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Abstract.
A brief review of the Bennett and Hoeίfding inequalities is presented, as
they apply to independent random variables, for the purpose of identi-
fying the point where independence is actually utilized. On the basis
of an observation, it follows that the inequalities remain in force when-
ever the expectation of a certain product is bounded by the product
of the expectations of the factors involved. This requirement is satis-
fied, for example, when the underlying random variables are negatively
associated. By a counterexample, it is demonstrated that the inequal-
ities need not hold for positively associated random variables. Next, a
Hoeffding-type inequality is established for a strong mixing sequence of
random variables. The paper is concluded with the utilization of the
Hoeffding inequality in order to construct a minimum distance estimate
of the probability measure governing a sequence of negatively associated
random variables.

1. Introduction and Summary. Let ΛΊ, X2,... be (real-valued) ran-
dom variables (r.v.) defined on the underlying probability space (Ω,,4,P),
and set Sn for the sum of the first n r.v.'s, Σπ=1Xu a n d Sn for Sn/n.
The problem of providing exponential bounds for the probabilities P ( | 5 n | >
ε) (ε > 0) is of paramount importance, both in Probability and Statistics.
Prom a statistical viewpoint, such inequalities can be used, among other
things, for the purpose of providing rates of convergence (both in the proba-
bility sense and almost surely) for estimates of various quantities. Especially
so in a nonparametric setting, where the advantages of a parametric struc-
ture are not available to the investigator.

In Section 2, a brief review is presented of the Bennett and the Hoeffding
inequalities in the framework of independent r.v.'s, primarily for the purpose
of isolating the point, where independence is utilized. This point is inequality
(2.12) stated as a corollary to two propositions. In the following section,
it is shown that inequality (2.12) is, indeed, satisfied for r.v.'s which are
negatively associated. As a consequence of it, such r.v.'s satisfy the Bennett
and Hoeffding inequalities. It is then shown, by means of a counterexample,
that positively associated r.v.'s need not, in general, satisfy the Hoeffding
inequality. This conclusion is an easy consequence of a result for positively
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associated r.v.'s stated as Proposition 3.1. In the following section, Section
4, a Hoeffding-type inequality is established for a specific mode of mixing
sequences of r.v.'s, the so-called α-mixing or strong mixing. This is done in
Theorem 4.1 after two auxiliary results are stated as lemmas. The paper
is closed with some statistical applications of the Hoeffding inequality for
α-mixing and negatively associated r.v.'s.

In this paper, all limits are taken as n —» oo; this fact will not be
mentioned explicitly in order to avoid unnecessary repetitions.

2. Bennett and Hoeffding Inequalities. Exponential probability
bounds for sums of r.v. are very useful in many probabilistic derivations,
and particularly so in many aspects of parametric as well as nonparametric
statistical inference. Bennett (1962) provided various forms of such bounds
in the framework of independent r.v.'s (see Proposition 2.1) and so did Ho-
effding (1963) by way of a different method (see Proposition 2.2). These
inequalities are Bernstein-type inequalities, and Bennett's derivations follow
the pattern of the original proof of Bernstein's inequality.

Following the steps of the proofs of the above mentioned inequalities,
the reader may see that there is essentially only one instance, where inde-
pendence of the underlying r.v.'s is used. On the basis of this observation,
it follows, in effect, that the same bounds hold true in all cases, where such
an inequality may be claimed. For the purpose of clarifying this point, we
present a brief outline of the basic steps involved in the proofs, and point
out explicitly where independence is employed. We start out with one form
of Bennett's inequalities.

Proposition 2.1 (Bennett (1962), page 34). Let Xu...,Xn be inde-
pendent r.v.'s almost surely (a.s.) bounded, \X{\ < Ci a.s. i = 1,...,n, and,
without loss of generality, assume them to be centered at their expectations.
Set σ\ = σ\X{) = EXf, s2

n = Σti°ϊ = σ\Sn), where Sn = Σtiχi-
Finally, let Co = max {Ci\ i = 1,..., n). Then, for every t > 0:

(2.1) P(Sn > snt) < exp [-ί2/(2 + ̂  ^ ) | ,

and also:

Γ o 2
(2.2) P(\Sn\ > snt) < 2exp \-t2/(2 + -

L
Proof, (brief outline). For any c > 0, use Markov inequality to obtain:

(2.3) P(Sn > snt) < exp(-csnt)S exp(cSn) = exp(-csnt)
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Expanding exp(αXi) according to Taylor's formula, taking expectations, and
using suitable inequalities involving moments and the function exp ί, one has:

€exp(cXi) < exp f^U(c)j , where F^c) = f ] (cr-2S\Xi\T /|r!σ?) ,
L -I r = 2 ̂  '

for i = 1..., n. At this point, suppose (as Bernstein did) that, for i =
l , . . . ,n :

£\Xi\r <^WΓ2r\, r>2, Wn = Co/3.

