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Abstract: Lχ-type test procedures for detection of a change in linear mod-
els are proposed, their properties are studied under the null hypothesis
(no change).
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1 Introduction

The problem to detect and to identify changes in statistical models has
attracted a number of researchers in the last two decades. Using vari-
ous principles they have proposed a number of statistical procedures that
are sensitive w.r.t. detection of changes, have studied their (mostly) limit
properties and, also, have applied to real data sets.

The problem of detection and identification of changes in statistical mod-
els is known as the change point problem (mostly for case of changes in
location models), disorder problem or testing the constancy of regression
relationship over time. These problems arise in a number of applications
(economic modelling, quality control, biology, medicine, meteorology and
ecology among others).

We shall consider here the following regression model with possible
change after an unknown time point m:

γi = XTβ + Xi&nI{i >m} + Ei, ί = 1,..., n, (1)

where %i = (xn, ..,xip)
τ, xn = 1, i = l,...,n, are known regression vec-

tors, m(< n), β = (/?i, .../?p)Γ, δn = (δnι,..., δnp)
τ are unknown parameters,

Eι,...,En are i.i.d. random variables with common distribution function
F. I{A} denotes the indicator of the set A.
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The model corresponds to the situation when up to an unknown m the
observations follow the regression model with the regression parameter β
and then the model changes to the regression model with the regression
parameter β + δ n . The parameter m is called the change point.

The problem of our interest is to test

Ho : m — n against H\ : m < n.

The authors usually apply either the likelihood ratio principle or the
Bayesian approach. The first principle leads to max-type procedures the
other gives sum-type procedures.

First, we shall describe likelihood ratio and related procedures when the
distribution of the error terms F is ΛΓ(0,σ2), σ2 > 0 known. It will give
motivation how to develop L\- procedures.

Assume that ê s are i.i.d. with distribution 7V(0,σ2), σ2 > 0 known, the
likelihood ratio principle leads to the test statistics

Tn,LSE= {
p<k<n-p

i=k+l i=l

where PLSE(%) = X2, X £ R1, βk,LSE a n d β£ LSE
 a r e *^ e ̂ e a s t s Q u a r e s

mators of the regression parameters based on Xι, ...,-Xjfc and -Xfc+i? ....,Xn,
respectively, i.e.,

i=l i=k+l

with

Ck = Σ*i*ϊ, C*fc - Σ XixJ. (3)

The test statistics Tn^sE can be expressed equivalently as:

Tn>LSE = p < ^ p { (βk,LSE ~ βfc,L5£)
T(Cfc ' + C*k~

1)"1 (4)

and

Tn,LsE = p < m < a χ p {s^L 5 f ;(Cfc 1 C n C*- 1 )S f c ) L 5£/σ 2 }, (5)
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where

k

Sk,LSE = Σ*i{Yi - xϊβn,LSE) (6)
2 = 1

Horvath (1995) among others derived the limit distribution OΪT^LSE under
Ho and showed that if mild assumptions are satisfied then under HO1 as
n —> oo,

max {slLSE^CnCl-^LSE/σ2,

k = [n/logn],...,n- [n/logn}}/Tn,LSE -> 0.

which means that asymptotically even under HQ the terms with k "small" or

close to n dominate the others. To avoid to this unpleasant property some

modifications were proposed. Namely, the class of test statistics depending

on a suitable weight function q was introduced:

Tn,LSE{q) = max \ \. (7)
i<fc<n I q2(k/n)σz )

Typical choices of the weight function q are the following

q{t) = {t{l-t)r1'2 te(ai,a2) (8)

q(t) = 0 otherwise,

where 0 < a\ < a,2 < 1, or

t ) Γ ' te (0,1/2), (9)

with 7 6 [0,1/2).
Some authors (e.g. Jandhyala and MacNeill, 1989; Ploberger and Kr"amer,

1992) suggested to apply procedures based on properly standardized partial
sums of the LSΈ-residuals:

S°KLSE = Σ(Yi-χΐVn,LSE), k = 1,2,...,71 (10)

They proposed a computationally feasible procedure:

where q is a weight function. Another type of procedures is based on moving

sums (MOSUM) of the LSE-residuals. They are defined by:

KLSE(G) = max {-L|Sj£ - S°k_G,LSE\/σ\ (12)
' G<k<n ^ y/G J
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and

Sζ_G>LSE\/σ} (13)

T*LSE(v) = E vW"){Sk,LSE<Z1Sk,LSE/<>2}1/2. (14)

Bayesian type of test statistics have the form

n-l

LΠ,LSE'~'

k=l

where v(l/n),..., v((n — l)/n) represent priors.
Inspite that the procedures were developed for normally distributed ran-

dom errors they can be applied also for nonnormally distributed random
errors with zero mean and finite absolute moment of the order 2+Δ(Δ > 0)
(in some cases a finite second moment suffices).

