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Abstract: The problem of local linear approximation to a curved bound-
ary using gridded data is closely connected to both curve estimation
methods in statistics and rational approximation in number theory. The
problem is ill-posed, in the sense that orders of approximation at arbi-
trarily close points can be very different. This may be interpreted as a
consequence of the problem’s number-theoretic aspects, since irrational
numbers with arbitrarily slowly convergent rational approximations are
distributed in dense sets. On the other hand, by measuring performance
in a “statistically average” way which excludes most of the pathologies,
we may deduce useful results about optimal orders of approximation. In
this respect, among others, statistical approaches to the problem are im-
portant. For example, measures of performance based on the L! norm
are more appropriate than those founded on LP norms for p > 1. The
paper will describe these viewpoints, and outline the way in which they
may be combined to produce a cohesive theory of curve estimation from
gridded data. We shall start with the relatively simple case of approxima-
tion to a simple linear boundary, where data are observed without noise,
and progress through an analysis of the number-theoretic connections,
concluding with results in the context of stochastic or curved boundaries
observed with noise.
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1 Defining a sraight-line boundary

Imagine placing a straight line across a square lattice in the plane, thereby
dividing the plane into two parts. Assuming that the line is not vertical,
colour black those lattice vertices above the line and white the vertices
below, with a third colour (red, say) for any vertices that lie on the line.
Now remove the line, and attempt to reconstruct it from the pattern of
vertex colours. This is a theoretical idealisation of a range of practical
boundary estimation problems, where a curve representing the boundary
between two areas of different colour is to be estimated from pixel data.

Even a brief consideration of this problem shows that its solution de-
pends critically on the nature of the slope of the line. For example, if the
slope is rational and if the line passes through some vertex, then the line
necessarily passes through an infinite number of vertices. In this case, if
we were able to observe the vertex colour pattern in a large enough region
of the plane, we would see that there are at least two red vertices there,
and from them we could trivially deduce the equation of the line. Then,
we would know the line exactly.

On the other hand, if the line has rational slope but does not pass
through any vertex, it cannot be determined exactly even if we know the
colour of every vertex in the plane. This is perhaps most easily seen if the
line, L say, is parallel to one of the axes of the square lattice. In that case
there exists an infinite strip in the plane, with its sides parallel to the line
and its width equal to the edge width of the lattice, such that any straight
line contained wholly within the strip produces exactly the same vertex
colour pattern as L.

A similar situation arises for any line with rational gradient, where the
intercept is chosen so that the line does not pass through any vertex. In
such cases, while the gradient may be determined exactly from vertex colour
data within the whole plane, the intercept will remain unknown beyond the
fact that it lies within a certain nondegenerate interval — except when the
line passes through a vertex. So, in the case of a line with rational slope we
know either everything or nothing: either we can compute the line exactly
from a finite amount of vertex colour data (when the line passes through
a vertex) or we cannot compute it exactly even from an infinite amount of
data (if it does not pass through any vertex).

The situation is quite different if the line has irrational slope. There, if
the colour pattern is observed within an increasingly large region R, say
an n X n section of the lattice centred roughly on the line, then an approxi-
mation to the line may be constructed using only the colour pattern within
R. As R expands, the accuracy with which the line may be approximated
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increases. More explicitly, we may compute an approximation L= 2(73) to
L, using only the vertex colour pattern P within R, such that the Hausdorff
distance between LNR and LNR converges to zero as R increases.

In the case of irrational slope the rate of convergence of a good ap-
proximation L depends intimately on the nature of the irrational slope.
It depends hardly at all on whether £ intersects a lattice vertex; this in-
fluences only the constant multiple of the optimal rate of convergence of
L to L, not the rate itself. Thus, the problem of approximating straight-
line boundaries is starkly ill-posed, since nearby slopes can produce very
different convergence rates along infinite subsequences.

In Section 2 we shall treat examples of classes of irrational numbers,
which capture the spirit of the boundary approximation problem and its
solution. Section 3 will employ the examples to motivate development of
more general boundary approximation problems, and will discuss ways in
which the problems might be tackled. Section 4 will briefly survey the
number-theoretic background to the methods. Later sections will develop
theories for curved boundary estimation using local linear methods, bor-
rowing ideas that are now well understood in more traditional statistical
settings. For the latter, the reader is referred to Wand and Jones (1995,
Chapter 5) and Fan and Gijbels (1996).