Actually, it is easily seen that these inequalities are satisfied here, and then:
F%{c) < (1 — cWn)*1, provided cWn < 1. In addition to satisfying this last
inequality, c is also chosen so that:

(1 - cWn)-1 < Mn, where Mn = Wns^t + 1 ^ + 1.
osn

Then:

( 22 \

^ - M n J , t = l , . . . , n .

It is at this point where independence of the X{ fs is used in order to obtain,
by means of (2.3) and (2.4):

P(Sn > snt) < exp(-cι

(2.5)
/C252 \

= exp(—csnt) Y^εexp(cXi) < exp ί —^Mn — csnt 1 .

The proof is then completed by minimizing (with respect to c) the right-hand
side in (2.5). •

Remark 2.1. To be sure, independence of the X^s also enters the picture,
if one wishes to interpret s2 as σ2 (X -̂x-X"*) rather than as Σ)™=10"2(-ϊί).
However, this does not interfere with the proof. The critical point in estab-
lishing the inequalities is relation (2.12) below. In all that follows, s2 will
stand for the sum of the variances.

Now consider one of the inequalities obtained by Hoeίfding.

P r o p o s i t i o n 2.2. (Theorem 2 in Hoeffding (1963)). Let Xχ,...,Xn be

independent r.v.'s such that α{ < X{ < 6 ,̂ i = 1 , . . . , n . Set μi = EXi, i =

1,..., n and μ = n " 1 ΣΓ=i M*- T^e i2> f°r every t > 0:

(2.6) P (X - μ > t) < exp -2n 2 ί 2 /
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and also:

Γ n

(2.7) P (\X - μ\ > t) < 2 exp -2n2t2/ ] Γ (6, -
L t=i

Proof, (brief outline). A brief outline of the proof is presented for the
purpose of pointing out the only instance where independence is used. The
approach is different from that used by Bennett, and is based on convexity
properties. To this end, for any arbitrary but fixed c € 9ft, the function
g(x) = ecx is convex (in x € 5ft). Therefore, for each i = 1 , . . . , n:
(2.8) S exp(cXi) < \ z ± i exϊ>(cαi) + ^

bi di bi- α
and:

£ exp [c(Xi - μi)] < exp [-c(μ; - a{)] exp(ca^)

• exp {in \hf^ expίca,) + !f^± exp(cd )

= exp [-kp + ίn{\ - p + pe'k)] = exp [L(k)],

where: fc = CQH - a*), p = ^fff (so that 1 - p = J ^ ) , and L(*) =
pcfc). It follows that: L(0) = L'(0) = 0, and L"{k) =

u{\ - n), 0 < u < $I$X+p < 1, so that L"(u) < 1/4. Expand L(jfc)

according to Taylor's formula up to terms involving the second derivative,

and use the above results to obtain: L(k) < ^- < c2(bi — di)2/8. Therefore:

(2.9) ε exp [c(Xi - μi)} < exp [c2(bi - tti)
2/8] , < = 1,..., n.

The Markov inequality yields, for c > 0:
n

(2.10) P (X - μ > t) < exp(-cnt)ε J J exp [c (JQ - μ^].

Once again, it is at this point where independence is employed in order to
get, by means of (2.9) and (2.10):

n

P {X - μ > ή < exp(-cnί)5 J J exp [c (Xi - μ;)]
t = l

n

(2.11) = exp(-cnt) J J ε exp [c (X{ - μi))

1 2 n I

The desired result then follows by minimizing (with respect to c) the right
hand side in (2.11). •

Prom (2.5) and (2.11), the following result follows.
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Corollary 2.1. In Propositions 2.1 and 2.2, consider the assumptions made
there except for the independence assumption of the r.v.'s Xχ,...,Xn,
which is replaced by the requirement that:

n n

(2.12) S J J exp (±cXi) < J J 8 exp (±cX<), c> 0.

