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Abstract

A stationary and non-transient Markov chain may be defined by a
balanced weight function or by its transition probabilities, and these
are mathematically equivalent. But starting with balanced weight func-
tions gives rise to a different and somewhat liberating attitude. Because
these functions are additive, complex models can be built rather easily,
and such functions arise naturally from weighted circuits. The idea of
a balanced weight function extends to a multi-particle system called an
induced field, in which each particle is influenced by the other particles
as a function of their locations, and yet the invariant distribution of
the system is still immediately available.

This simplicity encourages the formulation of relatively complex
models with the expectation that their invariant behavior will be avail-
able for interpretation and application.

Three different and somewhat novel processes are created this way
and for each the invariant distribution is given explicitly. These results
may be of some independent interest as well as illustrating the method.

1. Introduction. It is desired to create a Markov process as a model
for some natural process. Starting with what may be a somewhat vague
idea of its transition probability structure, it is possible, using a few simple
mathematical ideas, to build a relatively complicated Markov process in
such a way as to have an invariant weight function for the process at each
stage, ending finally with relative weights giving the transition probability
structure, more or less as desired, or perhaps one even more interesting than
originally sought. Because the invariant weight function is available at each
stage, it is available at the final stage, and thus one arrives at a process for
which the invariant probabilities are known.

This approach, called "Markov sculpture", has a certain simplicity, and
this frees up some amount of mathematical energy which can be spent on
developing relatively complicated processes in expectation that the invariant
distribution will be readily available for application.

There are several elements in Markov sculpture. These are (1), the use of
a particle moving in a graph to represent the process, (2), the use of balanced
weight functions on the graph to define the process, (3), the representation
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of a balanced weight function as the sum of weighted circuits, (4) the use
of circuits to represent in a relatively simple way order-r Markov processes,
and (5) the use of induced fields, which provide a generalization of balanced
weights to situations involving several particles, where it is desired to have
the particles influence the behavior of one another as a function of their
locations.

These technical elements are described in Section 2. Several special pro-
cesses are analyzed in Section 3 to illustrate the technical elements described
in Section 2 and the general features of Markov sculpture as well. The in-
variant weights for the processes treated in Section 3 have not been obtained
previously, and for this reason may be of independent interest.

2. Tools of Markov structure.
(1) Graphical representation. A Markov process is represented by

the motion of a particle in a graph, this being a finite set of elements G,
and a set of directed arcs which are ordered pairs r, s in G. The particle
moves from element to element along the directed arcs, such a move being
a transition in the usual parlance. The elements of G are usually called
"states" but are also called variously vertices, locations, positions, places, or
nodes.

The use of a graph in this way is a familiar device in the study of Markov
processes, but usually, transition probabilities are placed on the arcs, whereas
here "balanced weights" are used, as described below. These weights rep-
resent relative probabilities only, and it is a distinctive feature of Markov
sculpture that such weights play a central role.

(2) Balanced weight functions. These are non-negative functions w
on the arcs r, s of G satisfying

(2.1)

where the sum here and elsewhere below is over all 5 in the graph under
consideration. This relationship is described by saying the total weight "out"
°f r? Σ s

 w(ri 5)> i s equal to the total weight "into" r, Σ 5 w(s, r), hence the
term balance.

The direction of an arc is from r to s if w(r, s) is positive. Sometimes,
for clarity in actual drawings, an arrow is placed on the arc pointing in that
direction. Usually no arc is drawn if w(r, s) = 0.

The relationship between balanced weight functions and Markov chains
in G is as follows: First suppose that Σs w(ris) = v(r) > 0 f°Γ aU r m G
An arc r, s is said to be available at r if w(r, s) > 0. If the particle is at r
an available arc is selected with probability proportional to its weight, and
if r, s is selected the particle moves to s. This description of how transitions
are produced will be called the "transition rule".
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Evidently if the particle is at r the probability it will move to s is

(2.2) p(r,s) = w(r,s)/v(r),

and a sequence of transitions produced this way will form a Markov chain in
G. But notice v will be an invariant weight function for this chain, that is,

(2.3) Σ V(SMS>r) = Σ v(s)w(s, r)/υ(s) = ̂  w(s, r) = υ(r)

with the last equality coming from the balance. It is this elementary fact that
keeps the invariant weight functions at hand, at all times, as the sculpture
proceeds.

The chain defined by (2.2) will not have any transient states because of
the balance: There must be positive weight into a state if there is positive
weight out. For this reason only non-transient chains are encountered in
Markov sculpture.

But a balanced weight function and the transition rule may produce a
Markov chain which has several irreducible sub-classes. In this case, v will
give the unique stationary probability on each sub-class upon normalization
on that class.

This gives rise to a converse of the invariance statement (2.3). It is
well known (see Doob(1953),p. 172 if.) that given a transition probability
p for a chain without transient states, each irreducible sub-class of states
A has a unique invariant probability distribution μA satisfying μA(r) =
ΣSGA I*A(S)P(S, r), r G A. Then WA(T,S) = μA(r)p(r, s) is balanced on
4 x i , and letting b(A) be a non-negative number for each irreducible class
A, tϋ(r, s) = ΣA b(A)wA(r, S) is balanced on G x G.

The above summarizes the relationship between starting with transition
probabilities on G and starting with invariant weights on G. They are math-
ematically equivalent in the case of non-transient chains.

But for building up processes in a constructive way, balanced weights
have the great advantage of being closed under certain additive combina-
tions, mainly, if wf and w" are balanced and if α and b are non-negative,
then w = αw1 + bw" is balanced.

Strictly speaking, it is only required that αw1 + bw" be non-negative so
that transition probabilities are well defined. However, if desired, arbitrary
scalar combinations αw1 + bwN can be used at the cost of transforming the
resulting weights back to being non-negative where necessary. The obvious
way to do this is to take any negative weight w(x,y), add to it -w(x,y),
making it zero, and at the same time add -w(x,y) to w(y,x), which pre-
serves balance and gets rid of at least one minus sign. This may be repeated
until there are no negative weights. But, so far, no practical use has been
found for balanced weight functions with negative values.
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(3) Weighted Circuits. Circuits play an essential role in Markov sculp-

ture. A circuit is a periodic function c on the integers into G. Thus there

is a smallest integer k = k(c) called the period or the length of c, such that

c(t) = c(t + k) for all integers ί.

