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Abstract. Suppose a continuum of identical particles collide in triples form-
ing a complex. The total momentum and energy of each triple is redistributed
according to some given redistribution law. It is shown that there is an invari-
ant distribution of velocity such that for any initial distribution of velocity
with all moments finite, the distribution of velocity obtained under iteration
converges to this invariant distribution. We show that there are several nat-
ural redistribution of velocity laws whose invariant distribution is the normal
law. These results are a continuation of some work of Blackwell and Mauldin
who obtained similar results for the redistribution of energy.

Several years ago, David Blackwell and Dan Mauldin, the first author of
this paper, wrote a note on a problem Ulam had raised concerning "toy"
models for physics[2]. Ulam's redistribution of energy problem can be in-
formally stated as follows. Suppose we have a large number of identical
particles with an initial distribution of energy and to normalize matters,
with total energy one. Assume the particles are randomly paired, forming a
sort of "complex" and the total energy of each pair is redistributed accord-
ing to some given redistribution of energy law. Now, iterate this procedure.
Is there a limiting distribution of energy which is independent of the ini-
tial distribution of energy? We showed that this is indeed the case. We
also showed that the limiting distribution attracts all initial distributions
for which all moments exist. It turns out that these results are special cases
of a theorem of Holley and Liggett [4]. See section 7 of their paper. Indeed,
they had showed there is only one invariant distribution and it attracts all
distributions which have a finite first moment. In addition, Blackwell and
Mauldin showed there is a one-to-one correspondence between the redistri-
bution of energy law and the limiting attractive distribution of energy. We
also had conversations about Ulam's second stage toy model, in which both
energy and momentum are conserved, but did not pursue it. The subject of
this paper is an analysis of part of this second stage model.

Suppose we have a large number of particles of equal mass with an initial
distribution of velocity. We assume that these particles undergo triple col-
lisions at random and that the total velocity of each triple is redistributed
according to some given redistribution law. We assume that the total en-
ergy and the total momentum of each triple are conserved. We show that
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for each given redistribution law there is an attractive invariant velocity dis-
tribution. There is a distribution of velocity such that for any nontrivial
initial distribution with finite moments of all orders, the iterates converge
weakly to this stable distribution. However, there is not a one-to-one corre-
spondence between the redistribution of velocity law and the final invariant
distribution. In fact, we shall give several redistribution laws which yield
the normal or Maxwell-Boltzman distribution.

This work is a natural generalization of Ulam's redistribution of energy
problem [2]. In fact, Ulam had speculated that such a theorem may be true.
One of the major differences between the first stage and second stage models
is that the transformation obtained in first stage model is linear in the i.i.d.
random variables whereas the corresponding transformation in the second
stage model is nonlinear. Thus, the analysis is somewhat more intricate.
In developing our approach to the problem, we benefitted from computer
studies which strongly indicated that the result holds in some cases. We
thank Tony Warnock for conducting these studies. The formal setting is
developed in sections 1 and 2 and the Main Theorem (Theorem 2.1) is
stated. Moment recursion formulas and their convergence are developed in
sections 3, 4, and 5. In section 6, the proof of Theorem 2.1 is completed
and a partial converse (Theorem 6.1) is proven. Finally, in section 7, the
uniform redistribution law and some others are shown to yield a normal
velocity distribution(Theorem 7.3).

Also, let us comment about why we consider triple collisions. We could
consider only binary collisions. If one follows the scheme described in this
paper, then there is only one attractive limiting distribution—the normal
distribution. One can prove this by following the proofs given here for triple
collisions. In fact, the proofs for binary collisions are much easier. One
could also consider a mixture of n-ary collisions, but we have not worked
out all the details for this. Also, we guess in analogy with the work of Holley
and Liggett [4] the condition on the initial distribution of velocity that all
moments be finite is too strong, perhaps having first moments finite suffices.
As the referee points out, it would also be natural to search for a metric
under which the redistribution of momentum operator is a contraction. We
have not yet been successful in finding such a metric.

1. THE SETTING

Consider three particles of equal mass which form a complex, and the
velocities of the particles are redistributed with the constraints that the
total energy and momentum are conserved. Thus, if vi , V2, and V3 are the
initial velocity vectors in R3 of the particles, then the new velocities vi,
v^and V3 satisfy:

(1-1) Sx := V! + v2 + v3 = vi + v'2 + v'3 := Si,
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and

(1.2) S2 := | |V l | |
2 + | |v2 | |

2 + | |v3 | |
2 = Hvill2 + ||v'2||

2 + K | | 2 := S'2.

