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Abstract: Some recent developments on the computation of least abso-
lute error estimators are surveyed and a number of extensions to related
problems are suggested. A very elementary example is used to illustrate
the basic approach of “interior point” algorithms for solving linear pro-
grams. And a simple preprocessing approach for ¢; type problems is
described. These developments, taken together, have the effect of dra-
matically improving the efficiency of absolute error computations, making
them comparable to least squares methods even in massive datasets.

Key words: Linear models, regression quantiles, #; estimation, computa-
tion.

AMS subject classification: 62G05, 62J05, 68 A20.

1 Why square errors?

Gauss (1823), in what can only be admired as an epitome of “proof by
intimidation”, defended his decision to minimize sums of squared errors in
the following terms:

It is by no means self evident how much loss should be assigned to a given
observation error. On the contrary, the matter depends in some part on
our own judgment. Clearly we cannot set the loss equal to the error
itself; for if positive errors were taken as losses, negative errors would
have to represent gains. The size of the loss is better represented by a
function that is naturally positive. Since the number of such functions
is infinite, it would seem that we should choose the simplest function
having this property. That function is unarguably the square, and the
principle proposed above results from its adoption.
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Laplace has also considered the problem in a similar manner, but he
adopted the absolute value of the error as his measure of loss. Now if I
am not mistaken, this convention is no less arbitrary than mine. Should
an error of double size be considered as tolerable as a single error twice
repeated, or worse? Is it better to assign only twice as much influence
to a double error or more? The answers are not self-evident, and the
problem cannot be resolved by mathematical proofs, but only by an
arbitrary decision. Moreover, it cannot be denied that Laplace’s conven-
tion violates continuity and hence resists analytic treatment, while the
results that my contention leads to are distinguished by their wonderful
simplicity and generality.

Despite the best efforts of such distinguished advocates as Laplace (1789),
Edgeworth (1888), and Kolmogorov (1931), methods of estimation based
on minimizing sums of absolute errors have languished in the shade of the
edifice that Gauss built on the foundation of least squares. Why? There
seem to be at least two elementary reasons. First, the “wonderful simplicity
and generality” of squared error has produced an elegant statistical theory
of the behavior of least squares estimators which, particularly in its finite-
sample form for Gaussian cases, can only inspire awe and envy on the part
of advocates of the quantile-esque methods of absolute errors. Some solace
may be found in the very critical attack on least-squares based methods by
the robustness movement launched by John Tukey in the 1940’s. The sec-
ond, and perhaps even more damaging, is the perception that absolute error
estimators are “difficult to compute.” To appreciate that this perception
was perfectly valid at the end of the 19th century, one need only read a little
of Edgeworth’s (1888) own arcane description of his geometric “algorithm”
to compute the bivariate least absolute error regression estimator.

With the advent of George Dantzig’s simplex algorithm in the late 1940’s
this situation changed dramatically, and by the mid-50’s there were several
formulations of the ¢; estimator for regression as a linear program and ex-
plicit simplex-based programs to compute it. The paper of Wagner (1959)
clarified the important role of the ¢; dual problem. These efforts culminated
in the algorithm of Barrodale and Roberts (1974) which still serves as the ¢;
algorithm of choice for most statistical computing environments. Contrary
to a plethora of dire warnings throughout the literature, about the diffi-
culty of ¢; computation this algorithm actually delivers least absolute error
regression estimates faster than the corresponding least squares algorithms
in many packages, including Splus and Stata, for problems of moderate
size, up to a few hundred observations. However, for larger problems the
Barrodale and Roberts algorithm exhibits O(n?) growth in execution time,
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and thus quickly lives up to its slothful reputation. Portnoy (1991) pro-
vides a detailed probabilistic complexity analysis for the simplex version
of the parametric quantile regression problem which sheds some light on
the theoretical rationale for the observed O,(n?) behavior of the simplex
approach. In Portnoy and Koenker (1997), we have shown that combining
recent developments on interior point methods for solving linear programs
with careful preprocessing can improve both the theoretical and practical
performance of ¢; regression computations to the point that they are com-
petitive with least squares over the entire range of contemporary problem
dimensions.

