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1 Introduction

In regression models the Li-norm estimators receive their justification from
robustness theory. For the error distribution only assumptions on the be-
havior around the median, which should be zero, are required for consis-
tency results.

For nonlinear regression the consistence of the Li-norm estimators is
shown by Oberhofer (1982). Richardson and Bhattacharyya (1987) ex-
tended this result to general noncompact parameter sets by using a sieves
method. The general approach of M-estimators in Liese and Vajda (1994)
for nonlinear regression models includes also the Li-norm estimator. They
obtained a similar result as Richardson and Bhattacharyya (1987) with a
different method and conditions that are statistically more transparent.

The concept of minimum contrast estimators and the method of sieves
are studied in the nonparametric theory by van de Geer (1990), van de Geer
(1995), Birge and Massart (1991) and Birge and Massart (1994). They
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apply their general results for consistency rates of minimum contrast esti-
mators to the Li-norm estimator of the nonparametric regression function.
(Compare also the Section 3.4.4. in the recent book of van der Vaart and
Wellner, 1996).

The aim of this paper is to give consistency results for Li-norm estimator
in semiparametric regression models, where the parameter of interest is of
fixed dimension and the nuisance parameter is either given as an unknown
function from a nonparametric function space or has a dimension which
increases with the sample size. In this paper we will study simultaneously
three models, namely nonlinear regression, nonlinear functional relation,
nonlinear semiparametric regression, all to be introduced in Section 2. This
allows us to demonstrate the line of proving the Lχ-norm consistency results
and to emphasize the underlying problems. For illustration reasons the L\-
approach is also embedded in the minimum contrast context, see Section
3. The proof consists mainly of two steps given in Section 4: first the
approximation of the empirical Li-norm by its expected value, which will
be done in Subsection 4.1, and second the identification of the parameter
by using the expected values of the difference of empirical Lχ-norms in
Subsection 4.2. The identification problem is specific for the individual
models. This is not characteristic for the Li-norm approach, since the same
problem also occurs in the Z/2-theory. The technique of approximation is
more or less standard and is based on results of the increments of sub-
Gaussian processes. In Section 5 the consistency results for each model
are separately given. For the nonlinear regression model this is a known
strong consistency result in form of an exponential probability inequality.
The consistency result for the nonlinear functional relation models is new.
Under this kind of entropy condition on the nuisance parameter space only
results are known for the least squares estimator, see Zwanzig (1990). The
nonlinear semiparametric model is of a special structure, because of the
constrains imposed by the identification problem. Linton (1995) studied
this model with a linear parametric part. The result given here for this
model seems to be new as well.

2 The general setting

Here we introduce a general semiparametric regression model to be specified

in the following. Suppose we have independent and in general not iden-

tically distributed two dimensional real valued observations (yi,xχ),....,

{yn,xn), generated by

Xi = h(ξi,β)+ε2i, (2)
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with i — l,...,n. The probability of each observation (yi,Xi) is Pξφ. The
common distribution of the whole sample is denoted by Pξβ = ΠΓ=i Pξίβ
and dominated by a σ-finite measure μn.

The errors Sji are i.i.d. with distribution Pe, expected value zero and
positive variances σ2. The error distribution does not depend of the pa-
rameter β. To get the consistency of Li-norm estimators we will need the
assumption E on the error distribution that the median is zero and that
the distribution has enough mass in the local neighborhood of it:

E 3 Do 3 κe Vd < Do such that

Pε (-d < ε < 0) > κε d , Pε (0 < ε < d) > κε d. (3)

The functions h (.,.) and g (.,.) are continuous and known. The regres-
sion parameter β £ B C Rp is the parameter of interest. The dimen-
sion p of β does not depend on the sample size n. The design points or
variables {£i, ..,£n} C R are unknown and fixed. They are the nuisance
parameters, whose number grows with the sample size n. We write the
nuisance parameters as components of a column vector of dimension n:
ξ = ξ(n) = (f1? . . . ,£ n ) τ G X^ C Rn. The common unknown parameter is

θ = (ξ,β) e θ = XW xBC Rn+v. (4)

The model assumptions (1), (2) above include different models for dif-
ferent specification of χ(n) C Rn and of the functions h and g.