Then the conclusions hold true.

An important case, where inequality (2.12) is satisfied, is the case of
negatively associated r.v.'s to be considered in the next section.

For the sake of a comparison of Bennett and Hoeffding inequalities,
suppose that \Xi\ < C, i = 1,... ,π, and in (2.2), replace t by nt/sn. Then
inequalities (2.2) and (2.7) become, respectively:

( Qγj2f2

"δϊ+icw ( 2 1 3 )

« 2

It follows that, if t < 3C — ̂ £ , then Bennett's bound is sharper than Ho-
effding's bound. In particular, suppose that JQ, i = 1,... ,n have the same

second moment σ2. Then 3C — Ĵt- = 3 (C — ̂  J >0, and Bennett's bound

is sharper than Hoeffding's bound, provided ί < 3 ί C — ̂ - j . Of course, the

sharpness of the bounds is reversed for t > 3(7 — | ^ , or ί > 3 (C — ̂ - J for
the case of equal variances. In practice, it is more convenient to employ the
Hoeffding inequality. An inequality similar to the ones discussed here, al-
beit in a different context, was obtained by Blackwell and Preedman (1973).
Indeed, much of David Blackwell's work is permeated by inequalities; espe-
cially that portion of it referring to dynamic programming (see, for example,
Blackwell (1962), (1965)).

3. Associated Random Variables. The concept of negative associa-
tion has been introduced by Joag-Dev and Proschan (1983) and has found
significant applications in systems reliability, statistics, and may also be ap-
propriate to model certain biosystems and ecosystems. For the definition
of the concept, consider the set {1,... ,ra}, and for any subset A of it, let
$lΛ denote the cartesian product of \A\ copies of 3?, where \A\ stands for the
cardinality of A. Then:

Definition 3.1. The r.v.'s Yi,...,Y^ are said to be negatively associated
(NA, for short), if for every nonempty proper subset A of {1,... ,ra}, and
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for every G : 5ftΛ —• 5R and H : 5ftΛC —> 5ft, which are nondecreasing in each
coordinate, the remaining ra—1 kept fixed and such that EG2 (Y*, i £ A) < oo
and SH2 (Yί,i € Ac) < oo, it holds:

Cov(G(Yi,i e A) ,fΓ(Y<,i G Ac)) < 0.

Remark 3.1. Coordinatewise nondecreasingness of G implies, of course,
that, if: Xix < x'iχ,..., X{k < x\k and Xjx,...,Xj£(k + ί = ra) remain fixed,
then G ^ , . . . , ^ , ^ , . . . , ^ ) < G ( ^ , . . . ,2^,2;^,... ,ZfcJ. In particu-
lar, G is nondecreasing along the main diagonal.

For NA r.v.'s, inequality (2.12) holds; that is:

Proposition 3.1. If the r.v.'s YΊ,..., Ym are NA, then:

m m

(3.1) εl[exϊ>(±cYi)<]lεexp(±cYi), c> 0,

and therefore inequalities (2.1), (2.2) and (2.6), (2.7) hold true.

Proof. That inequality (3.1) holds true with the positive sign is a conse-
quence of property P 6 in Joag-Dev and Proschan (1983), due to the fact that
exp(cYί), i = 1,..., m are NA. However, if Ŷ , i = 1,..., m are NA, then so
are the r.v.'s — Y{, i = 1,..., m. This is so because, if (?(•) and H(-) are non-
decreasing (in the sense of Definition 3.1), then so are the functions — G(—)
and -H{—), and Cov(-G,-H) = Cov(G,H). It follows that the r.v.'s
—cYi, i = 1,..., m and exp(—cY{), i = 1,..., m are also NA, and therefore
property PQ applies again and yields the desired result. •

If negative association is replaced by positive association (or just as-
sociation as originally termed by Esary et al (1967)), then the Hoeffding
inequality need not be true, in general. This is illustrated by means of a
counterexample discussed below (communicated to me by Hong Zhou), af-
ter the definition of positive association is given, and an auxiliary result is
obtained.