In Sections 1-5 we shall always assume that the lattice is fixed; without
loss of generality it has its vertices at integer pairs (4,7) in the Cartesian
plane, so that its edge width (the width of the side of the smallest square
face of the lattice) is 1. In later sections we shall sometimes consider lattices
of increasing fineness, so as to model the physical problem of approximat-
ing a curved boundary on a fine pixel grid. Technical details behind our
arguments may be found in Hall and Raimondo (1996a,b).

While we shall concentrate on the case of a square lattice, for definite-
ness, the results that we shall describe are valid for any regular lattice that
has the property that it contains a square lattice and is contained within
the union of a finite number of square lattices. Thus, our results are avail-
able for lattices whose faces are hexagons or triangles. Lattices of the latter
type are used in practice in J.P. Serra’s image analyser. When considering
an “n x n” portion of a general lattice we interpret n as the square root of
the number of vertices within a finite, square subset of the lattice.

2 Classes of irrational numbers

The irrational numbers with which many of us are most familiar are the so-
called “quadratic irrationals”, defined as the set of real numbers that may
be expressed as solutions of quadratic equations with rational coeflicients
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(or, without loss of generality, integer coefficients). These are a subset of the
class of so-called periodic irrationals, and also of the larger class of badly
approximable irrationals, which we shall discuss in Section 5. Straight-
line boundaries with slope coming from one of these classes have special
properties with respect to the boundary approximation problem. Indeed,
in such cases the optimal rate of convergence (in the sense of the Hausdorff
metric) of approximations based on vertex colours within an n x n subset
of the lattice, is asymptotic to a constant multiple of n=!.

The set of algebraic irrationals is larger than the class of quadratic irra-
tionals, and is defined as the set of all real numbers that may be expressed
as solutions to polynomial equations with rational coefficients. However,
the most accurate available estimate of the rate of convergence in the lin-
ear boundary approximation problem for boundaries with slope equal to an
algebraic irrational, is only the upper bound of O(n~=1%€) for all € > 0. Not
even logarithmic refinements, such as O(n=!logn), are available. The up-
per bound O(n~!%€) is a corollary of deep number-theoretic work of Roth
(1955), who determined the exact exponent in the Thue-Siegel inequality
and for which work he was awarded the Fields medal in 1958.

Roth’s result is virtually equivalent to the upper bound O(n=1*€); for
all € > 0, in our approximation problem. If we could improve on that
rate then we could refine Roth’s Theorem, as it is known. And of course,
even if we could refine Roth’s result, we would still have only scratched
the surface as far as solving our problem goes, since the great majority of
irrational numbers are not algebraic. Indeed, since the number of rationals
is countable then the number of polynomial equations of degree p with ra-
tional coefficients is countable. Therefore, the number of solutions of such
equations, for arbitrary p, is countable. Hence, the number of algebraic
irrationals is countable, whereas the number of irrational numbers is un-
countably infinite. By focusing only on algebraic irrationals we would be
missing the great majority of irrational numbers.

It might be thought that because the algebraic irrationals are dense in
the real line, they provide a good guide to the sort of behaviour that will be
experienced when the slope of the line is a non-algebraic irrational. While
this is true from some viewpoints, the argument has limitations. Indeed,
irrationals that are not algebraic, and produce particularly pathological
convergence rates in our line approximation problem, also comprise a dense
subset of the real line. To elucidate this point we mention that if o, cg, . ..
and (31, B2, . . . are any two sequences of positive numbers converging to zero,
then there exists a dense set of irrational numbers such that, whenever the
slope of the linear boundary is in this set, the optimal rate of convergence in
our approximation problem on an n X n grid is bounded above by a, along
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one subsequence of values of n, and bounded below by 3, along another
subsequence.

This is perhaps not a major issue if we confine attention to exactly linear
boundaries — we may simply exclude such pathological irrational numbers
from contention as possible gradients. However, in the problem of local lin-
ear estimation of a curved boundary the range of values of the gradient is an
interval, and so includes representatives from any set which is dense in the
real line. This fact, and the properties of irrational numbers noted above,
make it clear that one must take care when defining boundary-estimation
problems, to avoid becoming side-tracked by relatively unimportant cases.

3 Defining boundary-estimation problems

We need to pose boundary-estimation problems in such a way that we can
deduce relatively simple principles behind rate-of-convergence properties.
For that, we need some way of averaging over all possible choices of irra-
tional gradients, so that the central issues in the problem will not be lost
in through consideration of pathological special cases. There are at least
two ways of doing this.