2.1 The nonlinear regression model

Suppose the design is known. That is, we have X^ = lξ° = (ξjj*,..., ξ°) >.
We consider only the first equation (1) and obtain the nonlinear regression
model with n observations

yi = 9(ξi,β)+εii, with i = l,...,ra. (5)

Note that in this model no nuisance parameters occur.

2.2 The nonlinear error-in-variables model

For h (ζi,β) — ξi in (2) we obtain the nonlinear error-in-variables model,

yi = 9(ζi,β) + εiu (6)



104 Silvelyn Zwanzig

(7)

with i = 1,..., n. This is exactly the functional one, because the variables are

considered as fixed and unknown and play the role of a nuisance parameter

with increasing dimension. For consistency we need additional assumptions

on the set of nuisance parameters X^, because we know that for X^ =

[0, l ] n the least squares estimator is inconsistent, see Kukush and Zwanzig

(1996). One interesting additional information may be

* ( n ) = {ξ= (ξl, - ξnf : 0 < & < & < - < ξn-1 < ξn < l } (8)

On the first view this assumption seems to be artificial; it is, however,
useful in applications, for instance in biology or chemistry. There the un-
known design points ζi often stand for different levels of concentration.
The experimenter measures these concentration levels with error e<n. But
he does have some influence on the level that the concentration lies at and
he can guarantee with high security that the concentration level of the next
experiment will be higher.

The assumption (8) can be rewritten

*(n) = {ξ = (f («i), - , / (zi), - , / (zn))τ : / : [0,1] - [0,1] , / increasing}

(9)

where the z\ <,...,< zn are fixed design points satisfying the following

design condition:

D

lim max \zi — Zi-ι\ = 0.

Another possibility is to consider

X(n) = {ξ = (f (*i),-..,/ (zi),..., / (zn)f : / G Xm,a (C, L)} (10)

with

(11)
This kind of additional information is also used in the following semi-

parametric model.
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2.3 The nonlinear semiparametric model

Assume that {z\,...,zn } C [0,1] are known design points with D. Un-
der the specification ξi = f (zi) and g(ξi,β) = m(z^β) + &, where the
functions m and / satisfy the following identification condition,

I D 3n0Vn > no3{wi} > 0, Σ7=i ω< = l V / 6 Xm^ (C, L) V/? G # c such
that

) = <>, (12)
2 = 1

we consider only the first equation (1) and obtain the model

yi = m (zi,β) + / fa) + εu. (13)

The condition I D contains the orthogonality in the sense of the empirical

measure generated by the weighted design points z\,...,zn. This model (13)

describes alternatives in the context of model choice.

3 Minimum contrast estimates

The Li-norm estimator will be considered as a special minimum contrast
estimator. We call a nonrandom positive real function Cn : θ G Θ c —> R+
a contrast for θ at θ^ iff it is lower semicontinuous and

minC n (0), (14)

where Θ c denotes the compactification of the parameter set X^ x B in
R n p . The contrast may depend on the sample size n. Examples are the
empirical L^-contrast

or the asymptotic Lς-contrast

Cn (θ) = C(β) = J\g (x, β) - g (x, β°) \q dG, (16)

with the 0(n ) = (β°,ξ°) satisfying (1) and (2). The first depends on the

unknown design points ξ G J^n\ the other on an asymptotic design G.

Under a unique parameterization of the regression function each distance
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measure d for functions g (.,/?) £ Λ4 seems to be a useful contrast at /3(n) =
/J°, namely Cn(β) = d (g (.,β) ,g (.,β0)) .