In this paper I will briefly review these recent developments in ¢; com-
putation and then sketch some ideas for extending these developments into
a broader range of related problems in statistics.

2 Means vs. medians

The most elementary instance of our basic problem may be posed as the
simple question: Which is easier to compute, the median or the mean?
Surprisingly, the question is deceptively difficult. At the most naive level,
it would be immediately recognized that the median has an advantage for
computation “by hand”, an attribute implicit in the “median-polish” algo-
rithms suggested by Tukey for robust ANOVA. Somewhat less naively, with
modern computers in mind we might contemplate computing the mean in
O(n) elementary operations ( n additions, and one division), while the me-
dian appears to require sorting n numbers, a task which requires O(nlogn)
comparisons. Further reflection suggests, however, that the median may not
actually require a full sorting of the observations; a cleverly chosen partial
sorting may suffice. Considerable further reflection yields the celebrated al-
gorithm of Floyd and Rivest (1975), which manages to compute the median
in O(n) comparisons. At this point we require a more delicate comparison
of the relative effort of additions and comparisons and the precise constants
associated with the O(n) median algorithm. Since such delicacy seems in-
herently machine dependent to some degree, we will not attempt to pursue
it further here, but will simply note that it is not implausible that a sophis-
ticated algorithm for the median could, for n sufficiently large, outperform
the computation of the mean, thus restoring the superiority of the median.

3 Simplex for median regression

Portnoy and Koenker (1997) reconsider the problem of solving the ¢; re-
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gression problem, .

- b 1
grelg?rg,;lyz zb| (1)

which may be formulated as the linear program,
min{ eu+ev | y=Xb+u—v,(u,v) € R} (2)
This problem has the dual formulation
max{y'd | X'd=0, de[-1,1]"}, (3)
or equivalently, setting a = d + %e,
max{y'a | X'a=1X'e, a€0,1]"}. 4)

The simplex approach to solving this problem may be briefly described
as follows. A p-element subset of N' = {1,2,...,n} will be denoted by h,
and X (h),y(h) will denote the submatrix and subvector of X,y with the
corresponding rows and elements identified by h. Recognizing that solutions
to (1) may be characterized as planes which pass through precisely p =
dim(b) observations, or as convex combinations of such “basic” solutions,
we can begin with any such solution, which we may write as,

b(h) = X (h) "'y (h). (%)

We may regard any such “basic” primal solution as an extreme point
of the polyhedral, convex constraint set. A natural algorithmic strategy is
then to move to the adjacent vertex of the constraint set in the direction
of steepest descent. This transition involves two stages: the first chooses
a descent direction by considering the removal of each of the current basic
observations and computing the gradient in the resulting direction, then
having selected the direction of steepest descent and thus an observation
to be removed from the currently active “basic” set, we must find the max-
imal step length in the chosen direction by searching over the remaining
n — p available observations for a new element to introduce into the “basic”
set. Each of these transitions involves an elementary “simplex pivot” ma-
trix operation to update the current basis. The iteration continues in this
manner until no direction is found at which point the current b(h) can be
declared optimal.

Sheynin (1973) has noted that Gauss was already aware in 1809 that
minimizing absolute errors, as suggested by Boscovich and Laplace, entailed
this “zero residual” property. It is therefore tempting to speculate on why
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it required another 150 years to develop the “wonderfully simple” idea of
moving from vertex to vertex in the direction of steepest descent. One
possible explanation for this involves the distinction made by Gill, Murray
and Wright (1991) between iterative and direct algorithms. As they put it,

...we consider as direct a computation procedure that produces one and
only one estimate of the solution, without needing to perform a poste-
riort tests to verify that the solution has been found...In contrast, an
iterative method generates a sequence of trial estimates of the solution,
called iterates. An iterative method includes several elements: an ini-
tial estimate of the solution; computable tests to verify whether or not
an alleged solution is correct; and a procedure for generating the next
iterate in the sequence if the current estimate fails the test.

Thus, the iterative nature of the simplex algorithm makes it rather like a
voyage of exploration of the 15th century, sailing into the Atlantic believing
that the world was flat, not knowing when, or even if, the voyage would
end. Gaussian elimination, on the other hand, made least squares like a trip
along a familiar road; at each step one knew exactly how much further effort
was necessary. With the emergence of computers in the 1940’s, the risk, or
uncertainty, of the iterative approach was transferable to the machine, and
the spirit of adventure blossomed as investigators put down their pencils
and watched the tapes whir and the lights flicker.