Definition 3.2. The r.v. 's Yi,..., Ym are said to be positively associated
(PA, for short), if for every nonempty proper subsets A and B of {1, . . . , m},
and for every G : 9ftΛ —• 5ft and H : 5ftB —• 3ft, which are nondecreasing in each
coordinate, the remainingm—1 kept fixed and such that SG2(Yi,i G A) < oo
and SH2(Yi,i G B) < oo, it holds:

(3.2) Cov(G(Yi,i £ A), H(Yi,i € B)) > 0.

Infinitely many r.v.'s are said to be PA, if any finite subset is a set of PA
r.v.'s.

By property P3 in Esary et al (1967), the set consisting of a single r.v.
is associated. This property generalizes as follows. The essence of this result
was also communicated to me by Hong Zhou.
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Proposition 3.2. For any r.v. X and any n, the set consisting ofn r.v.'s,
all identical to X, X,..., X is a set of PA r.v. 's.

Proof. For any G and H as in Definition 3.2, m = n and YΊ = ... = Yn = X,
inequality (3.2) must be established. Set g(X) = G(X,...,X), h(X) =
H(X,... , X). By Lemma 3 in Lehmann (1966) (whose proof is attributed
to Hoeffding) and X = (X,..., X):
(3.3)

Cov(G(X), H(X)) = ί ί {P [G(X) > tι, H(X) > υ]
J—oo J—oo

- P \G{X) >u\P [H{X) > v}} dudv.

However, with (Ω, Λ, P) being the underlying probability space:

[G(X) > u] = {ω € Ω; G(X(ω)) > u } = {ω e Ω;g(X(ω)) > u}

= {ωe Ω;X(ω) > inf{y € 3ί; g(y) > u}} ,

and likewise:

[H(X) > v] = {ω € Ω X(ω) > inf {y € »; Λ(y) > v}}.

Therefore:

> u,H(X) > v] = {ω G Ω X(α ) > inf {y e »; (/(y) > «}}

Π {ω € Ω; X(ω) > inf {y € 3t; h(y) > v}} ,

and hence:

[G(X) > u,H(X) > v] = {ω £ Ω; X(ω) > inf {y G »; g(y) > u}},

if
inf {y £ »; ^(y) > u} > inf {y G 3?; % ) > v} = [G(X) > u]

and:

> u, H{X) > υ] = {ω G Ω; X(ω) > inf {y G »; Λ(j/) > v}},

if
inf {y G K; 5(ί/) > «} > inf {y G »; Λ(Ϊ/) > v} = [^(X) > v].

Then, for all u and v in 3?, the integrand in (3.3) is equal either to
P [G(X) >u] P [H(X) < υ] or to P \H{X) >v]P [G(X) < u], and there-
fore Cov (G(X), H(X)) > 0, as was to be seen. •

Counterexample, (for which the inequalities do not hold). Let X be a
r.v. such that: \X\ <C,€X = 0 and £X2 = 1 (for example, P(X = -1) =
P(X = 1) = 1/2), and consider the Hoeffding inequality (for example, in the
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form (2.14)). Inequality (2.14) becomes here: P(\X\ > t) < 2exp ( -

Letting n —> oo, we get P(\X\ > t) = 0, which contradicts the assump-
tion EX2 = 1. Next, consider the Bennett inequality in the form (2.13),

for example, which presently becomes: P{\X\ >t)< 2exp (-£$&)- The

right-hand side, however, tends to 0, as n —» oo, and this leads to a contra-

diction as before.

4. Mixing Random Variables. The concept of mixing encompasses
a large class of stochastic processes and provides an intuitive way of express-
ing dependence among the r.v.'s involved, which, however, grows weaker as
blocks of r.v.'s keep increasing their distancing. This dependence can be for-
mulated in various ways, and is expressed by means of mixing coefficients.
Presently, we restrict ourselves to the so-called α-mixing (or strong mixing,
introduced by Rosenblatt (1956)), which seems to be the most popular mode
of mixing.

