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Abstract

Blackwell games are infinite games of imperfect information. The two
players simultaneously make their moves and are then informed of each
other's moves. Payoff is determined by a Borel measurable function
/ on the set of possible resulting sequences of moves. A standard
result in Game Theory is that finite games of this type are determined.
Blackwell proved that infinite games are determined, but only for the
cases where the payoff function is the indicator function of an open or
Gs set [2, 3]. For games of perfect information, determinacy has been
proven for games of arbitrary Borel complexity [6, 7, 8]. In this paper I
prove the determinacy of Blackwell games over a G$σ set, in a manner
similar to Davis' proof of determinacy of games of Gβσ complexity of
perfect information [5].

There is also extensive literature about the consequences of assum-
ing AD, the axiom that all such games of perfect information are deter-
mined [9,11]. In the final section of this paper I formulate an analogous
axiom for games of imperfect information, and explore some of the con-
sequences of this axiom.

1 Introduction

Imagine two players playing a game of Blind Chess. The only board they
have is in their minds, and they make their moves merely by announcing
them. Someone who doesn't know the rules would find a game like this
difficult to follow. If that someone was of a literal bend, he might describe
it like this:

"There were two players, playing against each other. The first
player said something, and I was told it was her move, and that
she had made the move by saying it. The other player thought
for a while, and then announced his own move. Then the first
player made a move again, then the second player, and so forth.
The moves always sounded similar, something like 'pawn from
ee-four to ee-five'. So I think they couldn't just say anything,

*My thanks go to Michiel van Lambalgen and Tonny Hurkens, for their guidance,
ideas and meticulous proofreading. This research was partially funded by the Netherlands
Organization for Scientific Research (NWO), under grant PGS 22-262.
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but had to select their moves from only a few possible options.
And suddenly they stopped, and shook hands, and I was told
that the first player had won, apparently because of the moves
she and her opponent had played."

If no one gave the poor fellow a copy of the rules of Chess, the way a sequence
of moves determines which player wins would probably seem quite arbitrary.
And our hypothetical observer might be quite impressed that apparently
chess-players are able to memorize this long list of what the result is of each
possible sequence of moves.

Of course, the game of Chess is not really that arbitrary, and those of
us who play chess only need to know a few simple rules to figure out which
player has won. But we can use this concept of a game to construct a quite
general mathematical game Γp.i.(/).

Let there be given two finite sets X and y, an integer n, and
a function / assigning to each sequence w of length n of pairs
(^iίj/ί) G X x y, a payoff f(w) € M. Two players are play-
ing against each other. Each player, in turn, makes a move by
selecting an element x\ € X or y\ £ Y, respectively, and an-
nouncing his or her selection. Then they each in turn make a
second move, and a third move, and continue making moves un-
til n rounds have been played. This generates a sequence w of
length n of pairs (a;*, yι) G X x Y. Then they stop, and player II
pays player I the amount f(w).

With the right choices for X, Y, n and /, the game Γp.i.(/) can 'emulate'
the game of Chess. For if we let X and Y be the set of all possible chess
moves, and n = 63502, then a sequence w corresponds to a finished game of
chess. We now set f(w) = 1, f(w) = 0, or f(w) = | , depending on whether
the corresponding game is a win for White, a win for Black, or a draw.3 And
voila, we have our Chess emulator.

But Chess is not the only game that can be 'emulated' in this manner.
The same can be done with Noughts-and-Crosses, Connect-Four, Go and
Checkers. In general, the games Γp.j.(/) can emulate any game G that has
the following properties:

• There are two players.

• There is no element of chance
2The fifty-move rule is a rule in chess stating that if no piece has been captured and

no pawn has been moved for fifty turns, the game is a draw. Under the fifty-move rule, a
game of chess can last a maximum of 6350 moves.

3If w does not correspond to a legal chess game, we count it as a win for White if the
first illegal move is made by Black, and vice versa.
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• Moves are essentially made by selecting them and announcing them.

• There is no hidden information: a player knows all the moves made
so far when making her current move, and there is nothing going on
simultaneously either (Perfect Information).

• If one player loses (a certain amount) the other player wins (that same
amount) (Zero-Sum).

• The game can last no more than a certain number of rounds (Finite
Duration).

• There is a maximum number of alternatives each player can select from
(Finite Choice-of-Moves).

Any results for the games Γp.j.(/) apply to all the games with these proper-
ties.

David Blackwell described the concept of a strategy as [4]:

Imagine that you are to play the White pieces in a single game of
chess, and that you discover you are unable to be present for the
occasion. There is available a deputy, who will represent you on
the occasion, and who will carry out your instructions exactly,
but who is absolutely unable to make any decisions of his own
volition. Thus, in order to guarantee that your deputy will be
able to conduct the White pieces throughout the game, your
instructions to him must envisage every possible circumstance in
which he may be required to move, and must specify, for each
such circumstance, what his choice is to be. Any such complete
set of instructions constitutes what we shall call a strategy.

Thus, a strategy for a given player in a given game consists of a specification,
for each position in which he or she is required to make a move, of the
particular move to make in that position. In turn, a position can be specified
by the moves made to get to that position. If we apply this to the game
Γp.i.(/), a strategy becomes a function from the set of sequences of length < n
of pairs (xi^yi) G I x F, to the set of possible selections X, Y respectively.

