the BS algorithm often converges more
quickly than the original BR procedure.

3 Algorithms based on iteratively reweighted
least squares (IRLS)

Iteratively re-weighted least squares (IRLS) is an alternative approach to

LP. The usual approach is to write /(/?) identically as:

f(β) = Σ,{yi-βτχi)2/\vi-βτχi\ (9)
2 = 1

If βp is an approximation to /?*, a new approximation is computed by

minimising the sum of squares:
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which is equivalent to differentiating (9) while holding the \yι — βτ X{\ terms
in the denominator fixed. In conventional OLS matrix notation, the equa-
tion for the new approximation βp+\ may be written as:

XτWpXβp+1 = XτWpy (11)

where:

-pTXi\} (12)

Since it is known that, at the minimiser /?*, up to k of the residuals Ίji—β*τXi
will equal zero, this procedure requires some modification or it will fail as
the elements of Wp become very large. A common modification is to define:

Wp =

where:

Wpi = Oiΐyi-βTχi = O (13)

= 1/ yi — βpxi otherwise

This algorithm does not run without problems in practice and it is crit-
icised in BS on the grounds that it is slow and prone to be unstable. A
modification to the basic IRLS scheme was introduced by Adcock Sz Meade
(1995). They note that at the points at which it exists, the vector of partial
derivatives of /(/?) is:

/'(/?) = 2XTWX - 2XτWy - ( ^ x{ - £ x{) (14)
A B

where:

W = Diag{l/\yi - βτxi\} = Diag{Wi} (15)

A — {i : (yi - βτXi) < 0} and B = {i : (^ - βτxi) > 0}. This suggests the

iterative scheme with limiting equation:

β = (XτWX)~1{XτWy + 0.5(Σ χi ~ Σ x 0 > ( 1 6 )
A B

which may be re-arranged as:

— βp- O.bδp say,

where <5p is the step length at iteration p. For practical purposes, the
modification of Wp described at (13) is employed. The process terminates
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when the absolute change in the value of the objective function is less than a
given tolerance and the absolute change in each estimated parameter value
is also less than a set tolerance.

To improve convergence, we also employ a number of empirical modi-
fications of the scheme. When the process described above converges, to
βL say, the label set corresponding to the k smallest absolute values of the
residuals \yι — βίTXi | is used to define a basis B*. If the subsets of {^}
and {x{} defined by B* are collectively denoted by y* and X*, then the
minimiser β* is computed as the solution to:

X*/3* = y* (18)

as long as /(/?*) < /(/?')• Otherwise the minimiser is taken as β\ It should
be noted that if /(/?*) > /(/?') then β* cannot be the minimiser which
implies that βι is not the minimiser either. However, for the data sets
described below, this algorithm always converged to the correct solution.
That is, the solution computed by the IRLS method described above was
always the same as that computed by the BR or BS algorithms. In this
context the same is taken to mean an accuracy equal or better than the
process termination parameters.

4 A comparison of performance

In order to compare the computational efficiency of the MAD algorithms
described, the times taken by the algorithms to solve a range of problems
were measured. If a general data set is denoted as {^ x^ ; i = l(l)n,
j = l(l)fc} then the test data was generated by the following procedure.

1. The xn are sampled from a uniform distribution on the interval
(-1000, 1000), for i = l(l)n.

2. The remaining Xij , j = 2(l)fc are generated by the equation:

Xij —— Uΐj ~\~ CjX\j

where the u{j - [/(-1000, 1000) for i = l(l)n, j = 2(l)fc and where the
constants Cj were set to 2.0, j — 2(l)fc, to control the collinearity between
the Xij.

3. The dependent variables were generated by the equation:

k

where the true coefficients βj ~ U(-l, 1).
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MAD estimation corresponds with the maximum likelihood estimation
of the parameters {βj} where the residuals ε% follow a double sided expo-
nential distribution. BS use both the Gaussian and the Pareto in their
algorithm comparisons. This led us to generate three different data sets
where the values of the error term Si are sampled from three different
distributions, namely the double sided exponential, the Gaussian and the
Pareto with appropriate parametrisation. In order to standardise the er-
ror distributions, the interquartile range for each distribution was set to
(-50, 50). Data sets were generated with the combination of numbers of
observations and numbers of variables shown in Table 1. For each error
distribution, four sets of observations for each combination marked with
tick, giving 480 = 3 * 4 * 40 data sets in all.