A circuit c is said to be elementary if either the period k(c) is 1 or k(c) > 1

and the values of c for t = 1,2, , k(c) are all distinct. Only elementary

circuits are used below.

If r = c{t) and s = c(t + 1) for some ί, 1 < t < fc(c), then the pair r, 5 is

an arc on or along c. There are k(c) arcs along c.

A constant function c where c(i) = r for all £, r being a fixed element in

G, is a circuit and corresponds to a single arc (r,r), called a self-loop and

which has period 1. These simplest of all circuits are surprisingly useful in

Markov sculpture.

Now suppose for a given elementary circuit, a weight α(c) > 0 is placed
on the arcs along the circuit. This weighted circuit defines a balanced weight
function wc where wc{r, s) = α(c) whenever (r, s) is an arc along c, and is
zero otherwise. Such a weight function will be called a circuit based weight
function.

Such functions play an important role here because they are easy to use,
and because every balanced weight function w can be expressed as the sum of
a finite number of these circuit based weight functions which use elementary
circuits. (Non-elementary circuits can also be used in constructions, but the
treatment is slightly more complicated because the weight in, and out, has
to be counted at each recurrence, that is, each t, 1 < t < k(c) such that c(t)
is equal to the repetitive element.)

Curiously, it is occasionally convenient to use a negative circuit weight
in building up a balanced weight function for a process. This presents no
problems as long as the total weight is positive, since it is the balanced
weight function which is used to compute the transition probabilities, and
these must be non-negative.

(4) Circuit representation of order r Markov chains. The repre-
sentation of Markov chains in terms of weighted circuits extends to order-r
Markov chains (MacQueen (1981)), as follows:

A circuit c will be r-elementary if each sequence of length r along c is
distinct. More precisely let h(t) be the sequence (c(ί), c(£+l), , c(t+r—1)).
Then the circuit is r-elementary if h(t) is not equal h(t + s) for any s,
1 < s < jfc(c).

Let h stand for a sequence rci,£2>"" >χr of r elements in G, called a
history of length r. We say the circuit c passes through h if for some 5, c(s +
t) = xt, t = 1,2, , r. Let wc be a non-negative number for each circuit c in
a class of r-elementary circuits C. An order-r Markov chain in G, Xi, X2, ,
is formed by letting the probability that Xn+i = #3 given the history of the
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last r steps is h = (Xn_ r+i,Xn_ r+2,- ,Λ"n), n > r, be proportional to
total weight of the circuits in C which pass through h and then through x.
In an obvious notation,

. Sum of wc such that c passes through Λ, x

Sum of wc such that c passes through h

This process may of course be thought of as a chain in G r, the space of
histories of length r, and it follows that in this space, the weight out of any
history h is equal to the weight in, and therefore the total weight of the
circuits which pass through h is an invariant weight function for the class of
such histories.

Moreover, every stationary order r Markov chain in the space of such
histories can be represented by a finite class of r-elementary circuits and
weights wc for each c in the class. The details of this approach to order-r
chains are given in the paper just mentioned.

While every order-r chain has such a basis in the form of a finite class
of circuits, it may be possible to find a particularly simple class and then
subsequent analysis of the chain may be facilitated. This happened in the
case of the order-2 simple chain which is treated in Section 3.

(5) The induced field particle system. Suppose there are N distin-
guished particles designated by the integers, 1,2, , JV, each particle i mov-
ing in its own finite graph G{. The state of the system will by an N-tuple, x =
(#i> #2> , XN) € GN = G\ x G<ι x x GN representing the locations of the
N particles. Let x/i be an element in GN/Gi = G\ x G{-\ x Gr»+i x GN
representing the locations of the N — 1 particles excluding particle i. For
each i and x/i, let w = w(ΐ, x/i, r, 5) be a non-negative weight function on
the arcs (r, 5) in G{ x G{ which is balanced in r and 5, that is,

(2.5)

for all x/i and r € G{. The function w so defined is called an "induced field".
If x is the state of the system at some given time, an arc (r, s) in G{ will

be available to particle ΐ if Xi = r and w(i,x/i,r,s) > 0. Let A{ = A{(x/i)
be the arcs available to particle i, and let A = A(x) be the union of all the
sets A{.

Given that x is the state, a new state is produced by the transition rule,
that is, one of the available arcs A(x) is selected with probability proportional
to its weight, and if {xι,s) is selected, particle i is moved to s in Gf. This
means that the probability (xi,s) is selected is

(2.6) w(i,x/i,Xi,s)/v(x),

where υ(x) = ΣiΈ,8w(iiχ/*>χiis) i s t ' i e t o t a ^ induced weight out of x. A
sequence of steps generated this way evidently produces a Markov chain in
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GN with transition probabilities given by (2.6). This process is the induced
field particle system.

It is now almost immediate that υ gives an invariant weight function
for the process. This may be seen by thinking of the process as a single
particle moving in a graph G where we have defined a weight function w'(x, y)
on arcs (x,y) in G x G, x of the form (xi,X2,"m ?^ΛΓ) and y of the form
(a?i, £2j j #i-ij S) ^i+i> %N), for some i and 8 6 G^ which represents a
move of one particle, and the weight wf(x, y) on this arc is the induced weight
w(i,x/i,Xi,s). The probability of such a move is then wf(x,y)/v(x) for y
of the just indicated form, and the induced field process is a Markov chain
using the balanced weight function w', just as described in Section 1.

To check that w'(x,y) is balanced, note the total weight out of x is just
v(x) as we have seen, and the total into x,Σyw'(Viχ) ι s the s u m °f a ^ the
weights on arcs (?/, x) of the form just defined, which can go to x in one step,
that is, where y is of the form (#i, x<ι, ,Xi-\, s,#1+1, xjq) for s in Gι,
for some i. This total weight in is just ΣiΣsw(hχ/hsiχi) = v(x) by the
assumption w is balanced in r and 5.