Given strategies for each of the players, the outcome of the game is
determined: each move follows from the current position and the strategy
of the player whose turn it is to move, and determines the next position.
So, the totality of all the decisions to be made can be described by a single
decision - the choice of a strategy. This is the normal form of a game: the
two players independently make a single move, which consists of selecting a
strategy, and then payoff is calculated and made.
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Of course, there are good strategies and bad strategies. The value of
a strategy for a given player is the result of that strategy against the best
counterstrategy. The value of a game for a given player is the best result
that that player can guarantee, i.e. the value of that player's best strategy.
A game is called determined if its value is the same for both players. That
value is the result that will occur if both players are playing perfectly.4

Victor Allis [1] recently demonstrated that in a game of Connect-Four,
the first player can win, i.e. has a strategy that wins against any coun-
terstrategy. And countless persons throughout the ages have independently
discovered that in the game of Noughts-and-Crosses, both players can force
a draw. These are both examples of determinacy. It can be shown (using
induction) that any game Γ(/) as defined above is determined, and hence
any game with all of the properties mentioned above is determined. In the
case of Go, Chess, and Checkers, this means that either one of the players
has a winning strategy, or both players have a drawing strategy.

Now consider the game of Scissors-Paper-Stone. In this game, the two play-
ers simultaneously 'throw' one of three symbols: 'Stone' (hand balled in a
fist), 'Paper' (hand flat with the palm down) or 'Scissors' (middle and fore-
finger spread, pointing forwards). If both players throw the same symbols,
the result is a draw; otherwise, Paper beats Stone, Stone beats Scissors,
and Scissors beats Paper (the reason being that "Paper wraps Stone, Stone
blunts Scissors, and Scissors cut Paper"). In this game, the players do not
make moves in turn, but simultaneously. In other words, both players make
moves, and neither player knows what move the other is making. This is an
example of a game of Imperfect Information.

The strategy 'Throw Stone' is a losing strategy, because it loses against
the counterstrategy 'throw Paper'. The same can be said for any strategy of
the type 'throw this\ for both players. So in terms of the concept of strategy
described above, this game is not determined. On the other hand, consider
the 'strategy' 'throw Scissors 1/3 of the time, throw Paper 1/3 of the time,
and throw Stone the remaining 1/3 of the time'. Against any other strategy,
this strategy loses, draws and wins 1/3 of the time each, for an 'average
result' of a draw. This strategy does not fit in the concept of strategy given
above, but it is clearly worth considering.

Strategies of this new type are called mixed strategies, as opposed to the
old type of strategies, the pure strategies. A mixed strategy for a given player
in a given game consists of a specification, for each position in which he or
she is required to make a move, of the probability distribution to be used

4In more general cases, we allow e-approximation, i.e. a game is determined iff there
exists a value v such that for any e > 0, the two players have strategies guaranteeing them
a payoff of at least υ — c or at most v + e, respectively.
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to determine what move to make in that position.5 Given mixed strategies
for each of the players, the outcome of the game is not determined, but we
can calculate the probability of each outcome. If we assign values to winning
and losing ('the loser pays the winner one dollar'), then we can calculate the
average profit/loss one player can expect to make from the other, playing
those strategies.

The value of a mixed strategy is therefore the expected average result
against the best counterstrategy. And a game is called determined if, for
some value v, one of the players has a strategy with which she can always
expect to make (on average) at least v, no matter what the other plays, while
the other player has a strategy with which he can always expect to lose (on
average) at most v, no matter what the other plays. As before, it can be
shown (using induction and a theorem of Von Neumann) that all finite two-
person zero-sum games with Imperfect Information (i.e. the games with the
properties mentioned above, except that players make moves at the same
time instead of one after the other) are determined.

All the games mentioned so far are of finite duration. Let, as before, X
and Y be two finite sets, and let / be a function assigning to each countably
infinite sequence w of pairs {xuy%) G I x 7 , a payoff f(w) 6 M.6 We first
consider games of infinite duration and perfect information:

Two players are playing against each other. Each player, in turn,
makes a move by selecting an element x\ £ X or y\ € Y, respec-
tively, and announcing his or her selection. Then they each in
turn make a second move, and a third move, and continue making
moves for a countably infinite number of rounds. This generates
an infinite sequence w of pairs {x^yi) G l x F . 'Then' they
stop, and player II pays player I the amount f(w).

The problem with infinite games, of course, is that the outcome is only known
after an infinite number of moves, and thus it is impractical to play the game
as it is. But our concept of a strategy as a specification of which move to
make in each position, is still valid in the case of games of infinite duration.
And given strategies for both players we can construct the infinite sequence
of moves that will be played (or the probability distribution thereof), and
apply the payoff function to obtain our (expectation of the) outcome. Hence
we can still play the game in a fashion, by using its normal form.

The concepts of values and determinateness carry over as well. But it
is no longer provable that all such games are determined. For some payoff
functions / , such as bounded Borel-measurable functions / , it has been

5 Standard game theory defines a mixed strategy as a probability distribution on pure
strategies, but the above definition can be shown to be equivalent to that one.

6We tacitly assume / to be bounded, as otherwise things get ugly.
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proven that the infinite game of perfect information Γp.i.(/) is determined.
But using the Axiom of Choice, a nonmeasurable payoff function / can be
constructed such that Γ(/) is not determined [10]. The axiom AD, the axiom
that all games Γ(/) are determined, is widely used as an alternative to AC
[9, 11].

A game of infinite duration and imperfect information is similar, except
that both players make their nth move at the same time. These games
are called Blackwell games, named after David Blackwell, the first one to
describe and study these games [2]. For Blackwell games, it has been proven
that Γ(/) is determined for the case that / is the indicator function of an
open or G$ set. In this article I prove determinacy of Γ(/) for the case
that / is the indicator function of a Gsσ set. But the general case of Borel-
measurable functions is still open.

2 Definitions, Lemmas and Terminology

2.1 Games, Strategies and Values

The definitions in this subsection are fairly standard, and merely formalize
the intuitive concepts from the introduction. The lemmas are all basic prop-
erties of game-values. For reasons of conciseness, no proofs are given in this
section.