We will consider redistribution of energy and velocity in the center of
mass frame of reference. Let X{ be the fraction of the total kinetic energy
that the i t h particle has after collision and let Wj be the direction vector of
the velocity of the i t h particle after collision. For convenience, we assume
all particles have mass 1. Thus,

(1.3) 0 < λi = Ki/K

where K is the kinetic energy measured in the center of mass frame of
reference, K = S2 - | |Si | | 2/3. So,

(1.4) λi + λ2 + λ3 = 1.

Since the total velocity in the center of mass system is zero, we have

(1.5) \/λ]wi + V ^ w 2 + Λ/A^W3 = 0.

We derive another form of the constraints on the λ's which are more suitable
for our purposes. Prom (1.5), we get

(1.6) λi + 2V%A 2(wi,w 2) + λ2 = λ3.

Using (1.4), we have

(1.7) |1 - 2 (λi + λ 2) | < 2Λ/λ7λ2-

After some algebra,

(1.8) 4λ? - 4λi + 4λ^ - 4λ2 + 1 + 4λiλ2 < 0.

Prom this inequality, we derive

(1.9) (l/3)(18λ? - 18λi + 18λ^ - 18λ2 + 6 + 18λχλ2) < 1/2.

Now, (1.9) can be expressed as

(1.10)

(l/3)(9λ? - 6λχ + 9λ^ - 6λ2 + 9(1 - λi - λ 2 ) 2 -6(1 - λi - λ2) + 3) < 1/2.

Using the identity (1.4), we get the inequality

(1.11) (λi - 1/3)2 + (λ2 - 1/3)2 + (λ3 - 1/3)2 < 1/6.

Thus, conditions (1.4) and (1.11) imply that the point [λi,λ 2 ,λ 3 ] must lie
on the circular disk, £>, of radius -4?, center [3,5,5] which lies in the plane

given by equation (1.4). The mutually orthogonal vectors [5, — 5, — ^] and

|0> ;rτ?5 ""^ΓΆI both have length 4=, and are both orthogonal to the normal,
[_ 2v3 2γ3J vo

[1,1,1], of equation (1.4). Thus for each x G £>\{ [±, \, \]}, there exists a
unique r € (0,1] and a unique θ € [0,2π), so that
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Conversely, if [λi, λ2, λ3] lies on the disk D, then tracing backwards from
(1.11) (using (1.4) when necessary) it is easy to see that [Ai,A2,A3] also sat-
isfies (1.7). Let wi and W2 be unit vectors in R 3 with 2̂ /AiA2 (wχ,W2) =
1 - 2(λi + λ2). The vector [λi,λ2,λ3] satifies ||ΛAΓWI + Λ/X^W2||

2 = λ3.
Letting — W3 denote the direction vector for \/λ7wχ + \A2W2, we have
ΛAIWI + -\A2W2 = —\A3W3. Thus all points in this disk, D, are real-
izable as values of λi, λ2 and λ3 which satisfy (1.4) and (1.5) for some set
of unit vectors.

A redistribution of energy law is a probability measure μ supported
on the disk D which is symmetric, or invariant under permutations of the
coordinates. This last condition signifies that the particles are indistinguish-
able. The direction vectors for the velocity of the particles are chosen, inde-
pendent of μ, as follows. First, wi is chosen from the unit sphere according
to the uniform distribution. Next, a unit vector z which is perpendicular to
wi is chosen according to the uniform distribution on the great circle which
is the intersection of the unit sphere and the plane normal to wi. Thus, wi
and z determine a plane which contains W2 and w3. Finally, W2 and w 3 are
determined up to the reflection y —• —y in this plane from equations (1.4),
(1.5), and the equality ||w2 | | = ||w3 | | = 1.

We will study this process under iteration. We note that it is immate-
rial whether we chose wi at random first. Thus, we have not violated the
indistinguishability of the particles. Also, we note that there are 9 velocity
component variables which have 5 degrees of freedom in view of the conser-
vation laws. In our scheme, we have 2 degrees of freedom in choosing the
λ's, 2 degrees in choosing wi and one degree in choosing z, a total of five.

2. T H E REDISTRIBUTION OPERATOR

We now formalize the redistribution operator, T-β. Let v be a probability
measure on R 3 and assume we have a vast number of particles with velocity
distribution v. We imagine that these particles are partitioned into triples
at random. For each triple the velocity is redistributed as described in
section one, which yields a new velocity distribution, Tμ(y). So, if Xi, X2,
and X 3 are independent random velocity vectors each distributed as 1/, then
Tμ(v) will be the distribution of X'l5 since X'1? X;

2, X 3 all have the same
distribution.