It follows from the balance, of course, that v is an invariant function for
the induced field process.

Induced fields w are also additive, but a new kind of weighted sum is
available for construction. If iϋ(ΐ, x/i, r, s) is balanced in r and s, so is
α(x/i)w(i,x/i,r,s) where α = α(i,x/i) is any non-negative function of the
locations of the other particles, that is, the particles other than particle i.

This simple device is used repeatedly in the "meeting process" described
in Section 3.

3. Examples.
3.1. The order-2 simple chain. The classical finite state simple chain

is a process ΛΊ, X25 > on the integers 0,1, , N where Xn+i = Xn ± 1
a.s. with probabilities depending on the current state, and with reflection
at 0 and N. This process is also known as a birth-and-death chain and the
nearest-neighbor random walk. It has been treated by a good number of
writers, e.g., Karlin(1956) and Gndenko(1962), and it is well understood.

The order-2 simple process also has Xn+i = Xn ± 1, but now the tran-
sition probabilities depend on the last two values of the process so that the
states are ordered pairs (x,xf) with x — x1 = ±1. Reflection at 0 and N is
still in place.

The recurrence equations and arguments used in the order-1 case do not
appear to apply immediately or easily to the order-2 case. For this reason
the process offered an interesting challenge for the possibility of Markov
sculpture. So it was decided to seek a basis in circuits for the process in
hope of finding a particularly simple and useful one. The search proved
successful, and the stationary distribution was then obtained immediately
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in an explicit and surprisingly simple form. Also, with the circuits basis at

hand it was possible to obtain formulas for analogues of the formulas already

known for the order-1 case. These include formulas, in terms of the initial

state, (an ordered pair) for the probability of hitting N before 1, the expected

gain received up until hitting N for the first time, or hitting N or 1 for the

first time, when a gain g(x, xύi 1) is received on going from x to x± 1. These

further results are described in working papers (MacQueen,1981a, 1981b)

and will not be given here.

It is convenient to take the parameters of the process to be the proba-

bilities of changing direction. Write p(x',x" -> x) for P(Xn+i = x \ Xn =

xf\Xn-ι = Xf), a convenient and compact notation for circuit based prob-

abilities. Then let

αx = p(0,1 -> 0)

α 2 = p ( l f 2 - > l )
2)
3)

α N . i = p{N - 2, N - 1 -> N - 2) δ v-i = p(N, N-l-tN).

In seeking a circuit basis, a promising intuition was that it might be

possible as well as desirable to have a single circuit giving the numerator in

each transition probability. This led to an economical circuit basis, which is

shown schematically in Figure 1 for the case N = 5.

0 1 2 3 4 5

Wι

W2

W J

W4
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WΊ

W72

W'3

W'4

Ci:

Cr.
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C4:
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CΊ:
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C'r.

C'4:

Vs

As the drawing suggests, c\ is the circuit 0,1, then back to 0, c2 is the
circuit 0,1,2,1, then back to 0, etc., while c* goes all the way to N and back,
and c[ is the circuit 1,2,3,4,5,4,3,2 then back to 1, etc. The notation for
the weights of these circuits is given in the left hand column. The variables
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Vi,V2> ">y5 are the totals of the weights of all the circuits which pass
through the order-2 histories in the column above these variables. Thus
V\ = w\ + W2 + ws + W4 + w*, V2 = W2+W3 + W4 + W1+ w*, etc.

Notice V\ is the weight of all the circuits going through 0,1 and at the
same time it is the total weight going through 1,0, and similarly for 1,2 and
2,1, etc. So Vi, i = 1,2, , N provides an invariant weight function for all
the order-2 histories by virtue of the remark about the circuit basis in Section
2. Note the two histories 0,1 and 1,0 will have the same invariant weight, as
will the two histories 1,2 and 2,1, etc. This is obvious in retrospect, since
for every transition from x to x + 1 there eventually has to be one from x + 1
to x.

It remains then to calculate the VJ in terms of the transition probabilities
di and b{.

To do this notice that c\ with weight w\ is the only circuit that can lead
to a change in direction when going up from 0 to 1, this being the only circuit
through 0,1,0. Then p(0,1 —> 0) = α\ = w\/V\ by the transition rule, and
in general,

(3.1) αn = wn/Vn, bn = w'n/Vn+u n = l , 2 , - . . , i V - l .

To solve for the wn, the w'n and it/*, observe that Vn+ι = Vn — wn + w'nJ and
from this, using (3.1), gives Vn+\ = Vn — αnVn + bnVn+ι, which yields the
recursion Vn+1 = Vn(l - αn)/(l - 6n), n = 1,2, , N - 1.

Since only ratios of weights matter, we are free to pick one weight or
some sum of weights for convenience. So take V\ = 1. Then the recursion
gives

(3.2)

With V\ = 1 and Vn given by the above for n = 2,3, , TV, the weights
wn and wr

n can be found from (3.1). Finally, V\ = 1 = w\+W2-\— WJV-I+W*

gives w*. Thus we have a set of circuits and weights which generate the
original process, and (3.2) gives the invariant weights V{ for the order-2
histories.

Because the invariant probabilities for #, x + 1 and x + 1, x are equal, as
we have seen, it may be possible to solve the appropriate stationary equation
directly as was done for the order 1 case. This is left as an exercise for the
reader. Verification, at least, ought to be fairly easy, by just putting the
above formula in the stationary equations.

Circuit bases have been found for a few other order-2 simple chains,
mainly the case where staying at x is permitted, and the case where the
values of the process are the "clock" of non-negative integers mod N.

3.2. The Meeting Process. Informally, the meeting process is as
follows: Each of N individuals i, i = 1,2, , iV, are traveling from location
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to location, in a Markovian way, in respective graphs G2, i = 1,2,••• ,iV.
But there are special sets of locations called situations, to use the sociological
expression, and if their travels should bring several of the individuals into a
situation at the same time, they commence to have a meeting. This breaks
up after a random time, depending on the situation and the individuals in it,
who then continue on in their usual Markovian way. While a meeting is in
process, the other individuals at other locations not involved in this meeting
continue to move in their usual way, and in fact one or several groups of
the other individuals may meet in some other situation and commence a
meeting. So there is a constant movement of individuals in and out of
meetings of different kinds in different places.