If σ2 is unknown it is recommended to estimate it by

2 = 1 \

and plug into the above statistics.
Typically large values of the introduced test statistics indicate that the

null hypothesis Ho fails. The exact distributions even under Ho of the
above introduced test statistics are unknown. The limit distributions were
derived under mild assumptions on the distribution of the error terms E[s
and on the design points xi, ...,xn, which enable to get the approximations
for the critical values.

The test procedures corresponding to Tn^sE a n d TnyLSE(θ) were stud-
ied by a number of authors, e.g. Quandt (1958, 1960), Worsley (1983),
Kim and Siegmund (1989), Gombay and Horvath (1994), Horvath (1995),
Antoch and Huskova (1992). Well known is the paper by Brown, Durbin
and Evans (1975) devoted to the procedures based on recursive residuals.
Bayesian type procedures were proposed and studied by Broemling and
Tsurumi (1987) and Jandhyala and MacNeill (1989, 1991, 1992). Proce-
dures based on partial sums of LSE- residuals were investigated, e.g., by
Jandhyala and MacNeill (1989) and Ploberger and Kramer (1992). Hackl
(1980) deeply studied procedures based on moving sums (MOSUM). A
number of applications in econometrics is contained in Hackl (1989) and
Hackl and Westlund (1991). Horvath, Huskova and Serbinowska (1995)
considered the case when the change can occur in the regression parame-
ters and/or in the scale σ.

Along the same line M— type and R— (rank based) tests were developed
and studied. Some results on the M— procedures for changes in regression
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models can be found, e.g., in Sen (1984) and Huskova (1990a,b, 1994 a,b).
R- type test procedures were studied by Sen (1980, 1982) and Huskova
(1994b).

2 L\ procedures

It is easily seen that the test statistics Tn^SE^ are functions of least squares
estimators and of the LSE-residuals Yi — XJ^LSEI where βL$E is a least
squares estimator, therefore T^LSE'S can be viewed as the L2- type test
statistic.

Now, along this line the Li-procedures will be developed. Namely, we
replace the LSE estimators by L\ estimators, PLSE by pLλ{x) = \x\, x €
β 1 , and the LSΈ'-residuals by Li-residuals φ^iYi ~XΪ?>L1)^ where βLl is
an L\ estimator β and ΦLI(X) = —1? # < 0, ^LAX) = 0, x = 0, ΦL^X) =
1, x>0.

From three equivalent expressions for TU)LSE ((2), (4), (5)) we get three
different test statistics. Namely,

1 ( Σ m - ^ β f c , L 1 l (15)

i=k+l i=l

{ ? 1 ( f (16)

and

where /(F" 1(l/2)) is an estimator of /(F~1(l/2)), F'1 and / denote the
quantile function and the density, respectively,

2 = 1

and βfc Ll and β£ L are the L\- estimators of the regression parameters
based on X\, ...,Xk and Xk+i, ~~,Xn, respectively, i.e., they are defined as
solutions of the minimization problems

k

mmY\Yi-xJtlteRp (19)
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and

min Σ \Yi-xJvlveB?: (20)
t=fc+l

respectively.

The statistic T^ 'L is a likelihood ratio type statistic, T^ 'L is a Wald
' (3) '

type test statistic and T^ }

L is a score type test statistic.
' (3)

Computational feasibility of the statistic T^}

Ll is evident. The statistics
τnlι•>TnLx depend on the estimator of / ( F " 1 (1/2)) and also on the estima-

tors β f c L l and $%Ll, k — l,...,n. Quality of the estimator of /(F~1(l/2))

strongly influence the quality of the test itself.
The weighted type test statistics are defined by

} (21)

where the weight function g is the same as in LS-E-case.
Next, we introduce the test statistics based on partial sums of L\-

residuals
k

^ i Φ - χ ^ P n . L j , * = l,2,».,n (22)
2 = 1

We get the weighted sum type and MOSUM type test statistics

( 2 3 )

= a<fS-o ί-G,L, I},

where g is a weight function.
Finally, Bayesian type of test statistics have the form

where v(l/n), ...,v((n — l)/n) represent priors.
Analogously as in the L^ situation large values indicate that Ho does

not hold. The exact distribution of the test statistics even under the null
hypothesis can be hardly obtained. The limit distributions under Ho can
be derived (see Theorem 1 - Theorem 3 below) which are then useful in
getting approximations to the critical values.
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Now, we pay attention to the limit behavior of the introduced tests
statistics under the null hypothesis.