We call a measurable function

Cn (.,., . ) : R n x R n x θ c :-» R + (17)

a contrast function and require that it is continuous with respect to θ. In
the general statistical experiment, which includes random processes and
random fields as well, Liese and Vajda (1995) introduced a more general
concept and called the function corresponding to (17) a contrast principle.
Note in order to simplify the denotation we will suppress the dependence
on the sample and let the tilde hints to this: Cn (X, Y, θ) =: Cn (θ) .We then
define the corresponding estimator as follows.

A measurable solution θ : Rn x Rn —» θ c is called a minimum contrast
estimator iff

0eargminCn(<9). (18)
θ£θc

Under the model assumptions above the existence of minimum contrast
estimators are given by the Lemma 2 of Liese and Vajda (1995).

The following lemma gives the connection between the consistency of
the minimum contrast estimator and the uniform^consistent approximation
of the contrast Cn (θ) by the contrast function Cn(θ). It is a version of an
"argmin" result, like the argmax theorem for i.i.d. experiments in van der
Vaart and Wellner (1996). Consider the differences of the contrast and of
the contrast function,

ΔC n (θ) = Cn (θ) - Cn (θ(n)) and ACn(θ) = Cn (θ) - Cn (θ{n)) . (19)

Lemma 1 Let p : R+ —> R + be strictly increasing , with p (0) — 0. Let
d(.,.) be a semimetric on θ c . For any e > 0 define the set

θn (e) = θ c Π {θ : d (θ, 0 ( n )) > e} . (20)

Let Cn be a contrast with

ΔC n (θ) = Cn (θ) - Cn (θ{n)) >p(d (θ, θ{n))) . (21)

Then

Ve>0 P(d(θ,θ{n))>e)<P\ sup
ACn(θ)-ACn(θ)\ \

p(d(θ,θ{n)))
(22)
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Proof: From (21) follows that

min , " 7 " v~\x >
*€θ n (6)p(d(M ( n ) ))

Under θ G θ n (e) we have Cn{θ) < Cn(θ{n)^ and p (d (0,0(n))) >

p (e) > 0, thus

ACn (θ)
, ,„ V ;' < 0. (24)

Hence under θ e θn (e) we obtain from (23) and (24) the following chain
of inequalities

Δ C n (0\ ACn (θ) ACn (θ) - ACn (θ) I
1 < min —y— r ^ ._ ' < sup ι-

p(d(θ,θ{n))) θεθn(e) p(d(θ,θ{n)))

(25)
which yields the statement of the lemma. D

Note that the rate of convergence of the minimum contrast estimator
given by this lemma depends mainly on the separation property of the
contrast (21) and the semimetric d(.,.) chosen in (21).

4 The Li-estimator

In the following we focus our attention on the Lχ-contrast function only.
This means, let from now on

ΔCn (θ) = f > H (|eii + Ag (&,/?)| - | ε i i | ) + f > 2 ί (|e2ι + Ah (ζitβ)\ - \ε2i\)
2 = 1 2 = 1

(26)
with

ξi, β)=g ( # , β°) - g fa β) and Δ^ (&, β) = h (&,

We will see that the Li-contrast is

ACn(θ) = EζOβOACn(θ). (27)

It is easily checked that the Li-contrast does not coincide with the contrast
defined by the empirical Li-metric (15) or by the asymptotic Li-metric
(16), see Lemma 4.

Applying Lemma 1 for the consistency proof of the Lχ-estimator, we
have to do two steps: first the uniform approximation of the contrast by
the contrast function with an appropriate rate, second the study of the
separation condition (21).
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4.1 The approximation

One of the main advantages of the L\-approach is that the difference

Z(θ) = ACn(θ)-ACn(θ) (28)

as a stochastic process {Z (θ), θ 6 Θc} with index set Θc C R™ p forms an
sub-Gaussian process without additional assumptions on the tails of the
error distribution Pε. The only things we need are Lipschitz conditions
and a convenient semimetric d in θ c . Henceforth, we will use the following
denotation for the sum of weighted squares with known normalized weights

j (29)

(0 =

where GWl (£) is the weighted empirical measure generated by the design
points ξ G X^. We use also the corresponding notation for the scalar prod-
uct (., .)w . Note that in the unweighted case ium a x = n~1. The Lipschitz
conditions are used with respect to both types of parameters.