The meeting process developed below is a refined version of this process,
with special and completely stationary structure, but it will be seen that
it has many of the important qualitative features of the every day social
reality of "meetings", which are ubiquitous and form the very core of social
and economic life.

The stationary distribution for the meeting process is obtained in an
explicit form in terms of the expected length of the interactions in each
situation.

The main application of the meeting process, is as a carrier process for
games, and in particular, time variable games, where the strategies of the
players determine the length of play of the game as well as the utility out-
comes. Such a game is placed in each situation, and its play constitutes
the meeting there. While each situation has a unique and fixed game, the
play will be different each time it is played because of the generic random
features in the games. The expected times of play become the parameters
needed for the stationary distribution of the meeting process, which then
becomes a function of the strategy choices in the game. It turns out, as will
be described elsewhere, that the stationary distribution of the meeting pro-
cess is easily applied in this case, and this makes it possible to apply game
theoretic ideas, such as Nash equilibria, to the resulting model for social and
economic systems.

The meeting process is an application of the induced field process de-
scribed in Section 2 although the term "individual" is used here rather than
"particle" in view of the sociological interpretation.

The general setup is illustrated in Figure 2, where there are four indi-
viduals moving in separate graphs. As indicated in the figure, situations are
disjoint sets S of locations

Let k(S) be the number of locations in situation 5 and let N(S) be the
set of k(S) individuals thus associated with situation S by virtue of the fact
that each element in a situation belongs to the graph of one individual.

Also let t(S) be the expected length of the meeting in 5, which must
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Figure 2.

satisfy ί(5) > l/fc(S). The reason for the latter condition will become clear

shortly. The actual time each meeting requires is a random variable, whose

distribution is given below.

The meeting process will be built up from a process representing the

motion of the individuals when not in any meetings. These are defined by

balanced weight functions wo,t, i = 1,2, •••, JV,with wo,t(r, r) = 0 for all i

and r, which to say there are no self-loops, and

(3.3) = ]Γ wo,i{s, r) = 1, i = 1,2, -, N.

Suppose the induced field was defined by wo,% alone, that is suppose
w(i, x/i, r, s) was equal to Wo,t(r> s). Then the transition rule says individual
i will have probability 1/N of being selected to move and if selected and if
at r, will move to s with probability woj(r,s). This will be the meaning of
moving "as usual" and this process will be called the WQ process.

However, we are free to pick the time scale arbitrarily, and it is simplest
to set it equal to \/N units of time per step. This evidently means that in the
WQ process an individual would move on the average of once per unit time,
since the expected number of steps between selection of each individual is N.
This is an intuitively comfortable scale, since as N is varied the individuals
do not change speed.

An important convention is adopted for the start and end of meetings,
which is just that the meeting in S starts at the first step on which all the
individuals who contribute locations to 5 are present. And the meeting ends
at the step on which any one of the individuals leaves 5.
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But to illustrate how the meeting process will be developed, consider S\
in Figure 2, which has just two elements, α and &, a from G\ and b from G<ι,
so the presence of these two individual will initiate a meeting there. The
induced field will be described for the special condition individuals 1 and 2
are at α and b respectively in a meeting, but in addition, individuals 3,4,
and 5 are not in any meeting.

For this condition there will be an induced self-loop with weight 2t(Sι) —
1, for individual 1 at α, induced by individual 2 at 6, which to say that if
x/1 has the property that x<ι = 6, then tί/(l,z/l, α,α) = 2ί(5i) — 1, and
the reason for this specific quantity will be explained shortly. Similarly, if
x/2 is such that x\ = α, then tϋ(2,rr/2,6, b) = 2t(S\) — 1. At the same
time w(l,x/2,α,r),r φ α, will be wo, i(α,0 and w(2,#/2,fc,r), r φ 6, will
be wo, 2(̂ 5 F) These last two statements mean there will some weight for
individual 1 and 2 to leave the situation, thus ending the meeting.

Suppose that at the same time, w(i, x/i, r, s) = oj(i, x/i)iϋo, i(r, s), for
i = 3,4, and r ^ s, where α is chosen to keep these individual moving "as
usual", that is, as in the WQ process. It turns out that α = 2t(S\) will work
nicely.

This completes the description of the induced field for this one condi-
tion, and to illustrate how it works we calculate the expected time until
the meeting ends on the assumption the condition is maintained until this
happens.

The weights of the two self loops at α and b are 2t{S\) — 1 and the total
weight out of α and out of the situation, for individual 1, is 1, and the weight
out of b and out of the situation for individual 2 is 1 also, these each being
the sum on s of ^0,1 (α, s) and of 0̂,2(̂ 5 s) which are both equal to 1 by the
hypotheses on w$. The total weight out of the locations of individuals 3
and 4, is 2(2t(Sι)) because the sum on s of each tϋo, i(r, s), i = 3,4, is 1 and
these are each multiplied by α = 2t(S\). Altogether then, the weight for the
condition we are considering is 2(2*(SΊ) - 1) + 2 + 2(2*(SΊ)) = 8ί(SΊ).

Since it is agreed the meeting in Si ends when any one individual leaves,
and since the arcs for individuals 1 and 2 which have this result each have a
weight of 1, the probability of one of them leaving at each step is 2/(8t(Sι)) =
l/(4£(5i)) as long as this condition continues. So under this condition the
number of steps until one of the two individuals leaves would be a geometric
random variable, and the expected number of steps until this happened
would be just 4ί(5i) by the well known formula for the mean of the geometric
distribution.

But the time scale was chosen above to be 1/4 a unit of time per step,
so the expected time until the meeting ends is just t(S\) as desired.

The probability under this same condition that individuals 3 and 4, are
selected to move are each 2t(Sι)/(8t(Sι)) = 1/4 and so theseindividual are
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moving at an average rate of 1 step per unit time because it takes on average

4 steps before each is selected to move. This we describe as moving at the

"usual rate" and it is also as desired.