We consider the assumptions:

(i) Random variables YΊ,..., Yn follow the model (1) with n = m and the
distribution F has median 0 and Lipschitz of order 71 G (0,1] and strictly
positive density at the median, i.e., F" 1(l/2) = 0, |/(0) - f{x)\ < D\x\Ίl

for some D > 0 and all x in a neighbourhood of 0 and /(0) > 0.
(ii) lim^oo ~C[nί] = tC, t E [0,1], for some C > 0.
(iii) There exist e G (0,1) and 72 > 0 such that, asn-> 00,

"n-k κ "
uniformly for 1 < k < ne, where C is the same as in (ii) and ||.| | denotes
the Eucledian norm.

(iv) As, n —> oo,

i k 1 n

t=l ι=k+l

(v) /(0) be an estimator of /(0) such that, as n —> oo,

Theorem 1 Let assumptions (i), (ii), (iii) and (iv) be satisfied then

lim P K l o g n X Γ ^ ) 1 / 2 < t + bp(logn)) = exp{-2exp{-ί}}, t € R1,
(26)

where

a{y) - (2logy)1/2, bp(y) = 21ogy + |loglogy - log(2Γ(p/2)), y > 1,

(27)

= / tz~ι exp{-t}dt.
Jo

//; moreover, (v) is satisfied then the assertion (26) remains true if

ί l is placed by ( 2 $ ^ o r ^

Theorem 2 Let assumptions (i), (ii) and (iv) be satisfied then, as n —> co;
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and

ί1
70

(29)

(30)
i = l

where {Bj(t);t G (0,1)} are independent Brownian bridges and q is the
weight function defined by either (8) or (9) andv(t) = (q(t)^/t(l — ί))" 1 , t £
(0,1).

Theorem 3 Let assumptions (i), (ii) and (iυ) be satisfied and let, as n —>

oo,

G/n->0, G^n^logn-^O, (31)

then

limoP{a(\og(n/G))T:tLl(G) <t + b1(\og(n/G)+log2) (32)

= exp{-2exp{-ί}}, t G R1,

lim P(a(\og(n/G))T:*L1(G) < t + &i(log(n/G) + log3) (33)

= exp{-2exp{-£}}, t G R1.

The assertions of Theorem 1-3 remain true if the L\ -test statistics are
replaced by LSE -test statistics and if in assumption (i) the request of zero
median is replaced by the request of zero mean and finite absolute moment
of order 2 + Δ, Δ > 0.

Assertions (26), (32) and (33) are extreme value type theorems. It is
known that the convergence in (26), (32) and (33) is rather slow.

The explicit form of the limit distribution in (28), (29) and (30) is known
only for some weight function g, e.g., for q in (9) with 7 = 0 in Sen (1981)
and for q in (8) Siegmund (1987) derived a proper approximation.

Approximation to the critical values corresponding to T^L , j = 1,2,3,,
T* Li and Γ^*Li can be easily calculated using a pocket calculator.

The tests based on either of T^L , j = 1,2,3, T^L are consistent for
fixed and as well as some local alternatives. Concerning Tn>£i(9)j Γ^Li(g),
T£ L and T^*L their limit distribution depend on δn and the design matrix.
This will be studied in a different paper.

The assumptions (ii) - (iv) imposed on the design matrix are slightly
stronger than one usually assumes when studying for example L\ estimators
in the model (1) with δn = 0.
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Concerning the estimator of /(0) we need an estimator that behaves rea-
sonably well not only under the null hypothesis but also under alternatives.
Such estimators can be described as follows:

where /^(O) and /-(O) are estimators of /(0) based on Yί,...,Y^ and

y^+ 1,. . ., l^ and ra is an estimator of possible change point ra. There

is a number of possibilities how to estimate /^(0), /-(0) and ra. Here is

one suggestion

rh = argmax{\\βkM - βfcjLl||; A: = l,...,n},

_ 1 ^

where 77 > 0 fixed, and / - (0) is defined accordingly. Under the assumptions

(i),(ii) and (iv) the resulting estimator /(0) has the property requested in

the assumption (v).

3 Proofs

Since the proofs are quite technical we give only a sketch of them. First, we

formulate several technical lemmas that are modifications of results proved

elsewhere.

