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Abstract

We reduce the classical discrete-time game of optimal stopping between
two players, known as "Dynkin game", to a pathwise (deterministic)
game of timing, by addition of a suitable non-adapted compensator ( λ n )
to the payoff. This compensator satisfies i B ( λ n | ^ 7

n ) = 0, where Tn

is the information available to the players at time t = n, and IE de-
notes expectation with respect to the underlying probability measure
IP; the compensator also enforces the non-anticipatiυity constraint that
the strategies of both players be stopping times of (^>ι) A pair of such
stopping times is identified, which leads to a saddle-point for each of
these games; and it is shown that the value V of the stochastic game
is obtained by "averaging out" the value W(ω) of the pathwise game:
V = JnW(ω)P(dω).

1. Introduction and Summary. We present a simple approach to
the discrete-time stochastic game of optimal stopping (or timing) known as
"Dynkin game" (Dynkin & Yushkevich (1968)), with payoff from player A
to player B equal to

(1.1) Έ,(σ, τ) = Uσl{σ<Ty + i τl{τ<r,τ<σ} + £l{<τ=τ=τ}.

Here Un > Ln(nelNo) are integrable random sequences, adapted to the fil-
tration IF = {Tn,nelNo};σ and r are stopping times of IF with values in
{0,1,..., T}, at the disposal of players A and B, respectively; T < oo is the
"horizon" of the game; ξ is an integrable random variable; and

(1.2) V = inf sup JKπ(σ, r), V_ = supinf JE?π(σ, r)
σ τ τ σ

are the upper- and lower- values, respectively, of the game. Notice that
in the infinite-horizon case (T = oo) we are allowing stopping times to be
extended-valued, i.e., to take the value +oo.

Under reasonably mild conditions, we show that this game has value
V = V = F, as well as a saddle-point of stopping times (σ, f), by looking
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instead at an appropriate pαthwise (deterministic) game. This new game has
payoff

Q(a,t;ω) = (Us(ω) + λ β (α;))l { s < t }

+ (Lt(ω) + λt(ω))l{t<τ,t<8} + (£M + λ τ ( α ; ) ) l { t = θ = τ }

for (5, ί)€{0,1,..., T}2 , and value

(1.4) W(ω) = inf supQ(s,ί;ω) = supinf Q(s,t\ω)
8 t t s

for each fixed ωeίl.
For a proper choice of non-αdαpted "compensator" (λn(ω), n = 0,1,. . . ,

T) with JE^λnl Fn] = 0, one finds very easily a saddle-point (σ(ω),τ {ω)) for
the deterministic game of (1.3), (1.4); observes that ω »-* σ(α ), ω ι-> f (ω)
are stopping times which provide also a saddle-point for the stochastic game
of (1.1), (1.2); and computes the value in (1.2) simply by "averaging out"
the value of the pathwise game: V = / W(ω)lP(dω). Equivalently,

infsupiE7[C/σl{σ<τ} + L τ l { τ < τ , τ < σ } + ξ l { σ = = τ = τ } ] =
σ r

= «[inf sup((E7, + λs)l{s<t} + (Ut + λt)l{t<τfi<a}

where the infima and suprema can be interchanged. A similar result for
the classical optimal stopping problem appears in Davis &; Karatzas (1994),
along with an application to a so-called "prophet inequality".

The approach is carried out first for the finite-horizon case (i.e., T < 00),
which is the most transparent and the simplest to present (section 3), and
then for the infinite-horizon case T = 00 which requires some additional tech-
nicalities (section 4). A similar development for a continuous-time Dynkin
game has been carried out by Cvitanic & Karatzas (1996) in connection
with the study of Backwards Stochastic Differential Equations. It would be
of some interest, to determine whether more general stochastic optimization
problems - including stochastic games - might be amenable, and usefully,
to such a pathwise approach.