Like the advantage of the median over the mean for hand computations,
the simplex algorithm for median regression performs extremely well rela-
tive to least squares in problems of modest size. In Figure 1 we can compare
performance of the Barrodale and Roberts (1974) algorithm for median re-
gression with the standard least squares algorithm as implemented in the
function 1m(y ~ x) in Splus. For p = 4 and n < 2000, median regression
@ la Barrodale and Roberts is actually faster than the corresponding least
squares computation. As the dimension of the parameter increases, the
advantage of /1 over Ly is somewhat attentuated, but even with p = 16,
there is still an advantage up to sample sizes of about 400.

In larger problems simplex-based computations for median regression
pale in comparison with speeds achievable by least squares. In Figure 2 I il-
lustrate this comparison over problems in the range 20,000 < n < 120, 000,
and we see that the time required for the modified simplex approach em-
bodied in the Barrodale and Roberts algorithm tends to grow quadratically
in n while the QR factorization approach of 1m grows only linearly in n. By
sample size n = 120,000 this results in computations of nearly one hour for
median regression a procedure which can be carried out in 10-20 seconds
by least squares. Is this differential inherent in the linear programming
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formulation of the ¢; problem, confirming Gauss’s claims, or is it simplex
that is at fault?
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Figure 1: Timing comparison of ¢; and ¢ algorithms: Times are in seconds for
the median of five replications for iid Gaussian data. The parametric dimension
of the models is p + 1 with p indicated above each plot, p columns are gener-
ated randomly and an intercept parameter is appended to the resulting design.
Timings were made at 8 design points in n: 200, 400, 800, 1200, 2000, 4000,
8000, 12000. The solid line represents the results for the simplex-based Barrodale
and Roberts algorithm, 11fit(x,y) in Splus, and the dotted line represents least
squares timings based on 1m(y ~ x).

Ironically, one of the great research challenges of numerical analysis of
recent decades has been, “Why is simplex so quick?” Examples, notably
that of Klee and Minty (1972), have shown that in problems of dimension, n,
simplex can take as many as 2" simplex pivots, each requiring O(n) effort.
From this perspective Op(n?) effort for randomly generated ¢; problems
appears to be quite brilliant. The recent paper of Shamir (1993) surveys
the extensive literature exploring this gap between theoretical worst-case
behavior and practical average-case performance. The discussion of simplex
in Gill, Murray and Wright (1991) is especially good on this aspect.

4 Newton to the max: An elementary example

To illustrate the shortcomings of the simplex method, or indeed of any
strategy for solving linear programs which relies on an iterative path along
the exterior of the constraint set, consider the problem depicted in Figure
3. We have a random polygon whose vertices lie on the unit circle and our
objective is to find a point in the polygon that maximizes the sum of its
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coordinates, that is, the point furthest north-east in the figure.
Since any point in the polygon can be represented as a convex weighting
of the extreme points, the problem may be formulated as

max{e'u|X'd=u, €d=1, deR}}, (6)

where e denotes a (conformable) vector of ones, X is an n x 2 matrix
with rows representing the n vertices of the polygon and d is the vector
of convex weights to be determined. Eliminating u we may rewrite (6)
somewhat more simply as

max{s'dle€d=1, d e R}}, (7)

where s = Xe. This is an extremely simple linear program which serves as
a convenient geometric laboratory animal for studying various approaches
to solving such problems. Simplex is particularly simple in this context,
because the constraint set is literally a simplex. If we begin at a random
vertex, and move around the polygon until optimality is achieved, we pass
through O(n) vertices in the process. Of course, a random initial vertex
is rather naive, and one could do much better with an intelligent “Phase
1”7 approach that found a good initial vertex. In effect we can think of the
“interior point” approach we will now describe as a class of methods to
accomplish this, rendering unnecessary further travel around the outside of
the polygon.