From this point on, we will suppress the subscript μ in T-β. Thus, T{v) is
the distribution of

where (1) u has the uniform distribution, π2, on the unit sphere, (2) λ is
distributed as μ = μop"1 on [0,2/3], where μ is the redistribution law on
the disk D and p is the projection map of R 3 onto the first coordinate,
and, (3) K is the kinetic energy in the center of mass frame of reference;
i.e., K = S2 — | |Si | | 2/3. Therefore, T(v) is determined by the functional
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equation:

(2.1) Tv(J) = / /(x)ΛΓi/(x) =

213

/ 3

t = l

\

U

t = l

where the integral is over [0, | ] x S2 x R3 x R3 x R3.
We will abbreviate integrals like this last one unless the domain of inte-

gration or integrators are not clear. Thus, (2.1) could be written as

(Tu){f) = u I dvdvdvd/κ<ιdμ.

We note a few basic properties of the non-linear operator T : Pro6(R3) —•
Pro6(R3). First, T is weakly continuous and commutes with the translation
operators:

(2.2) Γ(i/(0 + xo)=Ti/(. + xo),

for any xo G R3. This follows from using (2.1) and the fact that the func-
tion — | |Si | | 2/3 is invariant under translation in R3. The operator T
preserves energy:

(2.3) Kllxll2) 2

and momentum:

(2.4) i/(x)

Equations (2.3) and (2.4) can be verified by using (2.1) and the facts that

(2.5)

and

(2.6)

/ Xldμ(x) = / Xdμ(λ) = 1/3,
JD ^[0,2/3]

/ Ui(u)dπ2(u) = 0,
Js2

where U{ is the i t h coordinate of u.
In order to see that (2.5) holds, we will use Choquet's representation

theorem [5]. We will also use this representation later on. Our measure
μ is simply a probability measure on the disk D which is invariant under
the symmetries of the circumscribing triangle with vertices ei = [1,0,0],
e 2 = [0,1,0], and β3 = [0,0,1]. Therefore, μ can be expressed uniquely as
an integral over the set of all extreme points of C, the compact convex set of
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all probability measures which are invariant under these symmetries. Thus,
there is a unique probability measure P on errί(C) such that

(2.7) μ(f) = f I /(x)dr(x)dP(r).
Jext(C) JD

Now, an extreme point in this case is simply a probability measure on D
which is ergodic under the action of the symmetry group. It is easy to see
that r is ergodic if and only if there is a point z of D such that

i = 0

where £o>£i, -.-, ̂ 5 are the symmetries and δx is point mass at x.
Of course, for each such r,

(2.9) / Xldτ(x) = 1/3.
JD

S i n c e /[o,2/3j lD9dβ = fD9°Pdμ, (2.5) follows from (2.9)./[o,2/3j

Also, since the function y/S2 — | |Si| |2/3 is positive homogeneous, T com-
mutes with positive scaling:

(2.10) Γ(i/(c )) = Tv(c).

Facts concerning weak convergence of probability measures in metric
spaces such as R 3 can be found in [1]. Our main theorem concerns the
properties of the fixed point and its domain of attraction.

Theorem 2 1 (Main) For each symmetric probability measure μ, on D,
there exists a unique radially symmetric probability measure β on R 3 with
total energy one and moments of all orders so that μ = Tβ (μ). Further, if
v is any probability measure on R 3 with finite moments of all orders and v
is not point mass, then

(2.11) {Tn (2/)}£L0 converges weakly to 1/2

Moreover, the invariant measure μ is determined totally by the marginal of
μ with respect to the projection onto the x-axis.

Let us note that each point mass measure is a fixed point of T. Also, if v
is not concentrated at E(x) = Ϊ/(X) = m, then

(2.12) σ2 = E (II x - JS(x) | |2) = v (|| x | |2) - || y(χ) | | 2 > 0.

In this case, τ(A) = v{σA + m), is a probability measure with momen-
tum zero and energy one. If {Tn(τ)}^=1 converges weakly to /i, then by the
commutativity properties of T, Tnτ((- — m)/σ)) = Tn(i/)would converge
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weakly to μ(( - ι/(x))/(i/(||x||2) - |Kx) | | 2 ) 1 / 2 . Therefore, to prove the the-
orem, we only need to prove (2.11) under the conditions that ι/(x) = 0 and

2KIN2) = l.
Our strategy is to first obtain a recursion formula for the moments of

Tn(v). Second, to show convergence to these moments and finally, to show
that the limits are the moments of a unique element of Prob(R3). This is
the same strategy employed in [2].