Of course, the above discussion does not cover the case where either the

meeting in SΊ ends or another meeting involving the other individuals starts.

It turns out that the induced field can be developed so that the probability

a meeting ends can be kept constant just as in this instance, and with the

appropriate parameter, so that even when other meetings start or stop the

number of steps until a given meeting ends is as desired.

It will turn out, incidentally, that the individual who ends the meeting

is equally likely to be any one of the individuals present, which seems quite

in keeping with the programmatic description of the process given above.

Using the same idea as illustrated above, the general induced field for the

meeting process will now be developed, but first several somewhat technical

definitions are needed:

(1) For each i and x/i fixed, let W(i,x/i) be the set of situations S

which have at least one location from Gi, but which also have present all

the individuals N(S) except individual i, so that if individual i arrives a

meeting would start. In a manner of speaking the individuals in a situation

5 in W(i, x/i) are waiting for individual i, regardless of and in ignorance of,

where individual i actually is. The set W(ί,x/i) can easily be empty.

(2) For each i and x/i, there is a set of situations M(i, x/i) with meetings

in process in each, none of which involve individual i, that is, there are no

locations from G{ in any of these situations. This set of situations can have

no overlap with W(i, x/i) since if the locations in S G M(i, x/i) are all

occupied, none of the individuals in it can be simultaneously at an element

of W(i, x/i) waiting for individual i to arrive. Let π(i, x/i) stand for the

product of k(S)t(S) over S in M(i,x/i), defined to be 1 if the set is empty.

(3) Let M(x) be the set of situations where meeting are in process when

x is the state of the system.

The definition of w is in two pieces: For a given individual i and for fixed

x/i and for r in S and S in W(i, x/i) not empty, let

(3.4) w(i, x/i, r, r) = (k(S)t(S) - l)π(i, x/i),

and if r φ s, let

(3.5) w(i, x/i, r, s) = tι/0> i(r, s)π(i, x/i),

otherwise, that is, if r is not in S for any S in W(i,x/i) or W(i,x/i) is

empty, let

(3.6) w(i, x/i, r, s) = w0, %{r, s)π(i, x/i)

for all r φ s.
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Notice that the effect of the above is that the induced field in a situation
comes from all the individuals required for the meeting there except the one
person who is absent. The self-loop field which keeps the meeting going does
not operate, if less than k(S) — 1 individuals are present, and this is why the
meeting does not start until all its potential members are present.

Calculating the behavior using w much as was done above, will soon
reveal that the meeting in each situation S has expected length t(S) and
given the meeting starts it is geometrically distributed and independent of
the locations of the other individual until such time as it ends. Moreover,
each individual not in a meeting continues to move as usual, that is with
constant probability of 1/N of being the next person to move or attempt to
move.

That w as defined by the above is balanced in r and s, is immediate.
The expression (3.4) gives an induced self-loop and is automatically bal-
anced. The terms (3.5) and (3.6) are obtained by multiplying the balanced
weight function wo,i by a function α which depends only on x/i, and are also
automatically balanced as was pointed out in Section 2.3.

But what is the invariant weight? For the induced field process, υ(x) =
Σ i Σ s

 w(h χlh χiis) is invariant and so it is only necessary to calculate this
from the above definition of w. The result is

(3.7) v(x) = Nπ(x),

where π(x) is the product of k(S)t(S) for all S in M(x), the set of all
situations where there are meetings in process when x is the state.

To show this, consider x fixed, and consider the contribution to the
total weight out of x from individual i who is in a meeting S. In this
case individual i has arrived in S G Wi(x/i) and the available arcs (xi,s)
have their weight given by (3.4), for an immediate return, and by (3.5),
to leave the situation. The total is (k(S)t(S) — l)π(ΐ,x/i) from (3.4) plus
Σstt;o,ϊ(:n,s)π(i,2;/i) = π(i,x/i) from (3.5), for a total of k(S)t(S)π(i,x/i).
But this is just π(x) the product over all S in M(x) since π(i,x/i) is the
product of k(S)t(S) over the meetings in process excepting those involving
individual i, or any other individual in the situation S under consideration.

But there are k(S) individuals in S so their total contribution is k(S)π(x).
The total weight out of locations of individuals not in any meeting is

given directly by (3.6) and is just π(x). The total then is Σ s k(S)π(x) +
(JV — Σs k(S))π(x)) where the sum on 5 is taken over the situations where
meetings are in process when x is the state. The second term in this sum
is just the number of individual not in any meeting, multiplied by their
contribution of π(x) each to the total weight out of x. The total is evidently
Nπ(x) as was to be shown.

We note in passing that the discrete meeting process can easily be



182 James MacQueen

changed to a continuous time Poisson process X(t) in G, with transitions
at Poisson times <i,t2, , with occurrence rate 1/ΛΓ, and with the same
basic structure and the same stationary distribution. It is only necessary to
associate i.i.d exponential random times with each individual and to take as
the individual who next moves or attempts to move, the one whose time is
a minimum, and let the actual move of this individual be governed by the
induced field. Details are left to the reader.

The phenomenological properties of the continuous time version seem to
be somewhat better than the discrete time process, because the sense that
individual movements are independent of one another except in meetings is
more vivid.

The stationary distribution for the meeting process gives a variety of
statistics by direct and easy calculation using (3.7), υ(x) = iVπ(x), or more
simply, using just π(x) = ΠseM(x) k(S)t(S) since N is a constant. For
example, the stationary probability there is a meeting in Si but no other
meeting going on at the same time, is proportional to 5k(Sι)t(Sι) = lOt(SΊ),
because there are 5 states x where this is the condition of the system, that
is, a meeting in S\ only. Similarly, the fraction of time there is a meeting
in S\ and a meeting in S3 is proportional to At(Sι)t(S^) since there is just 1
state x where this occurs. These relative weights will become probabilities
on dividing by D = lOί(SΊ) + 20ί(52) + 38ί(53) + 4t(5i)ί(53) + 15t(54) + 80.
The probability there are no meetings going on is 80/D.