The "canonical" example that the reader may wish to keep in mind
throughout, is the situation where (Li, C/i), (L2, ̂ 2)5 - are IID observations
from a given bivariate distribution, ξ is a given real constant, and T§ =
{0,Ω}, Tn = σ((Lj,Uj)J = l , . . . ,π) for neN. On day t = n (n < Γ), and
after both players have observed the pair (Ln,C/n), player B has priority
and may decide to stop the game, in which case he receives the amount Ln

from player A; if player B does not stop on that day, player A may decide
to stop, in which case he pays the amount Un to player B; and if neither
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player stops on t = n, the game continues into the next period. If neither
player stops at some t = n (neJN,n < T), then player A pays the amount ξ
to player B. A very special game of this type is the "noisy duel", originated
by Professor D. Blackwell and his co-workers at the Rand Corporation in
the late '40s and discussed in Blackwell & Girshik (1954); see also the paper
by T. Radzik (1996) in this volume.

2. The Setup. Consider a complete probability space (Ω,.F,1P) and

an increasing sequence IF = {.TvJncWo °f sub-σ-algebras of T with To =

{0,Ω} mod. JP, and set T-\ = To, T<χ> = <y^ntJNQTn). For any given

nelDίo and TelNniOO with IVn)OO = {π,π + 1,...} U {+oo}, we shall denote

by Mn,τ the collection of JF-stopping times with values in JVn>τ = {π, n +
1,..., T}. Consider also two iP-adapted sequences of random variables U =
{Un, nelNo}, L = {L n, neNo} with

(2.1) Ln<Un (neJVb),

(2.2) 2E(supL£ + supC/~) < oo.
n n

Suppose now that, starting at time t = n and up until time t = T, two
players A, B are engaged in the following game of timing. Each of them
can choose a stopping time in Mn,τ (say, σ for player A, and r for player
B) and the game terminates as soon as one of the players decides to stop,
i.e., at the stopping time σ AT. Upon termination, player A pays player B
the random amount (payoff)

(2.3) π(σ, r) = Uσl{σ<τ} + Lτl{τ<TiT<σ} + £ l { σ = τ = T }

where ξ is an integrable, ^-measurable random variable. In other words,
the payoff (which may be positive, or negative) from player A to player B,
equals: L r, if player B stops strictly before T and no later than A does; C/σ,
if player A stops first; and ξ, if neither player stops before T.

The objective of player A is thus to minimize, and of player B to max-
imize, the conditional expectation of this random payoff (2.3), given the
information accumulated up to time t = n. Thus, the upper value and the
lower value of this game are given by the random variables

(2.4) Vn = essinfσc5n,τesssupτcTn τ ^ [ ^ ( σ , τ)\Tn)

(2.5) Vn = esssuP τ c T n τessinfσ c 5 n > τ Έ\Tl{σ, τ)\Tn),
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respectively. Here Snjτ (resp. TnjT) is the class of stopping times σ (resp. r)
in Mn,τ for which the random variable Uσ (resp. Lτ) is integrable. Clearly,
the numbers

(2.6) Vo = inf sup JE7£(σ,τ), ZQ = sup inf ETZ(σ,τ)
σeSOtτ τeTOjT τeTOiτ

 σ e S τ

are the upper and lower values, respectively, for a game that starts at n = 0.
As we shall see, the upper and lower values of (2.4), (2.5) are actually

the same under fairly general conditions; and the common value of the game

V V V (neWQiτ)

satisfies then the Backwards Induction Equation

(2.7) Xτ = ξ

Un on {E{Xn^\Tn)>Un}
(2.8) Xn={ Ln on {E{Xn+1\Tn) < Ln)

[ T n ) on {Ln < E(Xn+1\Tn) < Un}

(neNOiT,n<T).
We shall do this, first for the finite-horizon case T < oo in section 3

under minimal assumptions, and then for the infinite-horizon case T = oo
under some additional conditions (section 4).

3. Finite Horizon (T < oo) Let us assume throughout this section,
that TelN is a given fixed integer, and the random variables Un,Ln (n =
0,1,... ,T) are integrable. Then it is easy to see that

and that the Backwards Induction Equation (2.7), (2.8) has a unique solution
X = {Xn,neJVo,τ} This is an integrable, JF-adapted random sequence.