First, we might allow the slope of the boundary to be a random vari-
able, and devote our discussion to its “average” properties. This is feasible
for either straight or curved boundaries. If the boundary is linear then
we may apply a random rotation to it, and more generally we may regard
the boundary as a realization of a random curve whose equation is repre-
sented by y = G(z), where G is a random, smooth function. Alternatively,
we may choose to treat the boundary as fixed and curved, but estimate
it at a randomly chosen point. Under such models we do not need to be
too prescriptive about the type of averaging, since the more radical of the
pathological cases described in the previous section arise only for sets of
irrational numbers having measure zero. Therefore, if the random bound-
ary, or the random point at which we estimate a fixed, curved boundary, is
distributed in the continuum, then, by confining attention to almost sure
properties we avoid all but reasonably regular cases. We shall outline this
approach in Section 6.

Alternatively, in the case of a curved boundary we may average approxi-
mations in some way, for example by considering them in an integral metric.
It turns out that the L' metric is more appropriate for this purpose than
an LP metric for p > 1, since it is relatively resistant to large deviations
in the approximation error. (In view of the properties described in Sec-
tion 2, it comes as no surprise to learn that the approximation error can
change dramatically as we move from one point to another along a curved
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boundary.)

While the integral metric approach is attractive, not least because it is
well established in the context of nonparametric curve estimation, it does
require care. For example, if the boundary is linear then we are still faced
with the ill-posed problem of the effect of rational-versus-irrational slope.
The remedy is to avoid linear boundaries altogether. Now, one way of
characterising a nonlinear boundary is to insist that its second derivative
never vanish. Therefore, in Section 7 we shall study the L! performance of
local linear approximations to twice-differentiable boundaries that do not
have any points of inflexion.

4 Rational approximation by continued-fraction
expansion

In order to appreciate the methods and results for general boundary-estima-
tion problems it is necessary to understand the main elements of the theory
of rational approximation by continued fractions. We shall survey them
here, referring the reader to Leveque (1956, Chapter 9) and Khintchine
(1963) for more detailed discussion. Section 5 will make the connections to
boundary estimation explicit.

A non-integer real number u may be uniquely expressed as a continued

fraction,

1
u = [ag; a1, ag,- . .] =ag+—7—,

a —_—T
1 + a‘2+a3+...

where ag is an integer and a1, az, . . . are strictly positive integers, called the
partial denominators of u. The continued fraction expansion terminates if
and only if u is rational. Up to the termination point (in the case of rational
u), or for all n (if u is irrational), the convergents of u are defined to be
the numbers

1
@=a0> Bl:GO'f‘—, p_2=a’0+ 1
q0 q1 ai q2 ai + =

where p,, and g, are relatively prime integers. The g,’s are strictly positive
and form a strictly increasing sequence. By definition, p, /g, converges to
u as n — o0o. The sequence of odd-indexed convergents is decreasing, and
the sequence of even-indexed convergents increases.

If w is irrational then the convergents provide a sequence of rational ap-
proximations to u, often referred to as “continued fraction approximations”.
The approximations are optimal in the sense that

0= (/)] = [ = (pa/00). (1)
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They also satisfy

{an(gn + qn+1)}_1 <|u—=(Pn/gn)| < (QnQn+1)_1 (2)

and
if p and q are relatively prime, and |u — (p/q)|

< (2¢®)7', then p/q is a convergent of u (3)

The quality of approximations by continued fractions is determined mostly
by properties of large elements of the sequence {a,}, or equivalently by
large values of gn+1/gn, since it may be shown that gn41/¢n < an (meaning
that the ratio of the left- and right-hand sides is bounded away from zero
and infinity).

5 Relationship between convergents and rates of
approximation to linear boundaries

The importance of continued fraction expansions to the problem of approx-
imating linear boundaries, as defined in Section 1, is that the optimal rate
of approximation (in the Hausdorff metric) to a line £ with irrational gra-
dient wu, using vertex colour data observed on an n x n grid, is essentially
equivalent to n times the optimal rate at which we can approximate u by a
rational number p/q with g not exceeding n. In view of properties (1)—(3)
the latter rate is the order of

{Qk(n) () Ak(n+1) (U)}_l )

where k(n) = k(n,u) denotes the smallest &k such that gi(u) < n. Call these
results (R). A relationship between rational approximations and lines on
square lattices is also expressed by Klein diagrams; see for example Klein
(1907).