Table 1: Data sets generated

Number of
variables

1
2
5
10
20

10

*
*
*

20
*
*
*
*

50
*
*
*
*

*

Number of
100

*
*
*
*

*

200
*
*
*
*

*

Observations
500

*
*
*
*

*

1000
*
*
*
*

*

2000
*
*
*
*

5000
*
*

10000
*
*

The BR algorithm and the iteratively re-weighted least squares (IRLS)
algorithm were used to estimate the parameters of each data set. Both
algorithms were programmed in Fortran 77. We implemented a new version
of the BR algorithm. This follows the procedure described in Section 2. The
computations were performed on a Silicon Graphics workstation. Since the
solution times for small problems was very short, the actual time measured
was that to solve the same problem ten times.

The convergence parameters in the IRLS algorithm were set so that the
algorithm was deemed to have converged if:

f(βP-i)/f(βP) ~ 1 < 10-6 and ± £ \Pi* ~ / W l < 10~6

j=i

It is well known that the values of these tolerances can affect solution
time substantially. The above values were chosen after some initial inves-
tigation with the aim of ensuring that, for those data sets where the new
IRLS method converged satisfactorily, the numerical discrepancies between
IRLS and LP solutions were small. As already reported in Section 3, for
the data sets considered, all three method always converged to the same
solution.
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In order to gain some understanding from these timings, a model of
the computation time, T say, as a function of the number of variables, k
say, and the number of observations, n say, was constructed. Anderson &;
Steiger (1982) proposed a model of the form:

+ η= 7o + 7in + 72& +

Trials with this model were unsatisfactory in that the estimated values of
T were negative for small values of k. Beasley (1990) suggested a log-linear
model for the timing of the LP solutions. This provided a basis for the
following model:

ln(Γ) = 72 ln(n) + 73 77'

The coefficients η were estimated by minimising Σl7?'!- The estimated
coefficients for the BR algorithm and for IRLS are in Table 2 which shows
the estimated coefficients over all data sets and for each error distribution
separately.

Table 2: Estimates

Error

Distribution

Neg. Exp.

Gaussian

Pareto

Combined

0
1

2

3
mean |

0
1

2

3
mean

0
1

2

3
mean

0
1

2

3
mean

of

e'l

A

e'l

e'|

parameters in

Barrodale

and Roberts

-10.76

1.19
2.32

-3.96
0.20

-10.68

1.18
2.38

-4.21

0.19

-10.73
1.19

2.35

-4.15
0.19

-10.70
1.19
2.34

-4.08
0.20

timing model

Iterated Least

. Squares

-9.57

1.58

1.29
-0.89

0.38

-9.51
1.58
1.17

-0.55

0.35

-8.59
1.74

1.54

-2.15

0.31

-9.30
1.56

1.30
-1.02
0.42
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Comparison of the parameters for the time taken by the BR algorithm
shows a consistency between the different error distributions. There is no
discernible difference in timings caused by the choice of error distribution.
The timings for IRLs are more dispersed about the fitted equation, showing
that for the same dimension of problem there is twice as much variability
in solution time in terms of mean absolute error than for the BR algorithm.
For a problem of the same dimensions, the Pareto distribution appears to
require a greater solution time than the other distributions by a factor
of about two. Anderson & Steiger (1982) conjectured that the timing of
the BR algorithm increased with approximately n 2. Their conjecture is
confirmed by these results which suggest that timings are proportional to
n 2 ' 3 4 . The term in ln(n) adjusts this slightly over a wide range of numbers
of observations. The timing increases slightly faster than linearly in terms
of the number of variables: it is proportional to fcL2.