Starting from this sequence, let us introduce the indicator random vari-
ables

> Δ

(3.1) ηn = l{jE{xn+1\τn)>un} (ncJV0,r-i)

which satisfy ζn + ηn + ΰn = 1, and in terms of which (2.8) becomes

(3.2) Xn = ζnE{Xn^\Tn) + ηnUn + ΰnLn (ncJVOfΓ-i).
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Let us also introduce for nelV^x the transforms

(3.3)

f M<0) t ζoiEiXi) - Xo), Mn

0) ± E"Γo 0
Λ Λ «« 1

i that we have
Clearly from (3.1) - (3.3):

n] = 0,

and observe that we have Xn = Xo + Mn + Yn + Zn for every

so that {Mn ,neNo,τ} is a martingale. Similarly,

n ) - Yn = E[Vn(Xn+l ~ X

- Un)
+ > 0

and

n) -Zn = E[ϋn(Xn+1 - Xn)\Fn]

- Ln)\Fn)

In other words, {Y ,̂neJPVo,τ} is a submartingale, and {Zn,neiVo,τ}
supermartingale, so that we have the Doob decompositions

(3.5) Yn = MW + An, Zn = MW _ B n (neNOiτ),

where M^A\ M^ are martingales and Λ = {An, neίVo,τ}) β = {Bn, neIVo,τ}
Δ „ Δ

with Ao = 0, Bo = 0,

(3.6) Ant
 n

(3.7) 5 n £

3=1

for nelNi^Ti are predictable, increasing and integrable random sequences
(E(AT + BT) < 00). It develops then from (3.4), (3.5) that we have the
decomposition

(3.8) Xn = Xo + Mn + An - Bn (neN0,τ)
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for the solution of the Backwards Induction equation of (2.7), (2.8), where
M = Λf(°) + MW + M^ is a martingale.

The nonnegative, Tn-.\ - measurable random variables An,Bn in the
decomposition (3.8) have a nice intuitive interpretation: for the game of
(2.6), which starts at t = 0 and runs until ί = T, the random variable An

(respectively, Bn) represents the "regret" of player A (respectively, of player
B) for not having stopped the game by time t = n. Can we find an intuitive
interpretation also for the martingale (Mn) in the decomposition (3.8)?

In order to answer this question, let us introduce the non-adapted, in-
tegrable random sequence

(3.9) λ n = Mτ - Mn (neNOtT).

Also, for each fixed ωeίl, let us consider a new, deterministic game of timing,
with upper - and lower - values

Wn(ω)= inf sup Q(s,t\ω)
stlN ]N

(3.10) (neW0,r, n<T)

W_n{ω)= sup inf Q(s,t;ω)
lN 8€]N

respectively, and payoff (from player A to player B)

Q(s,t;ω) = Us{ω)l{8<t} + Lt(ω)l{t<T)t<s}

= [Us(ω) + λ s ( ω ) ] l { s < t } + [Lt(ω) + λ t (α;)] l { t < τ , t < 5 }

for 5, t in !Nnyτ (of course, λτ(ω) = 0).
In other words, we create the new payoff Q(s,t;ω) by replacing the

stopping times σ,r in (2.3) by the non-random times seJNniτ>telNnfτ, and
adding the "compensator" As/U(u;), for each fixed ωeΩ - or alternatively,
replacing Uσ(ω)(ω), Lτ(ω)(ω), ξ(ω) by their "compensated counterparts"
Us{ω) + Xs(ω), Lt(ω) + Xt(ω) and ξ(ω) + λχ(u>), respectively.

Let us introduce also the iP-stopping times

σn = min{teNniT/Xt = Ut}ΛT

(tχ 1 0 , mm{teNniT/lE(Xt+1\Tt) >Ut}ΛT
\ ' Λ

fn = mm{teWniT/Xt = Lt} Λ T
< Lt} ΛT
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(with the convention min0 = 00).