To illustrate the importance of the connection between convergents and
boundary approximation we consider a simple example. The real number
u is said to be badly approximable (or BA, for short) if sup,, an(u) < oco.
The set of all BA numbers in the interval [0,1] has cardinality equal to
that of the continuum (see e.g. Schmidt 1980, p. 23), but is of measure zero
(e.g. Khintchine 1963, p. 69). All quadratic irrationals are BA, since for
them the sequence {a,} is eventually periodic. However, not all algebraic
irrationals are BA. In view of the asymptotic equivalence of the sequences
an, and @n+1/gn, and the fact that g, is increasing, v is BA if and only if
(qk(n)qk(n+1))‘1 is bounded between two constant multiples of n=2.

From this result and (R) we see that an irrational number u is BA
if and only if the optimal rate (in the Hausdorff metric) at which a line
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with gradient u may be approximated from vertex colour data in an n x n
section of the lattice, is n=1. As a corollary, the optimal rate is n~! when
the gradient of £ is a quadratic irrational.

6 A stochastic number-theoretic view

Khintchine (1963), describing and developing work dating from the 1930’s
(see e.g. Khintchine, 1935; Lévy, 1937), gave a concise account of rates of
rational approximation to irrational numbers when the latter are chosen
randomly with respect to Lebesgue measure. In view of the equivalence
between problems of rational approximation and boundary approximation
noted in Section 5, we may apply Khintchine’s results to our line estimation
problem.

To pose that problem in a stochastic setting we assume that the linear
boundary is placed into the plane according to a random mechanism. For
our purposes the mechanism may be defined very generally; we need only
ask that the distribution of slope, conditional on the line’s intercept with
any given axis, be continuous. This reflects the fact that, when the line has
irrational gradient — which it will enjoy with probability 1 if the gradient
has a continuous distribution — it is immaterial from the viewpoint of rates
of approximation whether the line passes through a vertex.

It is known, for example from Theorem 30 of Khintchine (1963), that if
¥(n) = n~1L(n) for a positive, slowly varying function L then, for almost all
real numbers u (with respect to Lebesgue measure), ¥(n) ¢n+1(u)/qn(u) =
O(1) if and only if

S (n) < oo; ()
n=1

and from Lévy (1937, p. 320) that n™! log g,,(u) — 72/(12 log 2) as n — co.
Hence, for almost all u, ¥{log gn(w)} gn+1(v)/g.(uv) = O(1) if and only if
(4) holds.

This result, and the relationship between rational approximation and
linear boundary approximation discussed in Section 5, may be used to
show that if the boundary is stochastic in the sense defined in the previous
section, then with probability one the optimal rate of approximation to the
boundary, in the Hausdorff metric restricted to a region containing an n xn
grid and using data from that grid, equals

O{n"'(logn) L(logn) ™'} (5)

if and only if (4) holds. Similarly, it may be proved that with probability
one (4) is equivalent to asking that the optimal rate of approximation be
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no better than
O{(n logn)™" L(logn)} (6)
along any subsequence.
The bound at (5) implies that if the line is placed into the plane at

random according to the regime suggested above, then with probability 1
it can be approximated at rate

O{n"(log n) (loglog n) (log log log n)**<} (7)

for all € > 0, from vertex colour data within an n x n region of the square
lattice; and the bound at (6) shows that the optimal convergence rate is no
better than

O{n"!(logn) !(loglogn) ! (logloglogn)~1=¢} ,

along some subsequence. Moreover, these results are false if € is replaced
by 0.

7 Approximations to curved boundaries

The results derived in Section 6 may be readily extended to the case of
local linear approximations to smooth curves on a square lattice. There
it is convenient to introduce the concept of a grid of increasing fineness,
so as to develop a theory for curve estimation using increasing amounts
of information. Rather than assume that the lattice has fixed edge width
we suppose it has edge width n~!. For example, we might suppose that
its vertices are at points (n~!7,n~!5), where i, range over the set of all
integers.

Replace £ by a smooth curve C, for example given by the equation
y = g(x). As before, colour black the vertices above C and white the
vertices below, and consider constructing a local linear approximation to
g at x by employing the colours of all vertices that lie within the strip
S = S(z) defined by {(¢,y) :z—h <t <z+hand —oco <y < co}. Here, h
plays the role of bandwidth in more traditional curve estimation problems,
and the asymptotics involve h = h(n) converging to zero as n — oo, in
such a manner that nh — oo.