3. THE MOMENT RECURSION FORMULAS.

Temporarily fix a probability measure v on R3 with u(x) = 0, i/(||x||2) =
1. Let Z+be the set of all non-negative integers. For each multi-index
k = [kι,k2^ks] 6 Z+, consider the mixed moment of order k of the nth
iterate of v under T:

r r 3

(3.1) m n , k = / xfcdTMx)= Π * N

We will first find a formula relating the moments of the (n + l ) t h iterate to
those of the nth. From (2.1), we have

(3.2) mn+hk=f xkdT(T»(x))
JR3

• / • • • /

-HS
•Hi

hi

j=0

dTn(v)...dμ(X)

, ki-j

dTn(v)...dμ(λ).

Since π2 is the uniform distribution on the unit sphere,

(3.3) / u jdπ2(u) = 0,
Js2

unless j = \juJ21J3] is e v e n (each ji is even). Let [•] denote the greatest
integer function. Thus,

J i=l j=0 V J / V

<? *"»•-*<*>•

Now, the weight of k, wt(k) := kι + k2 + fo. Noting that each additive term,
associated with the upper summand k{, is a polynomial in xi, X2, and X3
of degree ki and with coefficients only a function of λ and u, the product
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must be a polynomial of degree wt(k) in the variables xi, X2, and X3, with
coefficients a function of λ and u. Thus, integrating, we obtain an equation

(3.5)

where the coefficients αsi,s2,s3(k) do not depend on v, but only on the redis-
tribution law μ. Also, if τ is a permutation of {1,2,3}, then

( 3 6 ) a iΛh aOO = αs r ( 1 ),s r ( 2 ),s τ ( 3 )(k).

There is only one multi-index k with wt(k) = 0, and

(3.7) mn)[o,o,o] = l, n = 0,1,2....

The canonical unit vectors ei, β2, and β3 are the only multi-indices of
weight one. It is easy to check that

(3.8) m n e . = 0 , n = 0,1,2....

Now, according to (3.5)

(3.9)

ran+i,k = 2^αS l j S 2 j S 3(k)m n > S lm n ) 8 2m n j S3 + 31 2Z αs,o,o(k)ran)S I ,
J(k) \wt(s)=wt(k) )

3

where the first sum is over the index set J(k) = {(si, S2, S3) € Z+ : ̂  wt(si)

Vi, wt(s{) < wt(k)}.
Define

7n(k) = Σ αsi,s2,s3 (k)mn,S lmn ) S 2mn ) S 3

/(k)

and, for twί(k) = ιt ί(s),

Ak,8 = «s,o,o(k).

Thus, (3.9) becomes

(3.10) m n +i ) k = 7 n ( k ) + 3 Σ A M m n , s .
Wt(8)=Wt(k)

Or, defining yn(j?) = {mnta}wt(s)=p , for n = 0,1,2, ... p = 0,1,2,...., 7n(p) =
{7n(k)}1i,t(k)=p and A(p) = {A k j 8 : wt(k) = tϋt(s) = p}, we have

(3.11) 2/n+i = 7n + 3Ayn,

for n = 0,1,2,.... We have suppressed the argument p in (3.11) and juxta-
position signifies matrix multiplication.

Note that it follows from (3.8) that 7n(2) = 0.
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We will need to know the entries of A. In order to compute these, note
that for each k with weight p,

<MJ) £ Aklh*> = / / [ f
wt(h)=p J J

4. CONVERGENCE OF MOMENTS OF WEIGHT 2.

Prom equation (3.12), we find

wt(k)='

= / / Σ
wt(k)=2

But, since u is uniformly distributed on 52,

(4.2) # χ , y )

dμ(\) J ujdπ2(u).

Since the integral of u\ is zero,

(4.3) ^(χ,y) = i X jZL + ^

Of course,

(4.4) / u?dπ2(u) = ^- I* Γ cos2 θ sin3 φ dφ dθ =\.
J 4π Jo Jo 3

Thus, from (2.5) we get

(4.5) φ(x,y (χ,y)2 2

The definition of φ and (4.5) yield the following matrix for A = A (2):

0 0JL JL 2.

I I ?
27 27 2J
27 27 27 9 °

υ
0 0 0 ^ 0 0
0 0 0 0 ^ 0
0 0 0 0 0 27

where the indices of the rows listed from top to bottom and the columns
from left to right is the following sequence: [2,0,0], [0,2,0], [0,0,2], [1,1,0],
[1,0,1], [0,1,1]. Formula (3.8) implies ηn{2) = 0, for π = 1,2,3,.... Thus,

(4.6) y n + 1 ( 2 ) = (3A) n + 1(yo)
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Inspection of the block matrix 3A shows that the upper 3a;3 block matrix
has largest eigenvalue 1 and corresponding eigenvector [1,1,1] and eigenvalue
1/3 of multiplicity 2. The lower 3x3diagonal matrix of 3A has eigenvalue
1/3 of multiplicity 3. Let e = 1/Λ/3 [1,1,1,0,0,0]. Then by this analysis

(4.7) l im3A n + 1 (yo) =
fl—>OO

Since (yo,e) = I/(||X||2)/Λ/3, we have

(4.8) lim mn,2ei :=
n—+00

Energy

and, if it ί(k) = 2, and k has an odd component, then limn-^ mnjk •= wik =

0.