In order to define what a Blackwell game is, we first need some sets. Let X
and Y be two finite, nonempty sets, and put Z = X x Y. An (infinite) play
is a countably infinite sequence w of pairs (x, y) € Z. We write W for the
set of all plays, i.e. W = Z™.

Definition 2.1 Let / : W -> M be a bounded Borel (measurable) function
(i.e. a bounded function such that f~ι[O] is a Borel set for every open set
O C ]R). The Blackwell game Γ(f) with payoff function f is the two-person
zero-sum infinite game of imperfect information played as follows: Player I
selects an element xι e X (makes the move x\) and, simultaneously, player
II selects an element y\ G Y. Then both players are told z\ = (#1,3/1),
and the game is at or has reached position (21). Then player I selects x<ι E
X and, simultaneously, player II selects #2 € V. Then both players are
told 22 = (#2J2/2)) and the game is at position (21,22)- Then both players
simultaneously selects X 3 6 I and y% E Y, etc. Thus they produce a play
w = (21,22, •)• Then player II pays player I the amount f(w), ending the
game.

A position or finite play (of length k) is a finite sequence p (of length k) of
pairs (rr, y) E Z. We write P for the set of all positions, i.e. P = Z<ω.
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Some notation and terminology that we are going to use:
w usually denotes an infinite play, p denotes a finite play or position.
P|n, w\n denote the sequences consisting of the first n moves made in p, w
respectively (counting a pair (x,y) as one move).
l O Λ P~W denote the sequences consisting of the finite sequence p followed
by the finite sequence p1 or the infinite sequence w, respectively.
len(p) denotes the length of a finite sequence p.
e denotes the position of length 0, i.e. the empty sequence.
Wn denotes the set of all finite plays of length π, i.e. Wn = Zn, for n G IN.

p C w denotes that W|ien(p) = V-> and w e s a y that w hits or passes through p.
p Cpf denotes that Pιien(p) = V and p1 φ p, and we say that p1 follows p, and

p precedes p'.

p C p' denotes that p\\en(p) = ί>> and we say that p1 follows or is equal to p.

\p] denotes the set {w G W | w D p) of all plays hitting the position p.

[H] denotes the set {w G W \ 3p G H : w D p) of all plays hitting any

position in a set of positions H.

We sometimes write a sequence {{x\, j/i), (̂ 2? 2/2)5 •) as (rri, yi, X2,2/2, •)•
Γ(5) denotes the game T(Is), where Is is the indicator function of 5 C W.

Remark 2.2 We give W the usual topology by letting the basic open sets
be the sets of the form [H] for some some set H C Wn of positions of fixed
length n. Then the open subsets of W are exactly those of the form [H] for
some set H of positions. The Gs subsets of W are exactly those of the form
{w G W I Φ{p G H I w hits p} = 00} for some set H of positions. Note that
under this topology, W is a compact space.

Definition 2.3 A strategy for player I in a Blackwell game Γ(/) is a function
σ assigning to each position p a probability distribution on X. More formally,
σ is a function P —• [0, ΐ\x satisfying Vp G P : Σ x G χ σ(p)(x) = 1-
Analogously, a strategy for player II is a function r assigning to each position
p a probability distribution on Y.

Definition 2.4 Let σ and τ be strategies for players I, II in a Blackwell
game Γ(/). σ and r determine a probability measure μσ<Γ on W', induced by

/Vr[p] = P i w I w h i t s V) =

for any position p = (#1, j/ i , . . . , xn, yn) G P.
The expected income of player I in Γ(/), if she plays according to σ and player
II plays according to r, is the expectation of f(w) under this probability

measure:

E(σ vs T in Γ(/)) = J f(w)dμσ,r(w) (2.2)
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Definition 2.5 Let Γ(/) be a Blackwell game. The value of a strategy σ for
player I in Γ(/) is the expected income player I can guarantee if she plays
according to σ. Similarly, the value of a strategy r for player II in Γ(/)
is the amount to which player II can restrict player Γs income if he plays
according to T. I.e.

val(σinΓ(/)) = inf E(σ vs r in Γ(/)) (2.3)

val(rinΓ(/)) = sup£(σ vs r in Γ(/)) (2.4)
σ

Definition 2.6 Let Γ(/) be a Blackwell game. The lower value of Γ(/) is
the smallest upper bound on the income that player I can guarantee. Simi-
larly, the upper value of Γ(/) is the largest lower bound on the restrictions
player II can put on player Γs income. I.e.

vali(Γ(/)) = supval(σinΓ(/)) = supinf£(σ vs τ in Γ(/)) (2.5)
σ σ τ

valτ(Γ(/)) = infval(r in Γ(/)) = inf sup£(σ vs τ in Γ(/)) (2.6)
r τ σ

Clearly, for all games Γ(/), valA(Γ(/)) < valτ(Γ(/)). If valτ(Γ(/)) =
val^(Γ(/)), then Γ(/) is called determined, and we may write val(Γ(/)) =
valΐ(Γ(/))=vali(Γ(/)).

Definition 2.7 Let Γ(/) be a Blackwell game, and let e > 0. A strategy σ
for player I in Γ(/) is optimal if val(σ in Γ(/)) = val^(Γ(/)). A strategy σ
for player I in Γ(/) is e-optimal if val(σ in Γ(/)) > val^(Γ(/)) - e. Similarly,
a strategy r for player II in Γ(/) is optimal if val(r in Γ(/)) = val^(Γ(/)),
and β'optimal if val(r in Γ(/)) < valτ(Γ(/)) + e.

Some basic properties of these values are:

Lemma 2.8 Let f, g be two payoff functions such that for all w € W,
f(w) < g{w). Then vάι(Γ(f)) < val^Γ^)) and valτ(Γ(/)) < valτ(Γ(ff)).