LI 3n0 3Li, Lx < oo Vn > n 0 V/3 G S c Vξ, ξ; G Af(n)c, such that

\ . (30)

L2 3n0 3L2, L 2 < oo, Vn > n 0 Vξ € ^( n ) c V/3,/3' € β c , such that

\9 (ξ, β)~9 (f, /?') li, + |Λ (ί, /3) - Λ {ξ, β') \ί2 < L2 \\β - β'f • (31)

In (31) ll ll denotes the Euclidean norm in Rp.

Lemma 2 Suppose LI , L2. 5e£

[ l f } (32)

Γ/ιen ίΛ,ere is α constant a = α(Lχ,L2) independent of n and θ such that
for allt>0 and all n>no

Pε (\Z (θ) - Z (θ')\ >t)< 2exp [-J^ψ) • (33)
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Proof: We have for Z (θ) as denned in (28) with (26), (27) that Zn (θ) =
Σ?=iXi{θ) and EXi(θ) = 0. Using the inequality \\a + b\ - \a + c\\ <
\b + c\ we obtain

\Xi (θ) - Xi (θ1) I < 2wu \g (ξhβ) - g (& β') I + 2w2i \h(ξi,β)-h (& β') | ,

and using the triangle inequality we get further

\Xi(θ)-Xί{θ')\<di{θ,θ') (34)

where di (θ, θ') denotes the following seminorm di (θ, θ') = du (θ, θ') +
dii (θ, θ'), with

du (θ, θ') = 2wu \g (ξi, β)-g (^, β) \ + 2wu \g (& β) - g (ξj, β') \ ,

d2i (θ,θ') = 2w2i \h(ξitβ) - h (&β)\+2w2i \h (&β) - h {ξl,β')\.

Because of (34), we can apply the Corollary 3.2 of van de Geer (1990).
Thus there is a constant ol independent of n and θ such that

/ ,2 ί \

PtoΘo (\Z(Θ) - Z (0')| > *) < 2exp — _ a

 9 .

with d ((9, θ'f = Σ?=i di (<9, θ1)2 . Under the conditions LI, L2 we estimate

(Li + La) (|ί - ξf
W2

and obtain the statement with OL — O/ (32 (Li + LJ2))~1 . Π

In order to formulate the entropy condition we need a few more defini-

tions. Let us introduce them for a general set A with a metric d, because

inside the proof we will use the notion of entropy in the context of several

different sets. A family of subsets C7i, ...UN is called an e-covering of A with

respect to a metric d, if the diameter of each Uk does not exceed 2e and if

the sets cover A, A C U^Ui. The e-covering number N (e) is the minimal

number of LVS i n a n v e-covering of A. The e-entropy H (e) of A is given

by the logarithm H (e) = In N (e). The entropy depends on the metric d

and on A. We therefore denote the local e-entropy of AD (a : d (α, αo) < D)

by ii^,d (6J -D) We will require a condition on the local entropy of the nui-

sance parameter set only, that is A = X^ and c? (£,£') = \ξ — ξ'\W2 . For

abbreviation we write HX(n) \\ (e, ί̂ ) = ί/ξ (e, D). The entropy condition

we need is:
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Ent For all δ,ηn > 0, with 6ηnΛ/wmax > 1

/o1 JHζ(Luδ,LδD)du
lim 1— — = = 0. (35)

The following lemma is an application of a modified result of van de Geer
(1990), which is an adaptation of the chaining method of Pollard (1984),
on page 144.

Lemma 3 Suppose LI with L\, L2 with L2, Ent with ηn and δ, then there
exist constants Lo and Co = C(Li,L 2 ), such that for all L > Lo and all
n>ΠQ

ACn(θ)-ACn(θ)\
,,,2 ^n*—^p > ™maχτ?n < exp {-

- ξ\W2 + UP - β II J v

where θn (e) = ((ζ9β) : \ζ - ξfW2 + \\β ~ β'f > ε2) and ΔCn(β), ΔC n (θ)
given in (26) and (27).