We may define the local linear approximant, g(x), at « to be any straight-
line segment that agrees with the vertex colour pattern within S(z); or
any segment that has least number of disagreements, if no segment agrees
completely. There are two sources of error in this approximation. First,
there is a degree of bias, or systematic error, due to the fact that the
part of C that lies within S is not exactly a straight line. As in more
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familiar, second-order nonparametric curve estimation problems, the bias
is O(h?) as h — 0 if g has two bounded derivatives. Secondly, there is
approximation error arising from the fact that our only information about
g is in the form of vertex colours. If the problem of estimating g(z) has a
random component, for example if z is taken to be a random variable with
an absolutely continuous distribution, then the results developed in Section
6 for the case of a random line may be applied directly to the setting of
approximating a random curve by a line segment within S.

In particular, formula (7) may be used to bound the second type of
approximation error, provided we replace n by nh and allow nh to increase
without limit. Then, assuming that log (nh) increases like log n, which will
certainly be the case for optimal choice of h, we see that the second type
of error is bounded above by

O{(n’h) ™" (log )" *<}. (8)

Optimising the over-all convergence rate involves balancing systematic
and non-systematic sources of error; that is, choosing h so that the bias
term, of order A2, is of the same size as the quantity at (8). This means
taking h to be of size {n=2(logn)'*<}'/3, which gives a convergence rate
of O[{n~2(logn)'*€}?/3]. The rate n=%/3, multiplied by a positive power
of (logn)~!, may be shown to be a minimax lower bound in this problem.
In related work, Korostelev and Tsybakov (1993) have shown that the
rate n~%/3 is minimax optimal in the case of certain random grids. Thus,
the local linear approximation g is within at most a logarithmic factor of
achieving the optimal rate.

8 An [; view of boundary approximation

In the account of boundary approximation just above, we incorporated
an element of randomness in order to remove the ill-posed nature of the
problem. Without that randomness, the pointwise properties of rates of
convergence defy simple description. Alternatively, we may address global
rates of convergence in an LP metric. We know from the work in earlier
sections that, while there are many pathological cases where convergence
rates are arbitrarily poor (along subsequences), and while such cases arise at
points forming a dense set, they have measure zero. Hence, we are entitled
to expect that they will not loom excessively large in an LP measure of
performance. Since the case p = 1 puts least emphasis on very large errors
then it is potentially the most useful.

Let C have equation y = g(z), and suppose we observe the vertex colour
pattern at all vertices (in~!,jn~!) for integers 7,5 with 0 < 7 < n and
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—00 < j < oo. (Thus, we adopt the “increasingly fine grid” model sug-
gested in Section 7.) Construct the local linear approximation proposed in
Section 7, so that for each x in a compact interval Z (which we take with-
out loss of generality to be [0,1]) we have an approximation g(z) to g(z)
using vertex colour data within the strip S(z). Employing property (2) of
convergents we may prove that if g has two bounded derivatives then, for
absolute constants A;, A2 and As,

5(z) — 9(z)| < Ath{qn()(¥) a1 (W)} + Bh2, 9)

for all z € Z, 0 < h < § and nh > A, where u = ¢/(z), N = N(u) is the
largest integer such that qn(u) < Asnh, and B = supyz|g”’|. Here, g, (u)
is the denominator of the n’th convergent, p,(u)/gn(u); see Section 4 for a
definition.

The second term on the right-hand side of (9) derives from bias, or
equivalently from the systematic error induced by approximating a nonlin-
ear curve by a short but linear segment. The first term results from the
limited information available about g, in the form of vertex colours. That
term can be arbitrarily large, owing to the sort of pathology noted at the
end of Section 2. However, provided g” is bounded away from zero the inte-
gral average of the first term is generally reasonable in size. In fact, it may
be shown that if A = h(n) — 0 in such a manner that (nh)~2(logn)? — 0,
then

| lo(@) - 9@ dz = O{(n?h) " togm)? + 17}, (10)

uniformly in functions g for which, for some C > 1,
C~! < inf |¢"(z)| < sup |¢"(z)| < C. (11)
zel z€l

The lower bound in (11) ensures that g is not too much like a straight line.

Choosing h of size (n~!logn)?? in (10) we obtain a rate of approxima-
tion, in the L! metric, of O{(n~! log n)*3} uniformly in functions satisfying
(11). Again, this convergence rate is close to the optimum of n=4/3; see
Section 7.

In principle, similar results may be derived for rates of approximation
in LP metrics, where p > 1. However, those rates are inferior to the L! rate
by a polynomial order of magnitude. The reason is that, for p > 1, the L?
metric gives greater weight to larger values of the error |g(z) — g(z)|.