Lemma 2.9 Let f be a payoff function, and let o,c G I , o > O.Then
valHΓ(α/ + c)) = avalι(Γ(f)) + c and valτ(Γ(α/ + c)) = avalτ(Γ(/)) + c.

Lemma 2.10 Let f be a payoff function, and let fsw : (Y x X)m —• M be
defined by

), (2/2, ̂ 2), - 0 = /((^i,2/i), (a?2i w), • •) (2.7)

Then

valA(Γ(-/)) = -™\HTsw(fsw)) (2.8)

valΐ(Γ(-/)) = -val^ΓU/™)) (2.9)

where Tsw(fsw) is the Blackwell game with payoff function fsw in which player
I selects moves from Y and player II selects moves from X.
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Lemma 2.11 Let (fi)i be α sequence of functions fi'.W^> [α, 6] such that
(fi)i converges pointwise to a function f : W —» [α, 6], Then for any two
strategies σ, τ, lim^oo E(σ vs r in Γ(/j)) = E(σ vs r in Γ(/))

2.2 Starting and Stopping

Definition 2.12 Let / : W —• iR be a bounded Borel function, and p =
(0&i, 2/i), (#2,2/2)? - -, (#n, 2/n)) a position. The subgame Γ(/,p) starting from
position p is the game played like Γ(/), except that the players start at round
n+1, and the first n moves are supposed to have been £i, yi, #2> 2/2> - . 5 #n> 2/n
The game Γ(/,p) is played exactly the same as the game Γ(g), where g is
the payoff function defined by g(w) = f(p*w).

As before, strategies σ and r determine a probability measure μσ<Γ in r(/,p)
on W. This measure is equal to the conditional probability measure obtained
from μσ<Γ given [p], i.e.

(2.10)

The expected income of player I, the value of a strategy σ, etc. are defined
for the games Γ(/,p) in the same manner as for the games Γ(/).

Definition 2.13 A stopping position in a Blackwell game Γ(/) is a position
p, such that for all plays w,wf G [p], f(w) = f(w'). We will denote this
value by /(p). A stopset in a Blackwell game Γ(/) is a set H of stopping
positions, such that no stopping position p E H precedes another stopping
position p1 G H.

We will often define a payoff function / using the following format:

f(p) = formulal for p G H

f(w) = formula2 iίw& [H]

where H is a set of positions such that no position p G H precedes another
position p' G H. Then H is a stopset in the game

Remark 2.14 If p is a stopping position, any moves made at or after p will
not affect the outcome of the game. It is often convenient to assume that
both players will stop playing if a stopping position is reached. If Γ(/) is
a Blackwell game, and H is a stopset, we write Tπ(f) to explicitly denote
that players stop playing at the positions in H. In this case, we only require
strategies to be defined on nonstopping positions. Similarly, with respect to
a subgame Γ(/,p), we only require strategies to be defined on positions that
are following or equal to p. In fact it is occasionally necessary to assume
that a strategy is not defined on positions outside the subgame proper, for
instance to combine strategies for different subgames into one big strategy.
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Using stopsets, a finite game can be treated as a special type of infinite game.
For finite games, we have determinacy, as well as a kind of continuity of the
value function.

Definition 2.15 Let Γ(/) be a Blackwell game. If, for some n, all positions
in Wn are stopping positions, then Γ(/) is called finite (of length n). If Γ(/)
is finite, we can stop after playing n rounds, and we will denote this by
writing Γn(/).

Theorem 2.16 (Von Neumann's Minimax Theorem[12]) Let Γχ(/)
be α finite one-round Blackwell game (i.e. of length 1). Then Γi(/) is
determined, and both players have optimal strategies.

Theorem 2.17 Let Γn(/) be a finite Blackwell game of length n. Then
Γn(/) is determined, and both players have optimal strategies.

Lemma 2.18 Let n G IN. Let (fi)i be a sequence of payoff functions fa :
Wn —> [α, b] such that (fi)i converges to a payoff function f : Wn —• [α, 6].
Then val(Γn(/)) = l i m ^ val(Γn(/<)).

2.3 Equivalent Truncated Subgames

In games like Chess, Go, or even Risk or Monopoly, a player is usually allowed
to give up if he has no hope of winning. He doesn't have to play it out in
the hope that the other player will make a mistake. Two players can agree
beforehand to stop in certain positions, and pay out the value of the game
at that position rather than continue playing. Provided their assessment of
that value is accurate, this does not change the value of the total game. We
will call a game resulting from such an alteration a truncated subgame.

Definition 2.19 Let /, g be two payoff functions, and H a stopset in T(g).
Tπ{g) is an equivalent truncated subgame of Γ(/) (truncated at H), if for any
play w 0 [if], f(w) = g(w), and for any p e H, g(p) = val(Γ(/,p)).
Tπ{g) is a truncated subgame, equivalent for player I [player II], if for any
play w £ H, f(w) = g(w), and for any p e H, g(p) = val^lX/,^)) [g(p) =

^ In all three cases, Γ(/) is called an extension of

Note that Γ#(g) is an equivalent truncated subgame of Γ(/) iff it is a trun-
cated subgame equivalent for both player I and player II.

Lemma 2.20 Let Γ(/) be a Blackwell game, and let Tπ{g) be a truncated
subgame ofΓ(f), truncated at a set of positions H, equivalent for player I
[for player II]. Then val*(Γ(/)) = y^(TH(g)) /valτ(Γ(/)) = y^(TH(g))].
Furthermore, for any e > 0, any e-optimal strategy for player I [player II] in
^H(g) (if it is undefined on all positions at or after positions in H) can be
extended to an e-optimal strategy for player I [player II] in Γ(/).
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Sketch of proof: We find an e-optimal strategy for the truncated subgame
Γff(g), and for the appropriate £, ̂ -optimal strategies for the games Γ(f,p)
starting at positions p € H, i.e. the positions where Γ#(#) stops. Then we
tie them together, and calculate how well the combination strategy performs
against opposing strategies.