5. CONVERGENCE OF HIGHER ORDER MIXED MOMENTS

Define a stochastic process {X n}£L 0 on R3 by letting {λ n }^_ 1 be a
sequence of independent random variables all distributed as λ, { i i n } ^ !
be a sequence of independent random vectors all distributed as u so that

}^Lι forms an independent family and set

(5.1) , n = 1,2,3,....

Let EXo be the expectation operator where the process starts with Xo =
x 0 , a.s. Also, let W (p) = {seZ%:wt (s) = p).

Lemma 5.1. Let xo E R3, p = wt(k)j and A = A (p). Then

(5.2) E^XΪ) = (A xJ^) (k), n = 0,1,2,...

where

( 5 3 )
Proof. Clearly (5.2) is true if n = 0. If (5.2) holds for n, we have

llx K+i]

x o : =

/2λ•n+l
| |Xn||un+l

where Tn is the σ-algebra generated by {λj, Uj\j < n}.
According to (3.12),
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and by the induction hypothesis
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Ak , .

sew(P)
Or,

(S).

« •

Lemma 5.2. € R 3} := L.

Proo/. Let v = (t>k}kevτ(p) be such that ( v ^ ^ W ) = 0, for every x € R3.
Then Σk€W(p) v k χ k is a polynomial which is identically 0. Therefore, all of
its coefficients are zero. So, v is the zero vector. This means L = R ^ W j

In order to study the behavior of the iterates of 3A(p) for p > 2, let us
make the following notations. Define

H(a) := E

(5.4)

We have

(5.5)

Also, since 0 < λ < §, H(a) is decreasing. Thus,

(5.6) ff(α)<^,ifl<o.

Lemma 5.3. Let Cp be the cardinality ofW(p). Then

(5.7) | |(3A)"x o

w ( p ) | | <

Proof. Prom equation (5.2), we have

(5.8) |A«

Setting a = p/2,

»m = 3.

< Exo

Ί|x»-i
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Expanding the last expression in terms of conditional expectations, we have

Now, u n is uniformly distributed and independent of X n-i; so we can replace

Xn-i/IIXn-iH by ei- Also, the function (± + |^/ |\/λ^(u n ,e i ) + | λ n ) is

independent of Tn-\ and its expected value is the same as the expected value

( i— v CL II I— 11 ΊθL

£ + §y§Λ/λ(u,ei) + §λJ , which equals f- + J\ -/λu .Thus,

(5.9) Exo {\\Xn\\2α) = ^xo [l|Xn-i||2α] H(α).

By recursion on (5.9), we have

(5.10) EXo(\\Xn\\2η 2

Therefore, from (5.8), (5.10) and the fact that if |*(k)| < L, for k € W(p),
then ||^|| < y/C^L, we have

(3H(p/2))n .

Prom Lemmas 5.2 and 5.3, we obtain

Lemma 5.4. There is α constant D = Dp such that i/v €

(5.11)

We investigate the convergence properties of yn . Assume p > 2 and
for each q < p, limn_^ooyn(9) = y(?) In the previous sections we have
demonstrated the convergence of yn(0), yn(l)> and yn(2). Since p > 2,
3H(p/2) < 1; and, it follows from Lemma 5.4 that the spectral radius of
3A < 3H(p/2) < 1. This means that the operator (/ - 3A)"1 exists and
is equal to ΣJIQ^A)- 7 . Next, a check of the definition of Ίj(p) shows that
there is a continuous function fp such that for all j ,

Ίj(p) = fp(yj(q)', q<p)

So, by our assumption

(5.12) JUJB'ttiP) = /p(y(ί); 9 < P) ••= 7(P)

We claim now that

(5.13) limyn(p) = (J-3A)- 1(7)
n—>oo

By recursion on (3.11), we have

(5.14) y n + 1 = 7 n + 3A7 n_χ + (3A) 2

7 n _ 2 + ... + ( 3 A ) n

7 l + (3A) n + 1yo.
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We have

(5.15) | |yn + 1 - (/ - ΘA)-^)!! < | | 7 n - 7 | | + ||3A(7n_!