3.3. Small circuit construction of h-diffusions. There is continuing
interest in diffusions in many branches of science and an enormous mathe-
matical literature on their construction and analysis. This section attempts
to make a small contribution to this subject by finding the invariant distri-
bution for a class of non-reversible processes called h-diffusions. The results
may be of some interest to theorists since there is little available on the in-
variant behavior on non-reversible diffusions. Here a closed form solution for
the invariant behavior of a class of two dimensional processes is given. The
method is elementary, and extends easily to h-diffusions in several dimen-
sions. The small circuits required in several dimensions are indicated briefly
below.

Consider the set SN of points (x,y) where x = i/N,y = j/N, 0 <
hj < N, and let S^ be the subset of SN where 0 < i,j < N. The set
S = [0,1] x [0,1] and its interior S* = (0,1) x (0,1) also play important roles
here.

We construct a Markov chain in SN represented by a moving particle
which starting at (#, y) goes either to an adjacent point such as (#, y+h), h =
1/N, or returns immediately to (#,2/), but in any case taking an amount of
time h2 for the step. This process will be called an h-diffusion, to distinguish
it from the classical diffusion processes.
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The construction is based on many small circuits in 5τv, described below,
and two non-negative weight functions w and s where w is twice differentiate
and satisfies w > δ > 0 on S and s > 0 is continuous. For each h = 1/iV,
the construction gives rise to "diffusion coefficients" dh and σ\ representing
the expected velocity vector of the particle and the covariance matrix for a
single step of the process expressed as usual on a per unit time basis. Thus
technically, the construction may be regarded as a mapping Ch on the space
of pairs w, s into the space of these diffusion coefficients dh and σ\. It is
immediate from continuity that if x, y € 5*, then as h —ϊ 0 , dh —>• d ,
σ\ -» σ 2 . So Ch -> C in a sense easily made precise.

It is also shown that under certain conditions on a given pair, (d, σ2)
representing the mean velocity vector and covariance per unit time of an
empirical process of interest, there is a unique pair w, s for which C(w, s) =
(d, σ 2), and then Ch(w,s) defines for each h = 1/N an h-diffusion with a
known invariant weight function u^.

This discrete process embodies the information in the given pair (d, σ2)
in a concrete form, suitable for interpretation and application to the process
giving rise to d and σ 2.

The given pair (d, σ2) may come from a number of sources, for example,
as part of an approximation of another stochastic process, or it may be
given as an axiom, postulated in hopes of getting better understanding of
some natural process. So the pair does not have come from a mathematical
diffusion, although this is one possibility. In any case the h-diffusion derived
from the given pair (d, σ2) is a possible model the process at hand, and its
value stands or falls, as the case may be, on its interpretation and application.

To begin the construction, consider Figure 3 illustrating the set Sjy.

1 1

x-h,y

x-h, y-h x, y-h

0 1

The four circuits through x,y, drawn as circles for clarity

Figure 3.
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The circuits for the construction are as follows:

First, there will be a clockwise and a counter clockwise circuit associated
with each point (x,y), where 0 < a ? < l , 0 < y < l . A typical clockwise
circuit is indicated in Figure 3. The circuit originates at (a;,y), goes to
(x,y + ft), then to (x + ft,y + ft), then to (x + ft,y), then back to (x,y),
and in that order. The counter clockwise circuit, not shown, follows the
same points but in reverse order, that is, starting at (x, y) it goes through
(x + ft, y) then (x + ft, y + ft), then (#, y + ft), then back to (x, y).

There is also at each such point (x, y) a self-loop (not shown in Figure

3), that is, a circuit which goes from (x, y) back to (x,y) immediately. No

other circuits are used in this construction.

The weight function w and 5 mentioned above are used to assign weight
to each of the above circuits as follows: Let α, 6 be fixed numbers with
α + b = 1. For each (x,y) in the above range where the circuits originate,
that is, 0 < x < 1,0 < y < 1, we place weight αw(x,y) on the clockwise
circuit originating there (that is, on all of its arcs), place weight bw(x,y) on
the counter clockwise circuit originating there, and put weight s(x,y) on the
self-loop at (#,?/).

Notice that all boundary points receive some weight. For example, the
point (1,1) gets weight from the two circuits originating at (1 — ft, 1 — ft).

The construction is given here for the set [0,1]2. But any set whose
boundary is a sufficiently smooth closed curve can be used provided a cer-
tain convention is followed in weighting the circuits. For example, a piece-
wise linear boundary with a finite number of pieces will work easily. The
convention is that the boundary be addressed by a method called "cutting
and stitching": The boundary of the set is placed on a lattice graph with
mesh 1/iV, and any point inside or on the boundary, and with an arc that
is cut by the boundary, is declared to be a boundary point. Then the arcs
of circuits originating at these points are stitched together where they were
cut, leaving out that part of the circuit which is outside the boundary. The
weights on these remaining arc segments are left just as they were. So each
point inside the boundary is still balanced, and in fact has exactly the same
weight as before. The solution worked out for the open interior S* holds
exactly as given for the case S = [0,1]2.

Consider now a point (x,y) in the interior of SJV, that is, S]y. As may
be seen by inspection with the help of Figure 3, the total weight out of such
an interior point comes from just four clockwise circuits, those originating
at (x,y), at (x — ft,y), at (x — h,y — ft), and at (x,y — ft), plus the weight
of the counter-clockwise circuits originating at these same four points, plus,
finally, the weight on the self-loop. These nine circuits all go through such
points x, y, and no other circuits do, as may be checked by inspection.

For (rr, y) E S^ there is a certain total weight on each of the available
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arcs leading to adjacent points. These weights to (rr, y+Λ), (x+h, y), (x,y —
h), (x - h, y), (x, y) are, respectively, αw(x, y) + bw(x - h, y), αw(x, y-h) +
bw(x,y), αw(x - h,y - h) + bw(x,y - h), αw(x - h,y) + bw(x - h,y - h),
and s(x,y).