Proof: We will apply a small modified version of Lemma 3.4. of van
de Geer (1990), with Λ = θ c and the semimetric d given in (32) and
Zn (λ) from (28) with Zn (λ°) = 0. The used modified version is: Under
the entropy condition on θ c with respect to the metric d, that is for all
δΊηn > 0, with δ'ηn>l

Jo1 JHθcd(uLδ',Lδ'D)du
™ - * — " L ^ ; = 0 | ( 3 7 )

it holds

/ SUP Jfe^>^l<exp(-^CbLW. (38)

For δ' — 6^/wmax from (38) follows the result. The difference to the lemma
of van de Geer is that we have φi — ηn. The proof of this modification has
the same steps, but we have to change y/n to ηn in the entropy condition
and in the exponential rate. Her assumptions on Zn (λ) are not needed
in the Li-context, since the main property she used in the proof is (33),
that the process is sub-Gaussian. It remains to check the entropy condition
on θ c (37). For Cartesian products A = A\ x A2 with a = (01,02) a n d
d\ (α, a!) < d2

Ai (αi, a[) + d\2 (02, ar

2), we know the following inequality:

HAAA (e,D) < HAltdAι Q , D ) + HA2tdA2 Q , D j . (39)
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It can be derived in a similar way as the formula (7) in Lorentz (1966), on

page 152. Here we have A = X^ x B and d2

Al (ai,a[) = w m a x \ξ - £ ' |^ 2 ,

and d2

M (α 2 , α'2) - wmax \\β - β'\\2 ,

HAl,dAl 0\ ^

is a set of fixed dimension p, therefore the local entropy is bounded:

ί

Thus it suffices to require the entropy condition (37) for HA1^A with δf =
S-\/wmax only, that is, assume Ent. D

4.2 The separation condition

The aim of this subsection is to verify the separation condition (21) for the
Li-contrast in (27). First we quote a result by Oberhofer (1982) in the
form given by van de Geer (1990).

Lemma 4 Suppose ε r.υ. whose distribution satisfies E with constants

and κε then for all |Δ | < Δ m a x

(40)

Proof: This is the i.i.d. version of Lemma 4.2. of van de Geer (1990). •

Applying Lemma 4 to the Lχ-contrast with

max = m a x m a x m a x | | # [ξi,p ) -g(ξi,p)\ + ^[ξi,P ) - ^ C & J P J | J »

we obtain _

C n (θ) - Cn n (ξ, β),

with

Dn (ξ,β) = \g(ξ,β) -9 {ξ°,

(41)

(42)

Now we need separation conditions on g and h also, such that it is possible

to estimate
Dn(ξ,β)>p(d(θ,θ(n))) (43)

for an appropriately chosen metric d on the parameter space. Deriving

(43) means solving the identification problem in semiparametric models.

In the same way this problem occurs also in the L2-norm theory. This is
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the main reason, why we are not able to obtain a nice consistency result
for the parameter of interest β in the general setting (1), (2). From now on
we consider the models separately. We say a regression function g fulfills
the contrast condition Con iff

Con 3n0 Vn > n0 3α n,0 < an < oo, V£ G ,β' G θ

\9(ξ,β)-g(ξ',β)\wi>an\\β-β'\\.