Although prior work in the Soviet literature offered theoretical support
for the idea that linear programs could be solved in polynomial time, thus
avoiding the pathological exponential growth of the Klee-Minty examples,
the paper of Karmarker (1984) constituted a watershed in the numerical
analysis of linear programming. It offered not only a cogent argument
for the polynomiality of interior point methods of solving LP’s, but also
provided for the first time direct evidence that interior point methods were
demonstrably faster than simplex in specific, large, practical problems.

To explore several variants of interior point methods we will use our
simple polygonal problem. Further details about more general LP’s and
applications to ¢; regression, and quantile regression more generally, may
be found in Portnoy and Koenker (1997). The basic approach we will
describe to interior point methods for linear programming is set out in the
important survey paper by Lustig, Marsden and Shanno (1994). A more
detailed exposition may be found in the new monograph of Wright (1996)
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Figure 2: Timing comparison of ¢; and ¢, algorithms: Times are in seconds for
the median of five replications for iid Gaussian data. The parametric dimension
of the models is p 4+ 1 with p indicated above each plot, p columns are generated
randomly and an intercept parameter is appended to the resulting design. Timings
were made at 4 design points in n: 20,000, 40,000, 80,000, 120,000. The solid line
represents the results for the simplex-based Barrodale and Roberts algorithm,
11fit(x,y) in Splus, and the dotted line represents least squares timings based
on lm(y ~ x).

It is an amusing irony, illustrating the spasmodic progress of science,
that the most fruitful practical formulation of the interior point revolution
of Karmarker (1984) can be traced back to a series of Oslo working papers
by Ragnar Frisch in the early 1950’s. This work is summarized in Frisch
(1956), and was considerably elaborated and extended in the monograph
of Fiacco and McCormick (1968). The connection between Karmarker’s
approach and the earlier literature was developed in Gill, Murray, Saunders,
Tomlin and Wright (1986). The basic idea of Frisch was to replace the linear
inequality constraints of the LP, by what may be called a log barrier, or
potential, function. Thus, in our example, we may reformulate (7) as,

max{s'd+ p» logd;le'd = 1} (8)

=1

where now the barrier term Y logd; serves as a penalty which keeps us
away from the boundary of the positive orthant. By judicious choice of a
sequence 1 — 0 we might hope to converge to a solution of the original
problem.

The salient virtue of the log barrier formulation is that, unlike the orig-
inal formulation, it yields a differentiable objective function which is con-
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sequently attackable by Newton’s method. Restricting attention, for the
moment, to the primal log-barrier formulation 8 and defining,

B(d,u) =s'd+p logd; (9)

we have VB = s + pD~'e and V2B = —uD~? where D = diag(d). Thus,
at any initial feasible, d, we have the associated Newton subproblem

max{(s + pD~"e)’p - gp’D‘sze'p = 0}.
This problem has first order conditions

s+uDle—uD?p = ae
e€p = 0

and multiplying through by ¢’D?, and using the constraint, we have,
¢ D*s + pe' De = ae' D?.
Thus solving for the Lagrange multiplier @ we obtain the Newton direction
p=pu D%+ De — e (10)

where @ = (¢/D?%e)~!(e/D?s + pe' De) . Pursuing the iteration d « d + Ap,
thus defined, with p fized until convergence, yields the central path d(w)
which describes a yellow brick road to the solution d* of the original problem
(6). We must be careful to keep the step lengths X small enough to maintain
the interior feasibility of d. Note that the initial feasible point d = e/n
represents d(0o).

As emphasized by Gonzaga (1992) and others, this central path is a cru-
cial construct for the interior point approach. Algorithms may be usefully
evaluated on the basis of how well they are able to follow this path. Clearly,
there is some tradeoff between staying close to the path and moving along
the path, thus trying to reduce p, iteration by iteration. Improving upon
existing techniques for balancing these objectives is the subject of a vast
outpouring of current research. Excellent introductions to the subject are
provided in the survey paper of Margaret Wright (1992) and the recent
monograph of Stephen Wright (1996).