(5-16) + ||(3A)"(7i - 7)11

j=n+2
For each n,

(5.17) | |y n + 1 - (7 - βA)"1^)!! < Dj

where

{
|| 7 II i f j > n + l

Since the Cnj's are uniformly bounded and limn-Kx, Cnj = 0, we have
(5.18) 1

6. EXISTENCE AND UNIQUENESS OF A STABLE DISTRIBUTION.

In the preceding two sections we showed that there are numbers
k G 7ι\ such that if v is an initial distribution of velocity with finite moments
of all orders, then

(6.1) lim ran k = rak.
n—κx> 'n—κx>

It is easy to see that {Tn(v)}%L1 is weakly conditionally compact. There-
fore, there is some probability measure μ on R 3 such that

(6.2) rak = / xkdμ(x),

for k <E Z3..
We will show that

oo

(6.3)

It follows from (6.3) that there is only one probability measure μ with mo-
ments rak. See [6]. It also follows that i/, TV, T2i/, . . . converges weakly to
μ. Finally, since T commutes with rotations, μ is invariant under rotations.
So, μ is radially symmetric.

In order to prove (6.3), we will show that there are positive constants L
and C that for all ϋ,

(6.4) ^ :

for p = 0,1,2,...
Since Σiίi ™>2pei < &2P, for p = 0,1,2,..., (6.3) follows from (6.4).
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In order to simplify the presentation of the argument for inequality 6.4,
we will suppress the measures with respect to which the integrands are being
evaluated.

We have

Let r = sign ((Si, UQ)). SO,

Because τ simply flips uo to the hemisphere with pole Si if (Si,uo) < 0,
it follows that if we replace yJSi — | |Si | | 2/3 by a larger function, then the
integral is larger. Now,

(6.5)

So,

S, -

K < J...J Si /2λ\,, „
-̂ - + rV~5~(llχill
o V o

Σ-^+W-dMK

Ξ + Tt/^IWIuo

Thus, setting u t = Xi/||xi||, we have

3

(6.6) Nil*
2λ

wt(j)=p "' i=l

The biggest T Λ / ^ can be is 2/3 and UQ is independent Uj. So, almost surely

+ < 1. We replace this function by 1 in (6.6) except when

3 = P^i

(6.7)

bp < 1

Thus,

• • • /

Σ (,)Πll^ll*+Σ(lWlpIT+ΉΓ- l |Xi f)
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where T* = sign < Ui, UQ >. Or,
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3
- 3 δ p .(6.8) bp <

wt(j)=p

Consider the middle term of (6.8). Let r* = sign < ei, uo >. We have

(6.9)

- 3 6 P .

Or, setting J5P = -B||βj/3 +

(6.10) ( 4 - 3 £ p ) 6 p <
)=p

Again, | | ^ + r * y ^ u o | | < 1 almost surely. Thus, liπip—oo Ep = 0. Fix

po such that if p > p0, then 3EP < 1. Define {Bp}^ by Bp = δp, if p < pO

and if p > po> then by recursion,

<β u >

Now, it follows by induction that bp < Bpj p = 0,1,2,
Consider the formal sum

p=0

(6.12)

We have

(6.13)

P = 0 p=po

p=0 p=po j
wt(j)=p

Therefore,

(6.14) ( 4 - 3 ^ P 0 ) Φ ( ί ) - Φ 3 ( ί )

where p(t) is a polynomial. Set

(6.15) g(z) = (4 - ZEP0)z - z3.
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So,

(6.16) g(Φ(t))=p(t).

Now, flf'(l) = 1 - 3£?Po > 0. Thus, g~ι is analytic in a neighborhood of
g{\) = p(0). So, Φ(ί) = g~ι(p(t)) is analytic in a neighborhood of 0. Since
the coefficients of the power series expansion of Φ about 0 are Bv/p\, there
is a constant M such that

(6.17) Km F r = M < °°
P-oo L p! J

Therefore, there is a constant C such that for all p,

Bp < C(M + l)pp\

which establishes (6.4).Thus we have established Theorem 2.1 except for the
last sentence. But that follows from the fact the moment recursion formulas
are only functions of the moments of the marginals. See Remark 7.1 and
Corollary 7.4

Interestingly enough, there is a partial converse to the Theorem 2.1.

Theorem 6.1. If μ is the unique fixed point of both Tβx and Tβ2 iff μι = μ<ι
(i.e., βι and μ<ι have equal marginals.).