Definition 4.1. Let Xn, n = 1,2,... be defined on the probability space
(Ω, A, P), and for 1 < i < j < oo, let T\ be the σ-ήeld induced by the r. v. 's
Xn, n = i, i + 1,..., j. The sequence {Xn} > n > 1> is said to be α-mixing
(or strong mixing) with mixing coefficients α(n), if:

sup {\P(A Π B) - P(A)P(B)\ A e T\, B e ^ n , k > 1} < α(π) j 0;

the sup over k may be omitted when the underlying sequence is (strictly)
stationary

Strong mixing sequences of r.v.'s span a wide range. Most Markov pro-
cesses commonly used are α-mixing, and so is (under suitable conditions) the
general linear model employed in time series analysis. For a brief review of
various modes of mixing, their relationships and basic results, the interested
reader is referred to Roussas and Ioannides (1987). For linear time series
models, the references Withers (1981), Pham and Tran (1985), and Athreya
and Pantula (1986) are of special interest. The probabilistic literature on
mixing is very extensive. However, what is of special interest, from a statis-
tical viewpoint, are exponential probability inequalities. Presently, we focus
to such an inequality, whose derivation is given in considerable detail. This
is done in Theorem 4.1 below. A version of it may also be found in Roussas
and Ioannides (1988).

The proof of the main result hinges on the following two lemmas.

Lemma 4.1. Let Yi, Y2,... be r.v. 's centered at their expectations, bounded
by M, say and forming an α-mixing (but not necessarily stationary) se-
quence with mixing coefficients α(n) such that Σ^Li α(n) — α* < °° Then:

(4.1) £ | y ^ l <(l+8α*)M2n.
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Proof. The fact that the Yn

 fs are bounded by M, that YJ is ^-measurable
and Yj is ^—measurable imply that:

(see, for example, Theorem 7.1 in Roussas and Ioannides (1987)). Therefore:

Σ
t = l

Since Σi<i<i<n*(i - •) = YTjZlin - j)a{j) < nΣΪ=i°U) < ™Λ the
result follows. •

Lemma 4.2. Let Yi,l2> be as in Lemma 4.1, and let ξ and η be r.v.'s
such that ξ is T\-measurable, η is .Fj^-measurable, \η\ < Mo and S |£ | p <
oo for some p > 1. Then;

(4.2) \S (ζη) - (SO (εη)\ < βMoO^ίnJHί||pι

where \\ξ\\P = S1'* \ξ\p and J = 1 - J.

Proof. See Lemma 2.1 in Davydov (1968). •

For the formulation of the theorem in this section, some additional
notation is needed. To this effect, let v = v{n) be a sequence of positive
integers tending to oo along with n, and let μ = μ(π) be defined by μ = \^\,
where [x] denotes the integral part of x. Thus, μ is the largest positive integer
for which 2μv < n and n/2μv tends to 1 as n —• oo.

Theorem 4.1. Let Xχ^X2^... be a sequence ofr.v.'s centered at their ex-
pectations, bounded by M, say, and forming an α-mixing (but not necessar-
ily stationary) sequence with mixing coefficients α(n) such that Σ^Li α ( n )
= α* < oo. Set Sn = n""1 £)?=i Yi> aBC* ^et t1 a i κ * " be as above. Then for
alln>l (all μ>2 and all v):

(4.3) P (\Sn\ > en) < Kλ {l + βe1/2 Hv))1'^ exp {-K2nε2

n),

where 0 < εn < K^/u. Here K\ is a sufficiently large constant (> 6), K2 =
l/4eM2 (1 + 8α*), X3 = M (1 + 8α*) /2, and α* = Σ^Li <*(n).

Remark 4.1. If l imsupίl + βe1/2 [α(ϊ/)]1 / μ}μ < oo, inequality (4.2) is a

Hoeffding-type inequality. It also provides rates of convergence of Sn for a
suitable choice of εn, subject to the side condition εn < C$/v.
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Proof of Theorem 4.1. For i = 1,... ,μ, set: Ui = Y2(i-i)i/+i + +
*(2t-i)io Vi = Y(2i-ι)v+ι + - + Iwi/i and Wμ = Y2yμ+i + + yn- Also,
set: ££ = l^ + • + Uμ, V; = Vλ + • • • + V .̂ Then, for i = 1,... ,μ:

\Ui\ < i/M, |Vζ| < i/M, |Wμ| < i/M, and Sn = U; + V; + Wμ.