Thus far, we have considered only the primal version of our simple polyg-
onal problem, but it is also advantageous to consider the primal and dual
forms together. The dual of (7) is very simple:

min{alea —z=3s, =z >0} (11)
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The scalar, a, is the Lagrange multiplier on the equality constraint of the
primal introduced above, while z is a vector of “residuals,” or slack variables
in the terminology of linear programming. This formulation of the dual
exposes the real triviality of the problem — we are simply looking for the
maximal element of the vector s = Xe. This is a very special case of
the linear programming formulation of finding any ordinary quantile. But
the latter would require us to split z into its positive and negative parts,
and would also introduce upper bounds on the variables, d, in the primal
problem.

Another way to express the central path, one that nicely illuminates the
symmetric roles of the primal and dual formulations of the original problem,
is to solve the equations,

€d = 1
ea—z = § (12)
Dz = pe.

That solving these equations is equivalent to solving (8) may be immedi-
ately seen by writing the first order conditions for (8) as

e€d = 1
ea —puDle = s,

and then appending the definition z = D~ !e. The equivalence then follows
from the negative definiteness of the Hessian V2B. This formulation is also
useful in highlighting a crucial interpretation of the log-barrier penalty
parameter, u. For any feasible pair (z,d) we have

sd=a-2d,

so 2'd is equal to the duality gap, the discrepancy between the primal and
dual objective functions at the point (z,d). At a solution, we have the
complementary slackness condition z’d = 0, thus implying a duality gap of
zero. Multiplying through by €’ in the last equation of (12) , we may take
p = 2z'd/n as a direct measure of progress toward a solution.

Applying Newton’s method to these equations yields

Z 0 D Dd pe — Dz
e/ 0 O pa == O 7
0 e I P 0

where we have again presumed initial, feasible choices of d and z. Solving

for p, we have
Po = (€ Z7 De) "t Z7H(Dz — pe)
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which yields the primal-dual Newton direction:

pe = Z '(ue— Dz~ Dep,) (13)
bz = €Pa. (14)

It is of obvious interest to compare this primal-dual direction with the
purely primal step derived above. In order to do so, however, we need to
specify an adjustment mechanism for p.

To this end we will now describe an approach suggested by Mehrotra
(1992) that has been widely implemented by developers of interior point
algorithms, including the interior point algorithm for quantile regression
described in Portnoy and Koenker (1997). Given an initial feasible triple
(d,a, z), consider the affine-scaling Newton direction obtained by evaluating
(13) at u = 0. Now compute the step lengths for the primal and dual
variables respectively using

Aq = argmaz{\ € [0,1]|d + Apg > 0}

A, = argmaz{\ € [0,1]|z + Ap, > 0}.

But rather than precipitously taking this step, Mehrotra suggests adapting
the direction somewhat to account for both the “recentering effect” intro-
duced by the pe term in (13) and also for the nonlinearity introduced by
the last of the first order conditions.

Consider first the recentering effect. If we contemplate taking a full step
in the affine scaling direction we would have,

= (d + Adpd)l(z + )\zpz)/na
while at the current point we have,
p=dz/n.

Now, if i1 is considerably smaller than p, it means that the affine scaling
direction has brought us considerably closer to the optimality condition of
complementary slackness: z'd = 0. This suggests that the affine scaling
direction is favorable, that we should reduce p, in effect downplaying the
contribution of the recentering term in the gradient. If, on the other hand,
v isn’t much different than p, it suggests that the affine-scaling direction is
unfavorable and that we should leave u alone, taking a step which attempts
to bring us back closer to the central path. Repeated Newton steps with
p fixed put us exactly on this path. These heuristics are embodied in
Mehrotra’s proposal to update p by

po— p(i/p)’.
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To deal with the nonlinearity, Mehrotra (1992) proposed the following
“predictor-corrector” approach. A full affine scaling step would entail

(d+pa) (z+pz) =d'z+d'p, + pyz + pyp-.

The linearization implicit in the Newton step ignores the last term, in effect
predicting that since it is of O(u?) it can be neglected. But since we have
already computed a preliminary direction, we might as well reintroduce this
term to correct for the nonlinearity as well to accomplish the recentering.
Thus, we compute the modified direction by solving

Z 0 D b4 pe — Dz — Pyp,
el 0 O 60, = O )
0 e I b, 0

where P; = diag(pg). This modified Newton direction is then subjected
to the same step-length computation and a step is finally taken. It is
important in more realistic problem settings that the linear algebra required
to compute the solution to the modified step has already been done for the
affine scaling step. This usually entails a Cholesky factorization of a matrix
which happens to be scalar here, so the modified step can be computed by
simply backsolving the same system of linear equations already factored to
compute the affine scaling step.