Proof. That the invariant measure It is enough to show that knowing the
moments of μ and that μ = Tβ(μ) uniquely determines the moments of μ,
the marginal of /i, since μ is defined on the bounded interval [0, §]. To this

end note that (2.1) implies μ ί | |x | | 2 n) equals

which equals upon applying an obvious multinomial expansion

In the last sum, if j is odd, then the term (^ i i )* 7 forces the term to
be zero, so only whole powers of λ appear in the sum. Further, there is
only one term which has λn, namely i = j = 0; k = n, and the coefficient

dμ3 is positive. Thus, the moment / λndμ(λ) can be written
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as the fraction
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( IN 2 -)-

where the sum is over {(», j , k) : k φn and j even}.

7. THE NORMAL DISTRIBUTION

In this section we show that there is a redistribution of energy law, μ,
such that the normal distribution on R3, N(O^I3) is its attractive invariant
distribution of velocity. In order to demonstrate this, we fix the following
notation. Let In denote the n x n identity matrix, Sn the unit sphere in
R n + 1 , and π n the uniform distribution on Sn. Let A be the 3 x 9 matrix
[J3,13,73]. Let O be an isometry of R9 given by the orthogonal matrix

(7.1) 0 =

For example, if ?7, V, and W are orthogonal 3 x 3 matrices each with last
row (1/Λ/3, 1/Λ/3, 1/Λ/3), then

(7.2)

Uu
U21

0
0
0
0

71
0

0

0
0

Vll

V21

0
0
0

75
0

0
0
0
0

ion
W21

0

0

— 7 =

« 1 2

«22

0
0
0
0

0

0

0
0

«12

V22

0
0
0

73
0

0
0
0
0

W2\

U/22

0

0

—7"

«23

0
0
0
0

71
0

0

0
0

V\Z

V2Z

0
0
0

75
0

0
0
0
0

«Ί3

0

0

—7=

is such a matrix O.
We will employ the three 3 x 9 matrices

(7.3) = [73,0,0]

= [0,J3,0]

Let O be an orthogonal 9 x 9 matrix of the form of (7.1). Let

map from R 6 into R 3 given by ψQ (y) = (λ,) 3

= 1, where

ιι2

be the

(7.4) λ. = \\MiO1 ,« = 1,2,3,
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for y € R6, and
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yι

7 . o - | ; -
0
0
0

Lemma 7.1. For each O of the form of (7.1), ψo maps 5 5 onto the disk
D.

Proof. Let ci,..., C9 be the column vectors of B. We have

(7.5)

So,

(7.6)

O1

<c9,y)

t = l

But, for each i, (cj,y)
Thus,(1.4)

By the orthogonality of the rows of O, we have:

Ci + C4 + Cγ = 0

(7.7) c 2 + c 5 + c 8 = 0

C3 + C6 + C9 = 0.

Also, from (7.5),

(7.8) (Mx + M2 + M3)OT ί J 1 = (1/Λ/3)

= (kj,y*0), where kj is the iίA column of O.

7,y)
c8,y)

For each i, set wi = ^

have (1.5)

J , if λj φ 0 and Wi = 0 if

= 0.

= 0. We

= 0.
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Thus according to the results of section 1, ψo maps 5 5 into D. It can be
checked that ψo actually maps 5 5 onto D.

For each O of the form of (7.1), let μo be the probability measure on D
defined by

Lemma 7.2. // O is of the form of (7.1), then μo is uniform measure on
D.

Proof. We begin by showing that μoχ = μo2 f°Γ a n y * w 0 matrices Oi, O2 of

i n "I

1 A ,

i9 = ooτ=\ ?**- *

Thus

(7.9)

Let

BBT = h, ABT = 0, and BAT = 0.

Oi = ί 1 4 I, for i = 1,2. Then, O i C # = x

 1 l τ ^
L v/3 J L V3ί 2

1 2

 r which is an orthogonal 9 x 9 matrix. And so

r 1
orthogonal 6 x 6 matrix. Thus O\0ξ y

Q

is a n

has the same distribution as

for uniform y. Easily, μoι = μo2-

Next we show μo is invariant under the rotation group of the disk D. Let
O be chosen to be the matrix

(7.10)

0

0

0 - ^

o - 4 s

0

0

0

0

0

0

0

0

0

0

0

73
0

VV

0
0

0

0

0

0

0

71
0

0

0

0

~i
0

0

0

73
0

0

0

0

0

"ψ
"72

0

0

75

0

0

0

0

0

0

0

0

0

0

75
0

0

0

73
0

0

0

75
0

0

—7?
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For 0 < 71,72,73 < f with Σ?=1cos27i = 1 and 0 < 0i,02,03 < 2π, the
vector

(7.H) y =

cos 7i cos #i
cos 7i sin θ\
cos 72 cos Θ2
cos 72 sin 02
COS 7 3 COS 03

cos 73 sin 03

represents an arbitrary vector of £ 5 . Defining λi?λ2,λ3 by (7.4), using
double angle formulas