Corollary 2.21 Let Γ(/) be α Blackwell game, and let Γ#(s) be an equiv-
alent truncated subgame ofΓ(f) (truncated at H). IfTn(g) is determined,
then Γ(/) is determined, and val(Γ(/)) = val(Γ#(<7)). Furthermore, for
any e > 0, any e-optimal strategy for player I or player II in Γ#(#) can be
extended to an e-optimal strategy for player I or player II in Γ(/).

Corollary 2.22 Let Γ(f),ΓH(g) be Blackwell games. If for any p 6 H,
9(p) < vsll(Γ(fjP)), and for any w £ [H], g(w) < f(w), then VB11(ΓH(9)) <
val^(Γ(/)). Similarly for the value and the upper value, and for > instead
of<.

Truncated subgames may be nested. If we have a nested series of truncated
subgames, then we may extend a strategy for the smallest subgame to a
strategy for all subgames. This allows us to approximate complicated games
with a series of simpler, truncated subgames, obtain a strategy that is (e-
)optimal in all the subgames. The final lemma in this section allows us to
prove results for that strategy in the original game.

Definition 2.23 Let, for n G IV, fn be a payoff function, and Hn a set
of stopping positions in Γ(/n). If for all n £ IV, Γjyn(/n) is a truncated
subgame of Γjyn+1(/n+i), and equivalent to THn+1(fn+1) [for player I, II],
then the series of games (Γifn(/n))n G^ is called a nested series of equivalent
truncated subgames [equivalent for player I, II].

Lemma 2.24 Let (ΐΉi(9i))i£]N be a nested series of truncated games equiv-
alent for player I [player II]. Then all the games have the same lower value
[upper value]. Furthermore, we can find a strategy for player I [player II]
that is e-optimal in all the games Γ ^ ( ^ ) .

Sketch of proof: Basically, we apply Lemma 2.20 a number of times and
use induction. The proof is straightforward, except for a slight complication
involving the domain on which the strategies are defined. This complication
is solved using the observations that if we truncate a game, any stopping
position remains a stopping position, and that strategies can be assumed to
be undefined on stopping positions.

Corollary 2.25 Let (THi(9i))ieJN be a nested series of equivalent truncated
subgames. IfΓH0(go) w determined, then all the games are determined, and
all the games have the same value. Furthermore, we can find strategies for
player I and player II that are e-optimal in all the games Γui^i)-
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Remark 2.26 If the component games involved all have optimal strategies,
then we can extend optimal strategies with optimal strategies to optimal
strategies, i.e. drop the e in the above lemmas and corollaries.

3 Determinateness Results

3.1 Generalized Open Games

In this subsection we prove determinacy of a class of 'generalized open
games', where payoff for a play is calculated as the supremum of values
associated with the positions hit in the play. In addition we derive a result
for these and open games comparable to the compactness of W.

Theorem 3.1 Let u : P —> iR be α bounded function, and let f : W —>
JR be the payoff function defined by f(w) = supje]Nu(w\j). Then Γ(/) is
determined, and

val(Γ(/)) = lim val(Γn(/n)) (3.11)
n—>oo

where fn(w) = s u p ^ t x ^ ) .

Sketch of proof: Showing that limn-^ val(Γn(/n)) exists and is not greater
than the lower value of Γ(/) is not difficult. To show that it is not less than
the upper value, we approximate Γ(/) with a collection of finite auxiliary
games Γn(gn) such that the payoff at the stopping positions is an estimate of
the value of the game at that point. We then show that these auxiliary games
form a nested series of equivalent finite truncated subgames. This allows us
to find a strategy that is optimal in each of the truncated subgames. This
strategy is also a strategy in the game Γ(/), and has a value in Γ(/) equal
to limn_ooval(Γn(/n)).

Proof: Without loss of generality we may assume that the function u has
range [0,1]. For any p G P , and any n G IV, the game Γn(/n,p) is finite
(of length < n), and thus determined. It is easily seen that /o < f\ < f<ι <
. . . < / < 1. Consequently, for any p e P,

val(Γo(/o,p)) < vaKIM/i,?)) < val(Γ2(/2)ί>)) < ... <
(3.12)

For allp 6 P, limfc_>oo val(Γfc(/fc,p)) exists, since all monotone non-decreasing
bounded sequences converge. Furthermore, for all p G P ,

J ^ / n , ? ) ) < vali(Γ(/,p)) (3.13)

Define for any n € N the payoff function gn : Wn —>• [0,1] by

gn(p) = lim va\(Tk{fk,p)) for p € Wn (3.14)
k—κx>
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Then for all p € Wn, gn(p) > val(Γn (/„,?)) = fn(p).
Furthermore, the games Γn(gn) form a nested series of equivalent truncated
subgames. For fix n G W, p G Wn. Define for k G IN, hn+\^ : VΓn+i —• JR
by hn+1,k(p') = val(Γfc(Λ,j/)) for p' G Wn+1. Then

gn(p) = lim val(Γ*(Λ,p)) (3.15)
fc—>oo

= ^val(Γ n +i(Λ n + 1 ) f c ,p)) (3.16)

= val(Γn+1ςiiin hn+lik,p)) (3.17)

= val(Γn + 1(5 n + l 5 l>)) (3.18)