To better appreciate the nature of this problem, observe from (9) that
we have the bound

(z) — 9(2)| < A1A3h (nh) " {an @1 (W)/ave (W)} + B R,
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which is potentially the key to deriving formulae such as (10). However,
the ratio Qn(u) = qn(u)+1(¥)/qn(u)(u) is very unstable. Bear in mind that,
when finding the integral average of the right-hand side, we are in effect
taking U to be a random variable with the Uniform distribution on Z, and
(in the case of the LP metric) asking that E{QZ(U)} be bounded. Now, it
may be shown that the process {@Qn(U), n > 1}, is Markovian, and that
(while the process is itself not stationary) it has a stationary limit distri-
bution. Therefore, @,(U) = Op(1) as n — oco. However, the stationary
distribution does not have any finite moments, and in fact E{Q%(U)} = co
for all n and all p > 1. The term (logn)? on the right-hand side of (10) is
the result of taking a more subtle approach to this problem, necessary even
in the case p = 1.

9 Estimating boundaries observed with noise

The noiseless model introduced in Section 7 may be written in the form

Y(i/n,j/n) = {j/n < g(i/n)},

where I(-) is an indicator function, Y (i/n,j/n) denotes the colour of the
vertex at (i¢/n,j/n) (white is represented by 1 and black by 0), and the
equation y = g(x) represents the boundary C. In practice, due to a com-
bination of systematic and stochastic errors, the colour of each vertex may
be more appropriately represented by a number between —oco and co. In
particular, we may write

Y(i/n,j/n) = f(i/n,j/n) + €,

where f(-,-) is a function with a fault-type discontinuity along the curve
y = g(z), and the independent and identically distributed stochastic errors
€;; have zero mean.

It will be assumed that f admits the representation

f(z,y) = fi(z,y) + fo(z,y) {y < g9(x)},

where f; and f; each have two uniformly bounded derivatives of all types,
and f» is bounded away from zero. We suppose that g and its first two
derivatives are bounded on Z. Several different analogues of the local linear
estimators in Section 7 are possible; examples include versions based on
least squares and on wavelets. We consider here only the former. It amounts
to first computing a preliminary approximation, g, and then refining it using
local linear smoothing within a window. We shall consider a particularly
simple preliminary estimator, based on kernel methods, as follows.
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Suppose we wish to estimate g at x € Z. Write 1, for the integer
nearest to nx, let K be a nonnegative, compactly supported, continuously
differentiable function, let hy equal a constant multiple of n=%/3, and put

T(j) = (nhi)~ ZK' j = k)/(nh1)}Y (in/n, j/n),

which is a statistical approximation to the first derivative of f(i,/n,-) at
j/m. Let j denote a value which produces a global maximum of |T| in the
range C1n < j < Con. Our preliminary estimator of g(z) is §(z) = j/n.

Next we define an improved estimator. Let W be a square window of
side length h = h(n), with its centre at (i,/n,j/n) and, for the sake of
definiteness, its axes aligned with those of the grid. Temporarily make the
assumption that within W, f assumes a constant value on either side of a
line £. We fit £ by least squares in the class M(C, W) of all lines £ that
divide W into two sets of vertices of which the larger has no more than
C times the number in the smaller (where C' > 1 is arbitrary but fixed).
Specifically, let 7; [respectively, Z5] denote the set of vertex coordinates
w = (i/n,j/n) in W that lie above [below] £, let 3® denote the sum of
Y (w) over all w € Z;, let Y; be the corresponding mean, and put

2 .
S0 =3 " (Y (w) - Ty

Write L for a line that minimizes S(£) among all straight lines in M(C, W)
that do not pass through any vertices. (The minimum is of course not
uniquely attained, and any measurable approach to breaking ties is al-
lowed.) Write §(z) for the ordinate of the point on £ with abscissa z.
Provided the distribution of the errors ¢;; has sufficiently light tails, it
may be proved that § has properties similar to those ascribed to the local
linear estimator g in the no-noise case in Sections 7 and 8. For example, let
us assume that the moment generating function of the error distribution
exists and is finite in a neighbourhood of the origin. If ¢” is bounded and
X is a continuous random variable (stochastically independent of the errors
€;j), then it may be shown that, for suitable choice of h, with probability
one §(X) converges to g(X) at rate O{n~2(logn)*€}2/3 (compare Section
7); and if |¢”| is bounded away from both zero and infinity then, again for
appropriate h, § converges to g in L! at rate O{(n~'logn)*/3}.
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