In Figure 3 we provide an example intended to illustrate the advantage
of the Mehrotra modified step. The solid line indicates the central path.
Starting from the same initial point d = e/n, the dotted line represents the
first affine scaling step. It is successful in the limited sense that it stays
very close to the central path, but it only takes a short step toward our final
destination. In contrast, the first modified step, indicated by the dashed
line, takes us much further. By anticipating the curvature of the central
path, it takes a step more than twice the length of the unmodified, affine-
scaling step. On the second step the initial affine-scaling step is almost on
target, but again somewhat short of the mark. The modified step is more
accurately pointed at the desired vertex and is thus, again, able to take a
longer step.

It is difficult in a single example like this to convey a sense of the overall
performance of these methods. After viewing a large number of realiza-
tions of these examples myself, I come away convinced that the Mehrotra
modified step consistently improves upon the affine scaling step, a finding
that is completely consistent with the theory.
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Figure 3: A simple example of interior point methods for linear programming:
The figure illustrates a random pentagon of which we would like to find the most
northeast vertex. The central path beginning with an equal weighting of the 5
extreme points of the polygon is shown as the solid curved line. The dotted line
emanating from the this center is the first affine scaling step. The dashed line is
the modified Newton direction computed according to the proposal of Mehrotra.
Subsequent iterations are unfortunately obscured by the scale of the figure.

In Portnoy and Koenker (1997), we noted that recent work on the prob-
abilistic analysis of the computational complexity of interior point meth-
ods suggests that algorithms with Op(np® log? n) operations are possible
for quantile regression with n observations and p parameters. While such
performance is considerably better, in large problems, than the observed
Op(n?p?) performance of simplex, it is still inferior to the O(np?) complex-
ity of least squares. In the next section I very briefly describe a prepro-
cessing strategy for quantile regression problems that has been successful
in further narrowing this computational gap.
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5 Preprocessing for quantile regression

The idea of preprocessing quantile regression problems described in Portnoy
and Koenker (1997) actually preceded the implementation of the interior
point methods discussed above. Preprocessing rests on an extremely sim-
ple idea: if, by preliminary estimation, or some other form of statistical
necromancy, we could determine the signs of a significant group of obser-
vations, we could then combine observations with positive residuals into
a single “globbed” observation, and similarly glob together the negative
observations, so that the original problem,

n
min Y _ pr(y; — z;b) (15)
=1

with pr(u) = u(7 — I(u < 0)) would be equivalent to,

n

min Y pr(y — ib) + pr(yr — zLb) + pr(yn — Tyb) (16)
1EN\JLUJg

where N = {1,2,...,n}, 2k = Y e, % for K € {K,L} and y1, and yg
can be chosen arbitrarily small and large respectively, to ensure that the
corresponding residuals on the globbed observations remain negative and
positive. In this process we have reduced the problem of n original obser-
vations to n — §{JL, Jg } + 2 observations so if the cardinality of the J-sets
is large we have gained substantially. Under plausible sampling assump-
tions we can, based on a preliminary subsample of m observations, make a
prediction region for {z;8:% = 1,2,...,n} of width O(p/\/m), so assigning
observations above this region to Jg and observations below this region to
Jr,, we would have M = Op(np/+/m) observations falling inside the region.
This is illustrated in Figure 4.

Minimizing the computational effort required to compute the prelimi-
nary fit based on m observations plus the effort required for the solution of
the globbed problem (16) with M observations, we obtain m* = O((np)?/3),
which under our conjectured performance of the underlying interior point
algorithm yields a complexity for the full problem of

C= Op(n2/3p3 log? n) + O(np?), (17)
where the first term comes from the solution of the two quantile regression

problems and the second term arises from the computation of the confidence
band.
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Figure 4: A bivariate example of quantile regression preprocessing: The figure
illustrates a bivariate scatter plot of 500 observations with y conditionally student
t on 10 degrees of freedom. The curved dotted lines describe a confidence band for
the response variable based on the median regression fit for a sub-sample of 126
observations. After globbing there are only 107 observations, including the two
globbed observations. All the points outside the band are collapsed into this pair
of pseudo-observations. The fit to the globbed sample is indicated by the solid
line; since it falls inside the band we are assured that the globs are correct and
that this solution is identical to a fit of the entire original sample.