1 1
0i = - + -

and similarly

1 1
3 - g^cos27icos2βi + —-;=5Z

1 1 m ^ 1

73 = 3 - g Σ c o s 2 Ίi c o s 2θi " ^ Σ c o s 2 7 i s i n 2 ^
i l

Thus the representation of [λi, λ2, λs] of the form of display (1.12) is

3

(7.12) r cos 0 = Σ c o s 2 Ίicos 2^i

3

r sin 0 = Y^ cos2 7i sin 20 .̂

[ cosib sin%b I
. , , we obtain

sin-0 cos-0 J
3

2(7.13) r cos(0 - <ψ) = Σ cos2 ji cos(20i - <ψ)
i=l

3

r sin(0 - ψ) = ^ cos2 7* sin(20i - ^)

Since given 71, 72, and 73, the πs-conditional distribution of the 0[s are inde-
pendent uniforms on [0,2π), it follows that (7.13) has the same distribution
as (7.12). Thus, μo is rotation invariant.

Next the distribution of the variable crcos0' of the (1.12) representation
will be calculated. We choose the following parameterization of 5 5 : for
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7 G [0, §], β,a£ [0,π], 0, and φ G [0,2π),

229

(7.14) y =

cos 7 cos β
sin 7 cos α

cos 7 sin β cos 0
sin 7 sin a cos ^
cos 7 sin /? sin 0
sin 7 sin α sin φ

Using the orthogonal matrix (7.10) with the parameterization (7.14), and
easy calculation using double angle formulas reveals λi = 5 + 1 cos 27. Thus
rcosfl of representation 1.11 is distributed like cos 27. For parameteriza-
tion (7.14), the probability density function associated with π$ has form
C cos2 7 sin β sin2 7 sin a for some constant C. Thus for constants C", C":

(7.15)
rπ

s(r cos θ < a) = C1 I cos2 7 sin2 7^7

fa /
= / v 1 - v2dv.

J-\But the only probability measure on the unit disk which is rotation invariant
and which has (7.15)-distributed x-coordinate is the uniform distribution.
•

Theorem 7.3. The normal distribution, N(O,Is), on R 3 is the attractive
invariant distribution of velocity under the redistribution of energy law which
is the uniform distribution on D.

Proof Let v distribution on D and υ is its projection onto the a -axis. We
calculate

(7.16) J fdN(O,h) = J f((xux2,X3))dN(0,I9)

ί°° ί
Jo Js*

Set c = Aw G A(58) and let τ(c) be the marginal distribution of c. The

form of O and the fact^l2^ is perpendicular to Oτ *L implies: for each
L υ J

c G A(SS) we have Aw = c with ||w|| = 1 if and only if there is some y G Sb

such that

Thus,

= (c/3)
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So, (7.16) =
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Mί0 T [
Now, M\Oτ n is rotation invariant on R3. So,

MXO
T I J I dτr5(y) =

Thus, (7.16) =

J ] | udπ5(y)d7r(u).

Putting in a dummy integral over 5 5 , (7.16) =

Now, c = A(x/||x||) = (l/||x||)Aα: = . So, (7.16) =

dN(OJ9)dπ2dv,

which equals (2.1). •
This choice ίί, uniform distribution on D, is not the only choice of energy

redistribution law that attracts the Gaussian distribution of velocity. Let
Wedge = {x G D : 3 a θ G [0, | ] and an r G [0,1] s.t. equation 1.12 holds},
let C = {α : Wedge —> [0,1] : α is a Borel function}, and μα be the measure
defined through the following representation

μα
= / α(x) - α (x))

where υ is uniform distribution on Wedge, τ x is the r for x in (2.8) and
Ref : D —• D is defined by Refζx) = [|, | , | ] - x . Let μα denote the
projection measure of μα with respect to the α -axis.

Corollary 7.4. For all a G C, μa = v, and therefore the attractive invariant
distribution of velocity associated with μa is

Proof It is easy to check that μaoRef"λ is also a redistribution of energy law
and that it has the same marginal projection in the x-direction as μα. But
the measure \ (μ0 + μa° -Re/"1) = Ό, uniform on D, and so the marginal
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of fia on the z-axis is the same as v, the marginal of v. Apply Theorem 2.1
and Theorem 7.3JI

Obviously μa φ v unless α is essentially identically \.

R e m a r k 7.1. The only redistribution of energy law to produce the attractive
invariant distribution of velocity law associated with the redistribution law
δ\i i li is the energy redistribution law £M I IT itself

L3"'3'3j Laf'3'3j
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