The total weight out of (#, y) G S^ from all nine circuits, considering
α + 6 = 1 is

vh{x, y) = s(x, y) + w(x, y) + w(x, y - h)

(3.8) +w(x -h,y) + w(x -h,y- h).

The above weights for available arcs out of (rr, y) give transition proba-
bilities on being divided by Vh(x, y). For example the probability the particle
will go to x,y + h is (αw(x,y) + bw(x — h,y))/vh(x,y). Probabilities from
boundary points have similar formulas. For example the probability of going
from (0,0) to (Λ,0) is αw(0,0)/[αw(0,0) +6w(0,0) +5(0,0)].

Because of the balance, Vh as defined by (3.8) above, is an invariant
weight function on interior points, and similar invariant weights for boundary
points are easily given. For example, w(0,0) + 5(0,0) is an invariant weight
for (0,0) (on the same scale as v^.)

It is not hard to check that the h-diffusion is not reversible unless α = 6,
by calculating the probability of the path (x, y), (x + h, y), for example, and
comparing it to the probability of the path (x + Λ, y), (#, y). But if α = b so
the weight of the clockwise and counter clockwise circuits are equal, and the
rotational effects of the circuits cancel out, then the process is easily seen to
be reversible.

Notice that for h sufficiently small, either α or 6 may be negative without
violating the positivity of the weight function Vh If &, say, is negative, the
fact that α + b = 1 means that the weight of out of x, y along any available
arc, such as wr = αw(x, y) + bw(x — Λ, y) above, is positive for sufficiently
small h. To see this note w(x — Λ,y) = w(x, y) — hwι(x, y) — O(Λ2), so w' is
equal to w(x,y) — hwι(x,y) — O(h2). Since w\ is continuous on the compact
set S and therefore bounded, and w > δ > 0 on 5, wr will be uniformly
positive on S for h sufficiently small.

The self-loop weight 5 is bounded above by hypothesis, but may easily
be zero at any or even all interior points.

Consider now the expected velocity vector dh for a single step of the
particle starting from an interior point x, y, and taking time h2 for the step.
The first coordinate dih(x,y), defined as the component in the horizontal
direction of the expected velocity vector for a single step, may be calculated
using the probabilities indicated above, and is found to be

α((w(x,y-h)-w(x- h,y)) + b(w(x,y) -w(x-h,y- h))

hvh(x,y)
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where Vh is given by (3.8). In this formula the division by h2 has already been
accomplished and a factor h canceled from the numerator and denominator.
A similar formula holds for d2h(x, 2/)> the expected velocity in the y direction.

Prom the transition probabilities, one can also calculate the covariance
matrix for the next position x\ y1 starting from x, y. By definition this will be
the covariance of the random vector x,y + h! where h! takes on one of the five
possible values (0,0), (Λ,0), (—Λ,0), (0,/ι), (0, — h) with the corresponding
transition probabilities. The covariance matrix per unit time for one step
of the process, σ£, is just the covariance of this random vector, but divided
by h2. The exact formula will not be given, since the rest of the argument
requires only limiting values on S*.

The limiting values of dh and σ\ are easily found for (x, y) in S* by taking
limits along convergent sequences in 5^. Specifically, in (3.9), adding and
subtracting w(x, y) and w(x, y—/ι), from the terms within the parentheses, in
an obvious way, treating d2h likewise, and then letting h —> 0 and simplifying,
we get

( , dι = [tϋi - (α - b)w2]/(s + Aw),
{ } d2 = [w2 + (α -

A similar detailed calculation which is omitted, shows the variances in
each direction are equal to each other in the limit, and the off diagonal term
is zero. Let the common variance term be σ2, which it turns out is given by

(3.11) σ2 = 2w/(s + Aw).

The function υ = s+Aw is the limiting value of v^, the exact invariant weight
function for each Λ, so this will be well approximated by v in the sense that
sums on Vh over nice sets will be equal approximately to integrals of υ over
those sets. In effect, Vh converges weakly to v on 5*. Note σ2 < 1/2.

An essential simplification is now possible. Prom (3.11), 5 + Aw is equal
to 2w/σ2. Define the function u by setting w = exp(2u), and let k = α — b.
Putting this in (3.10) and simplifying, we get

(3-12) A , 2

d\jσ2 = α — u\ —

d2/σ2 = β = u2 +

where α and β are introduced to simplify notation.
Consider now the problem of recovering w and 5, and the constant fc, from

some given d and covariance σ2 having equal diagonal term and satisfying
σ2 < 1/2, and being strictly positive every where on S.

Rearranging (3.12) gives the gradient condition

(3.13) α + kβ = uι(l + k2), β-kα = u2(l + Jb2).

This must hold on S* if α and β are to be derived from the circuit con-
struction we are considering, since (3.12) was derived on this basis. But if
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(3.13) holds then u can be computed by a standard formula for recovering a
function from its gradient.

Differentiation shows it is both necessary and sufficient for (3.13) that
for some fc,

(3.14) α2 + kβ2 = βι - kαi or α2 - βi = -&(<*i + #2).

There may be no such k and in this case the construction cannot produce
the given d and σ2.

Suppose then, there is at least one value of k such that (3,14) holds.
Then u is given by

(3.15) * = ( / / + ί9- ί /
h h h h

Co an arbitrary constant, / = α + kβ, g = β — kα and where for an integrable
function R of x and y, JλR = f* R(s, y)ds and J2R = $ R(x> *)̂ *> α a n d b
being constants chosen for convenience.

But it is possible there are many values of k for which (3.14) holds. In
fact,it turns out that the pair α, β falls into one of two classes depending on
whether or not they are harmonic, by which is meant α and β satisfy the
Cauchy-Riemann conditions,

(C) α2=βuα1 = -β2.

If they do, then in (3.14) the coefficient of k is zero and k cannot be deter-
mined uniquely without further conditions.