(equation (3.16) follows from Corollary 2.21, and equation (3.17) follows
from Lemma 2.18 as Wn+\ is finite).
Since {Γn{9n))ne]N is a nested series of equivalent truncated subgames, by
Corollary 2.25 the games Tn(gn) all have the same value, say υ. Also, we
can find a strategy for player II that is e-optimal in all the games Γn(pn),
and since all the games Tn(gn) are finite and hence have optimal strategies,
by Remark 2.26 we can even find a strategy that is optimal in all the games
Γn(ffn) So let r be such a strategy. Then for any strategy σ, and any n G W,

E(σ vs r in Γn(gn)) < val(Γn(5n)) = v (3.19)

Now let σ be any strategy for player I in Γ(/). Then

E(σ vs r in Γ(/))

= lim E(σ vs r in Γn(/n)) (3.20)

< Jlirn^ E(σ vs r in Γn(gn)) (3.21)

< v (3.22)

So
valτ(Γ(/)) < val(r for player II in Γ(/)) < υ (3.23)

But also

v = val(Γo(so)) = 9o(e) = lim val(Γfc(Λ)) < valA(Γ(/)) (3.24)
K—+OO

Therefore,
valt(Γ(/)) = vall(Γ(/)) = lim val(Γfc(/fc)) (3.25)

K—•OO

D

Corollary 3.2 Let O be an open set Then T(O) is determined.
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Proof: There exists a set of positions H such that O = [H]. Then for

all w e W, Io(w) = sup n G W J#(w|n). Applying Theorem 3.1 yields the

corollary.
D

Corollary 3.3 Let O = Ui 0% be the union of open sets. Then val(Γ(O)) =

oo val(Γ(U<nOi)).

Proof: As the union of open sets, O is open, and hence there is a set of

positions H such that O = [J3], i.e.

0 = {weW\3peH:PCw} (3.26)

Define the basic open sets Bj C O by

Bn = {w eW \3p e H : p C w Λ len(p) < n) (3.27)

then for all w £W,

Ioiw) = sup/iritis) (3.28)

jew
IBn(w) = suplπίwy) (3.29)

so applying Theorem 3.1, we find that

val(Γ(O)) = lim val(Γn(Bn)) (3.30)
n—*oo

For each m G IV, Bm is a closed set covered by the open sets {Oi)i^js- So

by the compactness of W there is for each m G IN a nm E W such that

#m £ UΓ î Oi. Then for all n > n m ,

val(Γm(Bm)) < val(Γ((j Oi)) < val(Γ(O)) (3.31)
2 = 1

The corollary follows immediately.
D

Corollary 3.4 Let f be α continuous function. Then Γ(/) is determined.

Proof: As W is compact, and / is continuous, f[W] is compact, and hence
bounded. Define u : P —> JR by u{p) := inf^^] f(w). Then u is well-defined
and bounded, and by the continuity of /, f(w) = sup n 6 W ^(w| n ) for all
w £W. Applying Theorem 3.1 yields the corollary.

D
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Remark 3.5 In the case of open games (or generalized open games, de-
scribed later) there is an optimal strategy for player II. This strategy can be
described as 'at every position player II plays the optimal one-round strategy,
looking at the values the game has for player I from all positions directly
following that one'. However, for player I there does not always exist an
optimal strategy, as the following example shows.

Example 3.6 Consider the following Blackwell game. Each round, both
players say either 'Stop' or 'Continue'. If both players say 'Continue', then
play continues. Otherwise, the game halts: player II wins (payoff 0) if both
players said 'Stop', while player I wins (payoff 1) if only one of the players
said 'Stop'. If play continues indefinitely, and neither player ever says 'Stop',
then payoff is 0, i.e. player II wins.

This is clearly an open game. An interpretation of this game is, that
player II tries to guess on which round player I will say 'Stop', and tries to
match her. If player II guesses wrong, i.e. says 'Stop' too soon or not soon
enough, then player I wins, if player II guesses right, then he wins.

A strategy of value 1 — ̂  for player I is, to select at random a number
i between 1 and n, and say 'Stop' on round i. Translated to the standard
format for strategies, this becomes:

on round 1, say 'Stop' £ of the time,
on round 2, if not yet stopped, say 'Stop' ^j of the time,

on round 3, if not yet stopped, say 'Stop' ^ ^ °f ^ e time,

on round n, if not yet stopped, say 'Stop' j of the time.
Hence, the value of this game is 1. In fact, the value of this game at any
position in which game has not yet ended is 1. But there exists no optimal
strategy of value 1. For suppose there exists such a strategy, of value 1. Then
on any round (in which play has not yet ended), the chance that player I
will say 'Stop' in that round is 0%. For otherwise, the strategy would not
score 100% against the counterstrategy that player II says 'Stop' on that
round. But then, player I will never say 'Stop', and this strategy will lose
against the counterstrategy that player II never says 'Stop'. So any strategy
for player I has value strictly less than 1, although there are strategies with
values arbitrarily close to 1. This game is an example of a game in which
one of the players has no optimal strategy.

3.2 G$-sets

Davis' proof of determinacy for Gsσ games of perfect information [5] is based
upon the idea of 'imposing restrictions' on the range of moves player II can
make. I.e. certain moves are declared 'forbidden', or a loss for player II, in
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such a way that (a) if player I did not have a win before, she does not get
a win now, and (b) a particular Gs set is now certain to be avoided. By
applying this to all the Gs subsets of a Gsσ set, and using compactness, he
shows that if player I cannot force the resulting sequence to be in one of the
Gs sets, player II can force the resulting sequence to be outside all of them.

The union of all the sequences in which one of the 'forbidden' moves is
played, is an open set that contains the Gs set in question. One way of
looking at Davis' proof is, that he enlarges each of the Gs sets to an open
set without increasing the (lower) value of the game, in order to be able to
apply determinacy of open games.