Further details are provided in Portnoy and Koenker (1997) and I will
comment only briefly here on the important fact that any implementation
of this preprocessing approach must verify that the solution to the globbed
problem actually vindicates the predicted signs based on the confidence
region. Since the simultaneous confidence region can be chosen to assure
this with arbitrarily high probability, the eventuality that we may need
to repeat the cycle to remedy some inaccurately predicted signs introduces
another multiplicative factor which does not affect the orders in probability
in the complexity computation.

The crucial consequence of the formal complexity theory and the exten-
sive concomitant empirical testing of our implementation of the algorithm is
that the computational effort required for quantile regression can be made
comparable with the effort required for least squares over the full range of
currently plausible problem dimensions. In the final empirical example of
Portnoy and Koenker (1997), we compare timings for a typical large econo-
metric application of quantile regression with n = 113, 547 and p = 6. With
the new algorithm, quantile regression estimates take about 10 seconds on
a Sparc-Ultra, comparable to the least squares time of 8 seconds. Simplex
solution of the same quantile regression problems requires approximately
an hour on the same machine.
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6 Prospects

There are many open questions posed by the rapid development of com-
putational methods for quantile regression. I would like to touch on three
topics in this brief final section. The first is applications to inference and the
general problem of parametric programming viewed in the light of interior
point methods. The second is applications to nonlinear quantile regression.
And the third concerns nonparametric applications of quantile regression.

As I have tried to emphasize elsewhere, an important virtue of the sim-
plex approach to £1-type computation is the direct transition to parametric
programming, or sensitivity analysis. Having obtained a solution at one
quantile we immediately compute an interval of optimality for this solu-
tion, at the endpoints the solution alters. We may then make a simplex
pivot which takes us to an adjacent vertex of the constraint set; continuing
this process traces out the entire path of solutions to the problem (15) for
7 € [0,1]. Efficient computation of the quantile regression process is cru-
cial for the smooth L-statistics described in Koenker and Portnoy (1990),
and the corresponding dual process is central to the elegant theory of rank
statistics introduced by Gutenbrunner and Jureckova (1992). Very simi-
lar computations are required to compute the penalized quantile regression
spline estimators introduced in Koenker, Ng and Portnoy (1995) where the
degree of smoothing (bandwidth) parameter A plays the role of 7.

The homotopy methods of interior point algorithms also lend themselves
naturally to parametric programming. In large problem it may be sufficient
to compute solutions on some grid in 7 or A and we may thus avoid passing
through all the intermediate vertices by tunnelling through the interior
of the constraint set, passing directly from one grid point to the next.
Algorithms to do this are conceptually straightforward, given the existing
research, see for example Monteiro and Mehrotra (1995), but they require
some careful engineering.

Non-linear quantile regression, that is quantile regression estimation like
(15) with a nonlinear response function replacing the linear predictor z;03,
are increasingly common in applications. Here too, interior point methods
and the preprocessing approaches described above can play a useful role.
Some ideas along this line have been already described in Koenker and Park
(1996). There is, however, considerable scope for refinement.

Finally, in nonparametric applications of quantile regression there are a
wide array of competing methods, all of which can profit from more efficient
computational methods for large data sets. This is particularly true of the
quantile smoothing spline approach of Koenker, Ng and Portnoy (1995),
which offers new challenges in terms of exploiting sparsity in the interior
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point matrix computations. This is a topic which has received intense
scrutiny in the interior point literature, and there are a number of very
promising approaches already available.

We are, 1 believe, on the verge of overthrowing the long-standing com-
putational disability of £; methods. In the next century, we may hope that
the young statistician looking for improved robustness, or simply for a more
complete view of her data, may say of quantile regression, echoing Molly
Bloom, “...yes I said yes I will Yes.”
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