The reliance of the IRLS technique on matrix inversion means that the
computation time increases faster than linearly with k. In fact it appears
that computation time is proportional to to fc15. However, in contrast to
the BR algorithm, the IRLS computation time increases only a little faster
than linearly in the number of observations, ie it is proportional to n 1 3 .

The actual times plotted along with the estimated times for the BR and
IRLS algorithms are shown in Figures 1, 2 and 3.

Figure 1. Times for Barrodale Roberts
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Times are shown for n observations and k variables, where n and k are identified respectively by
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Figure 2. Times for IRLS
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The greater variability of the IRLS solution times is apparent. More
interestingly, the superiority of the BR algorithm decreases as the number
of observations increases. This crossover is clearly brought out in Figure
4 where the expected solution times for each algorithm is shown for one
and five variables. Thus, for one variable and about 1500 observations, the
expected solution times are the same. For a larger number of observations,
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one would expect IRLS to be quicker. For five variables, the cross over
occurs at about 3300 observations. We note the results of a simulation
study of times for MAD estimation of simple linear regression reported by
Armstrong &; Frome (1976), who also compared IRLS and LP methods.
Although their results cannot be compared directly with ours, they also
found a similar superiority of LP over IRLS as far as mean solution time is
concerned. However, as the table in their paper indicates, the superiority
declines as the number of observations increases.

As indicated above, as part of this study we wrote up a fresh modular
implementation of the BR algorithm. This has a built in facility to be
converted to the Bloomfield and Steiger algorithm which we also used to
compute solution times for the above data sets. The parameter estimates
in the above timing model for the BS algorithm are shown in Table 3.

As the table shows, there is no discernible difference between the two
solution times for the BR and BS algorithms. The estimated value of 72
for the BS algorithm is broadly consistent with Bloomfield and Steiger's
contention that the computation time is linear in the number of observa-
tions n. However, the more interesting coefficient is that for the number of
variables which shows that the solution time increases less than linearly. It
is in fact proportional to fc° 67. The disadvantage with this implementation
of the BS algorithm is that it is slow for small problems.

Table 3: Estimates of parameters in timing model for BR/S algorithm

Error Distribution
Combined 0

1
2
3
mean |e'|

BR/S
-2.07
0.67
1.21

-4.11
0.44

Finally, we also used two other MAD algorithms which are in the public
domain and computed the solution times. The first was the version of the
BR algorithm provided in the NAG library. The second was a line by line re-
implementation of the BR algorithm as described in Barrodale and Roberts
(1974). We found that, with respect to the number of variables, these two
algorithms are similar to our modular implementation of BR and BS in that
the solution times vary linearly with the number of variables. However,
we also found that the solution time of these public domain algorithms
increases much more steeply with the number of observations.

It should be noted that none of the above data sets are degenerate and
that, because of the use of the uniform distribution, there are no extreme
outliers in the independent x variables. Investigation of conditions in which
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the new IRLS algorithm, or indeed BR/BS, might fail remains a topic for
further investigation. At present, we are inclined to the view that some
algorithm problems may be due in part to the use of an inappropriate
programming language.

5 Summary and concluding remarks
In this paper, we have presented and compared two methods for MAD
estimation of the parameters in a linear model. They are described in detail,
with accompanying pseudo-code in Adcock &; Meade (1997). There is no
single algorithm that is superior to all the others, at least as far as the data
sets that we have investigated are concerned, The IRLS algorithm that we
have described in this paper did not suffer from any problems of convergence
or of numerical accuracy. Furthermore, we found it to be faster than all of
the special purpose LP algorithms for data sets where the number system
is greatly over-determined. We did not find significant differences between
the BR and BS algorithms. Our investigations of various implementations
of the BR algorithm indicated that the speed of the sort routine, which is
a necessary step in each iteration of the algorithm, is crucial to the overall
time taken. According to Dielman (1992), it is also likely that the algorithm
due to Armstrong et al (1979), which employs an LU decomposition of the
basis matrix, may lead to further performance improvements. This remains
a topic for further investigation.
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