For a specific example of this state of affairs, that is, the gradient condi-
tion (3.14) satisfied and α and β are harmonic, let σ2 = 1/2, α = —2y, and
β = — 2x. Then (3.14) holds for some k, and in fact for all fc, but so does
(C) as is easily checked. Then / = —2y — 2kx, g = — 2x + 2ky and with
σ2 = 1/2, (3.11) implies 5 = 0. Using the integration formula (3.15) gives
u = (—2kx2 + 2ky2 — 4xy)/(l + k2) plus an arbitrary constant and then from
the definition of u, w = exp(2u) up to multiplication by a positive constant.
So as k varies the h-diffusions have the same mean velocity vector but are
clearly different in their behavior, as is evident from inspection of w.

In an effort to obtain a unique construction from d and σ2, it is tempting
to impose boundary conditions, although how to do so is not clear. The
behavior on the boundary seems to have little effect on the interior. For ex-
ample, a circuit with weight 1, say, could be passed through all the boundary
points in a clockwise direction. The construction would still be possible, and
the relative weight as between sets of interior points would not be changed
at all.

Notice that in the harmonic case, differentiating the first line of (3.13)
with respect to x and the second with respect y, and adding, shows u itself
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is harmonic. If a boundary condition of the form u = h on the boundary

were made available, producing a classical Dirichlet problem, there would be

a unique solution (up to an additive constant) equal to h on the boundary.

But there is no obvious source for such a boundary condition.

So the meaning of this harmonic condition (C) when the gradient condi-

tion (3.14) is satisfied, is left for further study.

Now consider the condition where (3.14) is satisfied for some k but C
fails at some point in S*. Then in (3.14) not both ot<ι — β\ and α\ + β<ι
are zero at this point and a little consideration shows that (3.14) is then
a simple linear condition determining a unique value of k. And in fact if
(3.14) is satisfied for any A;, it is satisfied with the same k over all of 5*, and
this k is unique. Then the integration (3.15) determines u uniquely up to
an additive constant. And then w and s are uniquely determined up to a
multiplicative constant, and finally s = 2w(l/σ2 — 2).

It is not hard to see that if the given d and σ2 satisfy the regularity
conditions given above, having continuous derivatives on 5, and σ2 being
bounded away from zero, then w and s will also satisfy their regularity
conditions as given above. So the limits required by the construction will
exist.

In summary, then, for a given Λ, the h-diίfusion is available for inter-

pretation and application, its exact invariant distribution is known, and its

coefficients dh and σ\ converge to the given d and σ2 as h —• 0.

Note this is all true without having to investigate the limiting process,

as h —• 0, or even its existence.

An example. In the study of market dynamics processes are used in

which the parameters of one diffusion process are themselves subject to dif-

fusion. An alternative to the usual approach to such processes, usually

via-stochastic differential equations (see, e.g. Cox and Ross(1985)) is pro-

vided by this example. The example is chosen in part because it is not a

reversible process, which appears to be the case, almost inevitably, in the

usual approaches.

Suppose the expected velocity or "drift" of a particle in one dimension is

itself is subject to many small impulses and moves randomly with expected

velocity depending on both its current value and the location of the particle.

Such phenomena, it would seem, are very common, so creating such a process

is a practical challenge as well as a mathematical one.

For the sake of the example, the set S taken as the square [—B, B]2, B

some large positive number.

We go directly to (3.12) taking σ2 a constant equal to its maximum value

of 1/2 and interpret x as the position of a particle in [—JB, B].

More importantly, we set d\ = y. This makes y itself random and by the

construction and the transition rule, the value of y is moving as a component
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of the h-diffusion just as is the particle. Then 2̂? which is the expected
velocity of the y coordinate of the process is in effect the expected rate of
change of the expected velocity d\ of the particle.

With d\ = y and the constant variance σ2 = 1/2, so α = 2y, it turns
out that the gradient condition (3.14) will be satisfied for some k if β =
—2y + φ(x + y), φ a function of a single variable, and then k = 1. So for
the example we settle on a simple instance, which is φ = —(x + y). The
harmonic condition (C) is not in effect since ot\ = 0 and β\ φ 0. Then
β = — # — 3y and the functions / and g in (3.15) are / = — x — y, g = —5y — x
and ίz is given uniquely up to an additive constant by the integration (3.15).
So taking the additive constant to be zero, u = (—x2 — 2xy — 5y2) and
then w = exp(2u) is a bivariate normal. It can be written as exp(—l/2(y +
ar/5)2/(l/20))exp(-l/2(x2)/(5/18)) to show the regression of y on x.

So under this invariant weight function, the expected value of y, the mean
velocity of the particle, given x, is very close to —x/5 and would be exactly
so as JB, the edge of the square, goes to oo. This expresses in another way
what may be gleaned from β = — 3y — rr, which is that there is a stabilizing
feed back tendency in the process. If the drift y of the particle itself were
driven positive under the many highly energetic pulses, the acceleration β
would go negative, and this would eventually turn the particle around and
head it towards zero. The regression function y = — x/5 says this same thing
with a certain precision.

In summary, the h-diffusion process promises to be easy to use in practice.
All that is needed technically is a little calculus and the theory of finite state
Markov chains. The concrete nature of the construction makes it clear what
is going on, and should make it relatively easy to develop a model having
given local behavior as described by diffusion coefficients, whatever their
source.

Interacting particle systems formulated as h-diffusions can be treated
easily in some instances by adopting the induced field model to this situation.
Some examples of this are given in a working paper (MacQueen,1980).

Clearly, the h-diffusion construction is based on and constrained by the
family of small circuits used. Families of small circuits quite different from
the above are described briefly by MacQueen(1984,1985).

To extend the above construction to several dimensions, the above cir-
cuits can be used, but applying them to each plane. For example, with three
dimensions, x, y, 2, the clockwise circuits used above in the x, y plane are left
as they are, but exactly analogous circuits are applied in the #, z plane and
in the y, z plane as well. Thus in the x, z plane there is a clockwise circuit
originating at (rr,y,2), which goes through (x,y,z + /&), (x + Λ,y,z + h),
(x + h,y,z), and back to (rr,y,z). Counterclockwise circuits with weights
6tϋ, α + b = 1, are treated similarly, and a self-loop with weight 5 = s(x, y, z)
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may be added if desired.
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