Prom (4.2), we get:

(4.4) £(ξη) < (εξ) (εη) +

Set U* = U*/n and let λ > 0. Then:

l = S (e*
σ;-i e&A wiwith

n
< — , so that

n

Set ξ = en^-i and η

•^2(μ-i)i/+i"m e a s u r a^ e '

Then (4.4) yields:
(4.5)

e - ^ . Then ξ is ^{^"^"-measurable, 7/ is
* n e s e * w o σ-fields are separated by v + 1 r.v.'s

Now apply the inequality e* < 1 + ί + ί2 (|<| < | ) for t = ̂ f- to obtain:

e\uμ/n < χ + (χUμ/n) + (XUμ/n)2, with |λf/μ/n| < 1/2 which is implied by

λ < n/{2vM). Since ^C μ̂ = 0, we have: εexu*'n <l+ε ( ^ ) , A < jjfa.

Next, apply the inequality 1 +1 < e* (ί > 0) with t = £ (\Uμ/n)2 to obtain:

so that

(4.6)

By Lemma 4.1:

W\ λ < n/2uM.
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Then (4.6) gives Sexu"ln < ec\2M2vln2 ^ λ < n/2ι/M, and therefore inequal-
ity (4.5) becomes, for λ < n/2vM:

since λ < n/2uM is equivalent to ^ ^ < \. So:

(4.7) ^ e λ ^ '

Set λp = λi and apply (4.7) to obtain, for λi < n/2uM:

so that:

-\ λ < n/2uM.

6ei/2αi/g(ί/)

and hence:

(4.8)

Prom λx = λp, we have λ? = λ2p2 and ^ ^ + ^ ^ - = ^

and λi < n/2vM is equivalent to λ < n/2vpM. Therefore (4.8) becomes

< n/2vM.

(4.9)

λ < n/2vpM.

Next, set λ2 = \\P and work as above in order to obtain:

(4.10) εe™ϊ

λ < n/2vp2M.
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Continuing in this manner, we obtain after μ — 1 iterations:
(4.11)

However,

ϋ ^lVι a n d
n

(by (4.6)), provided λ < n / 2 i y 1 M , and furthermore:

/n^ s o t h a t

and therefore (4.11) becomes:
(4.12)

Now

and

1 -L * ι — - P _

1 — p p — 1

Therefore (4.12) becomes:

(4.13) εexϋϊ

At this point, take p = 1 + φj = -^, so that q = μ. Also,

Furthermore:

n n n n

2Mι/(l + - Z Ϊ ) ^ - 1 2Mi/ 2e 4Mev ( f o r a 1 1 M > 2).
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Therefore the inequality λ < 2vp?-iM ιs implied by λ < 4 J^ e ι /. Also, 2vμ < n
is equivalent to ^ < \. On the basis of these observations, and for all μ > 2,
(4.13) becomes:

(4.14) Se™l < Γl

At this point, observe that (4.14) is, clearly, true if U* is replaced by either
V* = V*/n or by Wμ = Wμ/n, and proceed to applying Markov inequality
to obtain:

P {ϋ; >εn)=P

= [l + βe^^^^ίz/)] ̂  ep£-Xεn, where p = CeM2.

The function #(λ) = p^ — Xεn is minimized for λo = ^ and the minimum

is s(λo) = — ^p*. Also, it must be checked that the side condition λ < 4 J^ e

is satisfied by λo This happens, if εn < CM/2v. Thus:

P {ϋ; > εn) < [l + 6e1/2α1^(ι/)]M e ' κ ^ 0 < εn < ϋΓs/ι/,

where if2 = l/4eM2(l + 8α*)_and K3 = M(l + 8α*)/2. Since the same
inequality, clearly, holds when U* is replaced by -t/*, we have:

;\ > en) < 2 [l + βe 1 / 2 ^ 1 ^^)]^ e-K 2 n εn, εn < K3/v.

Applying this inequality to |V^| and \Wμ\, and utilizing the expression Sn =
U; + V; + Wμ, we have:

P (\§n\ > en) < 6 [l + 2e1'2a1l»{v)Y e~κ*nε2^ 0 < εn < Kφ.

This inequality is true for all n > 1, and all μ > 2 and v > 1 for which
2/xί/ < n. Replacing the number 6 by a potentially larger constant K\ to
take care of the finitely many exceptional π ;s, μ's and v's, we have the
inequality

P(\Sn\> εn) < Kλ [l + 2e 1 /V/'»] μ

 e - ^ n ε ' , 0 < εn < ϋΓ3/i/,

holding for all n (all μ > 2 and all */).