In this subsection, we show that this holds (in a fashion) for Blackwell
games, i.e. that a Gs set can be Enlarged' to an open set without increasing
the lower value of the game by more than an arbitrarily small amount,
even in the presence of a 'background function', a payoff function for those
sequences that are not in the Gs set.

Theorem 3.7 Let f : W —> [0,1] be α measurable function and let D be a
Gs set Then

vai*(Γ(max(/, JD))) = inf valHΓ(max(/,/o))) (3.32)
ODD,O open

Sketch of proof: We define a collection of auxiliary games Γ^(^<) of
the game Γ(max(/, Jp)), in which the amount player I gets at a stop-
ping position p is an estimate for the value of Γ(max(/,/#)) at position p,
namely inf ODD,O open val(Γ(max(/, Jo),p)). We then show that these auxil-
iary games form a nested series of finite truncated subgames, equivalent for
player I. This allows us to find a strategy that is €-optimal in each of the trun-
cated subgames. This strategy is also a strategy in the game Γ(max(/, //))),
and has the required value, proving one side of the equation. The other side
is trivial.

Proof: Put υ = inf ODD,O open val^(Γ(max(/, Io)))- For any Gs set D we can
find a set of positions H, such that D = {w G W | #{p G H \ p C w} = oo}.
We may assume that e G H.
Define for any i G iV,

Hi := {p G H I there are exactly i positions p1 in H strictly preceding p}
(3.33)

Define for any i G IN the payoff functions g^ hi by

hi(p)

hi(w)

= /M
= lfor

= /H

if w &

peHi

ifw£

[Hi]

[Hi]

(3.35)

(3.36)

(3.37)
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First, the games Γjy^φ) form a nested series of truncated subgames equiv-

alent for player I.

For let i G IN, and fix p G Hi. Let ODD, then for any p' G i?i+i such

that j / D p, val^(Γ(max(/, Jo)5p')) > ίi+iίp')? and for any w D p such that

w £ [ϋΓ»+i], max(/, Jo)(w) > f(w) = gi+ι(w). Hence by Corollary 2.22, for

any ODD, valA(Γ(max(/, Jo),ί>)) > valA(Γjr<+1(#+i,p)). Therefore,

gi(p)>y^(THi+1(gi+up)) (3.38)

On the other hand, for any e > 0 we can find, for each p1 G iϊf+i, an open
set Opt D D such that

valA(Γ(max(/, JOp,),?/)) < 9i+ι(p') + e (3.39)

Set O = [)p>eHi+1(\pVOP') Then for ally G Hi+1, v^(Γ(mzx(f,Io),p')) =

val^Γίmax^/o ,),j/)) < Λ-fibO+e, and for any ^ ^ [-EΓ«+i], max(/,/o)(^)

= f(w) = 5i+i(tί;). Hence by Corollary 2.22,

9i(p) < valHΓ(max(/,/o),p)) < val^Γ^ίί/i+i.p)) + e (3.40)

This holds for any e > 0, therefore

ft(p) = valA(ΓjΓ<+1(»i+iJp)) (3.41)

Finally, for any i G IN, and any play w 0 [iff], we have that w £ [#z+i],

and hence gi(w) = /(w) = ρz+i(tί;). So Γjyt.(ρt ) is a truncated subgame of

^Hi+iigi+i) equivalent for player I.

Let e > 0.

Since (ΓHi(9i))ieN 1S a nested series of truncated subgames equivalent for
player I, by Lemma 2.24 all the games have the same lower value, namely
val̂ (Γ#0(<7o)) = 5o(e) = v, and there exists a strategy σ for player I that is
e-optimal in all the games Γ/^ίSi), i.e. for any strategy r, and any i G IN,

E(σ vs r in THM) > valA(Γ^.(Λ)) - e = v - e (3.42)

Now let r be any strategy for player II in Γ(max(/, ID))- Then

E(σ vs T in Γ(max(/,/^)))

= lim E(σ vs r in THi(hi)) (3.43)

> lim £(σ vs r inΓV(5i)) (3.44)
i—κx>

> v - 6 (3.45)

So σ is a strategy for player I of value at least υ — e. This implies that

val^(Γ(max(/,/jr)))) > v — e. This construction can be done for any e > 0,

hence
valA(Γ(max(/, ID))) > v (3.46)
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For any ODD, va.lι(Γ(max(f,ID))) < valA(Γ(max(/, Jo))), hence

vaiA(Γ(max(/, ID))) < inf valA(Γ(max(/, Jo))) = t; (3.47)
ODD,O open

Hence valA(Γ(max(/, = υ.

Corollary 3.8 Let S be α measurable set, and let D be a Gs set Suppose
that T(S U D) has lower value v. Then for any e > 0, there exist an open
set O, D CO, such that Γ(5 U O) has lower value at most v + e.

Proof: Take f = Is and apply the non-trivial part of Theorem 3.7.
D

Corollary 3.9 Let D be a Gs set Then T(D) is determined, and

vai(Γ(£>)) = inf val(Γ(O)) (3.48)
ODD.O open

Proof: For any open set ODD, Γ(O) is determined and
valτ(Γ(Z>)) < val(Γ(O)). Applying Theorem 3.7 with / = 0 yields the
Corollary.

D

3.3 G^σ-sets

In this subsection, we prove the determinacy of Γ(/) in the case that / is
the indicator function of a Gβσ set. Structurally, this proof is similar to the
aforementioned proof by Davis for Gβσ games of perfect information [5]. We
apply the results of the previous subsection to the Gs subsets of a Gsσ set.
Corollary 3.3 takes the place of the compactness used in Davis' proof.

Theorem 3.10 Let S = Ui A be a Gsσ set Then T(S) is determined.