Under Con for g we have in the nonlinear regression model (5), that

-β°\\2- (44)
w\

In the nonlinear semiparametric model (13) the identification condition ID
implies

2 (m (z, β)-m (z, β°) , / (z) - /° ( z ) ) ^ = 0,

and under Con for m we have here also

Dn(ξ,β) = \m(z,β) -m(z,β°) + f(z) - f° (z)fwi

> a\ \\β - ? ( • (45)

For the nonlinear functional relation model (6), (7) the following lemma
helps to solve the identification problem. This result is strongly related to
the Lemma 1 in Zwanzig (1990). Define

Ln(ξ,β) = \g(ξ,β) -g {f, -9

Lemma 5 Under LI, 3n0 3τ > 0 Vn > n 0

such that

ς — ς
Wo

(46)

Wλ W2
>τLn{i,β). (47)

Proof: Inside of this proof let us use the abbreviations g (£°, β°) = g00 and

9 {ξ°, β) = <7° By adding ±g° in \g - goo\2 , we obtain

with

Δn(ξ,/3) =
(9°-900,9°-9\

\9-90L+\900-90L+\ξ-ξ°\l

(48)

(49)



On Li-norm estimators in nonlinear regression ... 113

for Ln (£,/?) > 0 and Δ n (£,/?) = 0 otherwise. It remains to show, that
there exists a constant r > 0 such that

sup sup Δ n (£,/?) < - - T . (50)

Let c = ^ 2

L i

 ; with L\ from (30) and τ\ such that 0 < τ\ < \. We will
distinguish two cases:

< c > c

i) We apply the Cauchy-Schwarz inequality and the assumption (30)

A ( j- n\ 2
< <

LI

with Ln = Ln(ξ,β) given in (46). Note \g° - 9°°\2

Wl < Ln. Under i) we
have

/ _ _ _ o \ 2

" V2
An(ξ,β)2<LlC

and thus in case i) (50) follows. Consider case ii). Because of

\W\

g°-g

we have

9°-900
2(g°-gω,g°-g) <

Using this and (46) we obtain for Δ n = Δ n (ξ, β)

y \wi \y

9° -9

2 Δ n

,0012 _ L | Λ 0 _ _ Λ | 2 lί-ί°|2

1 << 1 I s S 1^2

Prom the assumption (30) we get

2Δn < 1 - \U>2

For positive α, the function / (x) = is increasing in x. Using ii)

we have ca < x and / (x) > 1+c%cLl We obtain 2Δn < 1 - 1 + ( 1 + L l j c - F o r

τ2 such that 2r2 = 1 +(1^L l)c> 0 > r2 > \ one has under ii) Δ n < \ - r2.
We choose r = min (τi, r2) and get (50). •
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5 The consistency of the Li-estimators
In this section we summarize the results above and obtain the consistency

of the Li-estimators in the different submodels.

5.1 The nonlinear regression model

Consider the model (5). Then we have for

(51)

the following strong consistency result. Set

( ? m a x = max sup g ($, β) - g ( # , β°) I. (52)

Theorem 1 Suppose for the error distribution E with the constants κε, Do

and suppose for the regression function g that

3n 0 3L2Vn > n 0 3αn, an > 0 V/3, β' G Bc

i<L2\\β-βf. (53)

Then there exists a positive constant CQ such that for all L > 0 and all

n >ΠQ

ft, (jβ - />>|| > L) < exp f-^- ( ί i s M ) 2 ) . (54)
v " ii / i Wmax y U m a x J J

Proof: Under (53) from (44) and from (41) with (52) follows that the

separation condition (21) is fulfilled with p (\\β - β°\\) = ̂ ^ \\β - β°f .

Lemma 1 gives

/ι ι~ mi N /

Pξo,o β - ffi\\ > L) < Pw sup
ΔCn(θ)-ΔCn(θ

sup J
θeθ(L) \\P-P II

>

The entropy condition Ent is satisfied for the one point set. Then the result

(54) is a consequence of Lemma 3 with ηn = ̂ e oα>n . •
2

Note the result is interesting only for γ^- >
wmax
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5.2 The nonlinear error-in-variables model

Consider the model (6), (7). The Li-norm estimator is defined as

β = arg mm min ^ J ^ wu \Vi - g (&, β) | + w2i \xt -

Set

G m a x = max sup sup g (&, β) - g fe°, β°) I +

Then we have the following exponential probability inequality.