5. Some Applications. In the framework of nonparametric curve
estimation under α-mixing, there is an abundance of results available. Some
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contributions by this author and his collaborators are results on the asymp-
totic normality of kernel estimates of a probability density function (p.d.f.)
with applications to hazard rate (Roussas (1990a), Roussas and Tran(1992));
asymptotic normality of kernel regression estimates, both in the fixed design
and stochastic design cases (Roussas (1990b), Roussas et al (1992)); and
uniform strong estimation with rates for d.f.'s, p.d.f.'s and hazard rates (Cai
and Roussas (1992)). Similar results have also been obtained for NA r.v.'s
in a random field framework (Roussas (1993), (1995)), as well as asymptotic
normality again for random fields (Roussas (1994)).

In this section, the Hoeffding inequality for NA r.v.'s is used in order
to obtain minimum distance estimates in the fashion of Yatracos (1985).
To this effect, let P b e a family of probability measures on (Ω,^4), and for
each P G V, let Xi, . . . ,X n be N.A. r.v.'s. The objective is to construct
a minimum distance estimate Pn of P on the basis of Xι,... ,Xn. In P,
consider the total variation distance d defined by:

(5.1) d(P,Q) = \\P-Q\\ = 2sup{\P(A)-Q(A)\;AeA}, P,QeV,

and suppose that the space (P, d) is totally bounded; that is, for any a > 0,
there exists a finite number of balls, N(a) say, centered at some points in V
and having radius α, whose union is V. If N(a) is the most economic number
of balls as just described, then the function log2 N(a) is called Kolmogorov's
entropy of the space (V, d). At this point, it is assumed that V is dominated
by a measure μ, and let ^jv(α) be the collection of sets defined by:

jw € Ω; ^(ω) > ̂ (ω), 1 < i < j < N(a)} ,

where P ,̂ i = 1,..., N(a) are the centers of the balls of radius a which cover
V. Then it can be shown (see Yatracos (1985)) that, for any P and Q in V:

(5.2) | |P - Q\\ < 4α + 2max{|P(Λ) - Q(A)\ A e FN(a)} .

At this point, allow the radius a to depend on the number n of the r.v.'s
available, and set Nn for N(an). Then let μn be the empirical measure on Λ
defined in terms of the r.v.'s X^..., Xn\ that is: μn(A) = n~ι ΣΓ=i ^Apft)*
and estimate the unknown measure P governing the X{ fs by the mini-
mum distance measure P n , defined to be that measure among the P ,̂ i =
1,..., iVn, which minimizes the quantities:

max{\μn(A) - Pi(A)\ A G TNn, i = 1,...,Nn} .

More formally, P n is defined by:

- Pn(A)\ A G

= min[max{|μnμ) - Pi(A)\ A G FNn) , i = 1,... ,iVn].
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Then the following result may be established.

Theorem 5.1. In the notation introduced above, under the assump-
tions made, and under the additional condition that αn is proportional to
(log2 Nn/n)1/2, it holds that, for every e > 0, there exists b(ε) > 0 such that:

s u p [P [\\Pn - P\\ > b(ε)αn] ; P e v ) < ε for all n.

Proof. By setting Y{ = IA(Xi), the r.v.'s Y{ - SY{ = Yi~ P(A), t = 1,..., n
are NA, and Sn(A) = r r 1 ΣΓ=i (Yi - ZYi) = Hn(A) -P(A). Prom (5.1) and
(5.2), it follows by means of the triangular inequality:

(5.3) \\Pn - P\\ < 5αn + 4 m a x { | μ Λ μ ) - P(A)\ A G TNJ .

Apply inequality (2.14) (with C = 1) to 5n(A), take into consideration
inequality (5.3), and the fact that the cardinality of TNn is bounded by N%
in order to obtain, for εn > 0 and all n:

(5.4) P (\\Pn - P\\ > εn) < 2Nl exp [-n(εn - 5αn)
2/32] ,

and the right-hand side in (5.4) is independent of P G V. Be selecting εn

proportional to (log2 Nn/nγ'2\ it is seen that the right-hand side of (5.4) is
< ε for all n. •

The theorem just proved can be established when total boundedness
of (V, d) is replaced by the assumption that V is the countable union of
such spaces. Also, one may discuss a regression-type estimation problem.
These matters, however, will not be pursued here. In closing, it should be
mentioned that the concept of minimum distance method was introduced by
Wolfowitz (1957).
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