Lemma 1 Let assumptions (i) - (iv) be satisfied then for any η > 0 there

exist Aη > 0 and nη such that for all n >nη

(jr.. —r)~12x1t))

(34)

/(OLr,
n

and

+£Λ^ t τ C n t | . | | t | | < D } > A -« < n-η
n /

n

P(sup { I Σ Xij(ψLl(Ei - n-V2xJt) - φLl (Ei) (35)

for some v > 0 and arbitrary D > 0.



66 M. Huskova

Proof: The proof of the first assertion is a simple modification of Lemma
1 in Gutenbrunner et al (1993) and Theorem 1 in Huskova (1994c), while
the second assertion follows from Theorem 2 in Huskova (1994c). D

Lemma 2 Let assumptions (i) - (iv) be satisfied then for any η > 0 there
exists Aη > 0 and nη such that for all n >nη

f (βfciI/1 - β) - ϊJ^f~k

1/2Σ*^ΛEi)\\ (36)

k-η, k<n,

p(\K1/2(β*kM - β) - ^ 4 τ c Γ 1 / 2 Σ "rtMSOII (37)
ΔJ\y}) ik+\i=k+\

> Aη{n - fc)~υ) < (n - jfe)-", k < n,

for some v > 0 and arbitrary D > 0.

Proof: The proof follows the line of the proofs of Lemma 1 in Gutenbrun-
ner et al (1993), Theorem 4 in Huskova (1994c) and we apply Lemma 1 of
the present paper. D

Lemma 3 Let assumptions (i) - (iv) be satisfied then

i l

(38)

Y^XiφL^Ei)))1'2 < t
2 = 1

= exp{-2exp{-t}}, t € R1.

(logn))

Proof: The proof follows the line of Theorem 1.1 in Horvath (1995). •

Lemma 4 Let assumptions (i), (ii) and (iv) be satisfied then, as n —• oo;

[nt]

{ C - ^ ^ x ^ i E ^ t e (0,1)} ̂ D {(Wi(*),-.., Wv(t))τ t G (0,1)}, (39)
i=l

where {Wi(t);t G (0,1)},..., {Wp{t)\t G (0,1)} are independent standard-
ized Wiener processes. If, moreover, (31) is fulfilled then

k+G

flim)P(a(log(n/G)){ m« G l E ^ ( ^ ) | } < t + 61(log(n/G))+log2)
~ i=k+l

(40)
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= exp{-2exp{-£}}, t G R1

and

k+G

limP(«(log(n/G)){ m _ G | ^ f e ( £ , ) - £ ^{E^} (41)
n i k l kG2=fc+l i=k-G+l

< t + &i(log(n/G) + log3) - exp{-2exp{-£}}, t G R1.

Proof: Since Z^jxiV'LiC^) is the vector of sums of independent random
variables with zero mean and finite third absolute moment and since (i),
(ii) and (iv) are fulfilled the assertion (39) can be derived using standard
arguments. The assertions (40) and (41) are proved, e.g., in Chen (1988).
D

Proof of Theorem 1: We sketch the proof for T^Li only, the proof for

T^L , j = 2,3, is omitted because it follows the same line.

Since Lemma 3 it suffices to show that Γ: I has the same limit disto-rt1̂ 1
bution as

max
Kk<n

where

Put
k

1/2

i=k+l 2=1

Applying Lemma 1 and Lemma 2 we get after tedious but straighforwad

calculations that, as n —•> 00,

max iL f̂c - Vn,k\ = o^Ooglogn)"1/2) (42)
<fc<n-(logn)α

for all a > 0. Moreover, using standard tools we receive also that

max (Ln,fc + Vnik) = op(χ/loglogn) (43)
l<fc(logn)α
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and

for some a > 0.

Combining ((42) - (44) we get that the limit distribution of T^l is the

same as m a x K ^ L ^ f c . The assertion (26) follows. D

Proof of Theorem 2: Using Lemma 1 and Lemma 2 we receive that, as
n —> oo,

k

max l lc" 1 / 2 ^! , — y^XiψL (Ei))\\ —o (1)

and

max
l<k<n _

The proof can be then finished using classical theorems on the weak con-

vergence of functionals of partial sums of independent random variables.
D

Proof of Theorem 3 By Lemma 1 and Lemma 2 we get after some
standard steps that, as n —> oo,

max
Kk<n-G

k+G

i=k+l

The assertions (32) and (33) then follows from (40) and (41) in Lemma 4.
D
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