(55)

(56)

Theorem 2 Suppose for the error distribution E with the constants κε, DQ
and suppose for the nuisance parameter set the entropy condition Ent is
satisfied with ηn =

 anK*D°T

 and β

Suppose for the regression function g that

3n0 3Li, L2 < oo, Vn > n 0 3an, an > 0 V/3, /?' e Hc

'f- β'f < \g ( f,0) _ < L2 \\β - β'f

(57)

(58)
and \g(ξ,β)-g(e,β)\2

Wl<L1\ξ-ξ'\2

W2.

Then there exist positive constants Co, Lo such that for all L > LQ and all

n > no

n ) < exP f- (59)

Proof: Without loss of generality we set an < 1. Under (56) from Lemma
4 and under (58) from Lemma 5 follows that the separation condition (21)
is fulfilled with

-Λ2)=^Do^L(\\β-βf+\ξ-e\2).
J G m a x \H II IW2/

Lemma 1 gives

sup

Lδn) < pξOβO

ACn(θ)-ACn(θ)\

+ lί -
> 1
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The entropy condition Ent is assumed above explicitly. Hence the result
(59) is a consequence of Lemma 3 with ηn =

 Ke oZan . •

Consider now special cases and the unweighted case wmΆX = n~1.

Corollary 1 Suppose for the error distribution E and suppose for the re-
gression function g that (57), (58) is valid with

Q
— ψ̂̂  < const, for all n. (60)

°"n
Suppose i) XW defined in (9) or ii) X^ defined in (10). Then

β-+β° Pξoβo-a.s.. (61)

Proof: Under (60) in the unweighted case we have ηnyjΰh^ < const φί.

i) For X^ defined in (8), the entropy is Hξ (<5, D) < const] ln+ {^j and

the entropy condition Ent is satisfied with δ = n~3 (Inn)3 , (see Example
2.1 of van de Geer (1990)). From Theorem 2 follows that there exists a c?,
0 < d < 1, for all e > 0

oo

β - β° I > e) < J2 e x P {~nd e c o n s t ) ( 6 2 )(\\ \\ )
n=l n=l

oo
" 2< const (no) V") ̂  < oo. (63)

We obtain the statement by the Lemma of Borel Cantelli.

ii) For X(nϊ defined in (10) the entropy can by derived from the classical
result of Kolmogorov and Tichomirov (1960), for the sup-norm |/ — /°| s u =

Hχ{n) 11 (δ, D) < const I —
ΊΊsup \ 0

Since under the design assumption D maxj \z{ — 2i_i| < ĉ  for n > no and
since

sup
ξ-ξ° < maxl/^)-/0^)!^ f-f

< max\f(zi)-f°(zi)\+2Lcd

we have X^ C {/ : \f - f\up < 3 (C + L)} . Thus

Hξ (<5, D) < const (-\ ™+a . (64)

Then the entropy condition Ent is fulfilled for δ = n~b with b = (
0 and the result (61) follows by the same arguments as in (62). •
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5.3 The nonlinear semiparametric model

Consider the model (13) with design condition D and identification condi-
tion I D . Then we can derive on the same way as above the strong consis-
tency of the Li-estimator

.

Theorem 3 Suppose for the error distribution E and suppose for the func-
tion m that

3n0 3L2 < oo, 3α > 0 Vn > n0 Vβ,β' G Bc

a2 \\β~βf < \m(z,β)-m(z,β')\2

wi<L2 \\β - βf (65)

and

= max sup
i

m(zi,β) -m (zi, β°) < const. (66)

Then
° - a.s. (67)

Proof: Under I D and (65) from (41) and (45) the separation condition
(21) of Lemma 1 is satisfied with Δ m a x = Gmax + 2C, where G m a x from
(66) and where C from (11),

Because of (64) for ηny/^max ^ consty/n and for 8 = n~b with b =/
2(m+ά)+i > ® ̂ e e n t r o P y condition Ent of Lemma 3 is valid. Then from
both lemmata follows an inequality of type (62) and we obtain (67) by the
same arguments as in (62). •
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