Sketch of proof: Each of the Gs sets composing the Gsσ set is enlarged
to an open set using Corollary 3.8, in such a way that at all times the lower
value is not increased by more than e (compared to the original game), where
e is arbitrarily small. The resulting union of open sets is itself open, and
hence determined, and furthermore Corollary 3.3 allows us to conclude that
the total increase of the lower value is still not more than e. This means
that the upper value of the original game is also only at most e more than
the lower value.
Note that, unlike the previous proofs, this proof does not produce an optimal
or e-optimal strategy.
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Proof: Put v = vali(Γ(Sf)). Let e > 0. Using Corollary 3.8, we can find
inductively open sets O{ D D{ such that for all j € JV,

vaϊA(Γ(Sll U 0i) )<vaiHΓ(5u(Jθi)) + */2ί (3.49)

Then for all j € IV,

va.lι(T(Su\Jθi))<v + e (3.50)

and hence, for all j € IV,

val(Γ( U Of)) < v + e (3.51)

Then by Corollary 3.3,

val(Γ( (J Oi)) < υ + e (3.52)

Since S = \JieWfDiC\Ji€MfOi,

valτ(Γ(5)) < valτ(Γ( (J O<)) = val(Γ( | J Of)) < v + € (3.53)

This is true for any e, hence valT(r(5)) = v = val i(Γ(5)).
D

Remark 3.11 The proof of Theorem 3.10 shows that any Gsσ set (and a
fortiori any set of lesser complexity) can be enlarged to an open set such
that the value of the Blackwell game on that set is not increased by more
than an arbitrarily small amount. A plausible conjecture is, that this holds
for any Borel-measurable set.

This conjecture holds in the case of games of Perfect Information. Such
a game, on a Borel-set 5, is determined and has value 0 or 1. If it has value
0 then player II has a winning strategy. The set of plays that cannot occur
if player II uses that strategy, is an open set, and the game on that set has
value 0 as well.

4 The Axiom of Determinacy for Blackwell Games

For Games of Perfect Information, there exists the Axiom of Determinacy,
which states that any Game of Perfect Information with finite choice of
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moves is determined7. AD has many interesting consequences, such as the
existence of an ultrafilter on Ni, the existence of a complete measure on IR,
the non-existence of a sequence of Ni reals, and the negation of the Axiom
of Choice. We can formulate an analogue of AD with respect to Blackwell
Games, and look at the consequences of that axiom. But AD is an axiom
about games on all subsets of W, not just on the Borel measurable subsets8.
An analogous axiom for Blackwell Games should therefore not be limited
to games with measurable payoff functions. Hence we need to extend the
concepts of expectation and value for Blackwell games.

Definition 4.1 Let Γ(/) be a Blackwell Game, where / is bounded but not
necessarily Borel measurable. Let σ and r be strategies for players I, II. σ
and r determine a probability measure μσ>τ on W, induced by setting

n

μσ,τ[p] = P{w I w hits p) = JJ (σ(p|(i_1))(xi) rip^^yiΫj (4.1)
1 = 1

for any position p = (xu yu..., xn, yn) € P.
Instead of the expected income of player I, if she plays according to σ and
player II plays according to r, we now have the lower and upper expected
income :

r(σvsrinΓ(/)) = sup ί g(w)dμσiT(w) (4.2)
9<f,g measurable J

E+{σvsτmΓ(f)) = inf ί g(w)dμσ,τ(w) (4.3)
g>f,g measurable J

Lower value and upper value are redefined in the obvious way:

valA(Γ(/)) = supinf£Γ(σvsτinΓ(/)) (4.4)
σ τ

valτ(Γ(/)) = infsup£+(σvsτinΓ(/)) (4.5)
τ σ

Note that in the case that / is measurable, these definitions reduce to the
old definitions.

7Formally, AD is an axiom about games with countable choice of moves, whose payoff
function is the indicator function of a set S C W. But in the case of Games of Perfect
Information, determinacy for games with countable choice of moves is equivalent to deter-
minacy for games with finite choice of moves, and determinacy for games with 0-1-valued
payoff functions is equivalent to determinacy for games with arbitrary bounded payoff
functions.

8 AD with respect only to games on Borel measurable subsets (and finite sets X and
Y) is in fact provable from CAC [6, 7].
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Definition 4.2 The Axiom of Determinαcy for Blαckwell Games (AD-B1)
is the statement that for every pair of non-empty finite sets X, Y, and ev-
ery bounded function / on W = (X X Y)N, the Blackwell Game Γ(/) is
determined, i.e.

= valt(Γ(/)) (4.6)

Theorem 4.3 Assuming AD-Bl, it follows that all sets of reals are Lebesgue
measurable.

Sketch of proof: Let X and Y be the set {0,1}. Then we can construct a
mapping φ : W -» [0,1] such that if either σ or r is the strategy that assigns
the j - ^ probability distribution to every position, then the measure μσiT in-
duces the Lebesgue measure on [0,1]. We can then deduce the measurability
of a set S C [0,1] from the determinacy of the game Γ(φ~ι[S]).

Some of the consequences of Theorem 4.3 are, that AD-Bl is not consistent
with AC, and that the consistency of ZF + AD-Bl cannot be proven in ZFC.
These results are all similar to results for AD. An open problem is that of the
relationship between AD and AD-Bl, whether AD follows from AD-Bl, or
vice versa, or even whether AD-Bl follows from a stronger version of AD such
as AD ft. From a given game of Perfect Information, we can easily construct
a Blackwell game that is 'equivalent', and assuming AD-Bl we can find an
€-optimal mixed strategy for that equivalent Black well-game. However, to
derive AD from AD-Bl, we need to have a pure strategy, and even though
we can interpret any mixed strategy as a probability distribution on pure
strategies, there is no guarantee that any of these pure strategies will do as
well as the mixed strategy against all counterstrategies.
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