3.1 Theorem: For each fixed ωeίl and πeIVo,r,π < T, the deterministic
game of (3.10), (3.11) has saddle - point (σn(ω),τn(ω)), i.e.,

(3 13) Q(σn(ω),t;ω) < Q(σn(ω),τn(ω)',ω) = Xn(ω) + Xn(ω)

<Q(8,τn(»)\<*), V(S,t)β(W n,Γ) 2,

and thus its value Wn(ω) = Wn(ω) = W_n{ω) is given as

(314) Wn(<ω)=Xni<ω)+λn(α;)=Q(ά»(ω)>f»(ωy>ω)
= n{σn(ω),τn(ω)) + λάn(u>)Λfn(ω)(ω)

3.2 Theorem: For each fixed πe-ΪVo,τ> n <T the original stochastic game
of (2.3), (2.5) has saddle - point {σn,'τn)e(M0,τ)2, i.e.,

(3.15) E[π{σn,τ)\?n\ < E[π{σn,τn)\Γn] = Xn < E[R(σ,tn)\Γn]

for every (σ,τ)e(Mnfτ)2, and value Vn = Vn = V_n given by

(3.16) Vn = Xn = E[R.(σn,tn)\Fn] = E[Wn\Γn].

In particular, for the game of (2.6) which starts at n = 0, Theorem 3.2

gives (Vo = Zo =) Vo = E(W0) (= E(W0) = E(W0)), or equivalent^

inf sup lE[Uσl{σ<τ} + Lτl{τ<TiT<σ} + ξl{σ=τ=τ}] =
σeΰOtτ τeTOjT

(3.17) = E[ inf sup ((ϋ, + λ β ) l { s < t } + (Lt + λ t ) l { t < Γ j t < s }

where "infima" and "suprema" can be interchanged. In other words, the ran-
dom sequence (λ n ) of (3.9) is a non-adapted compensator which, when added
to the payoff structure of the original stochastic game as in (3.11), allows its
solution to be carried out pathwise, i.e., for each ωeΩ separately. At the same
time, this compensator enforces the non-anticipativity constraint inherent in
the stochastic game, in that it leads to a saddle - point (<3o(α;),fo(α;)) in
(3.13) such that both σo,fo are stopping times (recall (3.12)). Finally, the
value of the stochastic game is obtained by "averaging out" the value of the
pathwise game:

Vo = / W0(ω)F(dω).

Proof of Theorem 3.1: From (3.12) and (3.6), we obtain

(3.18) Aάn{ω) = An(ω), Bfn(ω) = Bn(ω)
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for every u eΩ; we shall use these facts repeatedly in what follows.
Let us take an arbitrary teJNniτ and s = σn(ω).

(i) If 5 = σn(ω) < £, we have from (3.18)

π(σn(ω),t) = Uάn{ω)(ω) = Xάn{ω)(ω)

= Xn(ω) + (M&n(ω)(ω)-Mn(ω))

+ (Aάn{ω){ω) - An{ω)) - (Bάn(ω)(ω) - Bn{ω))

= Xn(ω) + (Xn(ω) - Xάn{ω)(ω)) - (Bάn{ω)(ω) - Bn(ω))

< Xn(ω) + Xn(ω) - λ*n(α;)(u/)),

with equality if t = fn(ω).
(ii) If s = σ(ω) > t, we have:

π(σn(ω),t) = Lt(ω)l{t<τ} + ξ(ω)l{t=τ} < Xt(ω)

= Xn{ω) + Mt{ω) - Mn{ω) + At(ω) - An(ω) - Bt(ω) + Bn(ω)

= Xn(ω) + (Xn(ω) - Xt(ω)) - (5t(α;) - Bn(ω))

< Xn(ω) + Xn(ω) - Xt{ω)

with equality if t = fn(α;), again from (3.18).
In either case,
(3.19)

Q(σn(ω),t;ω) = Tl(σn(ω),t) + λ*n ( ω ) Λ t(u;) < Xn(α;) + λn(α;) Ί
for all ί€UVn)τ, with equality if ί = fn(α;) J '

A similar analysis yields
(3.20)

ί Q(s,fn(ω);ω) = Ίl{s,τn{ω)) + X8Afn(ω)(ω) > Xn{ω) + Xn(ω) Ί
]̂  for all selNniTi with equality if 5 = σn(ω) J '

and (3.19), (3.20) lead directly to (3.13) and to (3.14).

Proof of Theorem 3.2: Prom (3.9) and the optional sampling theorem,
we have JE^Tn) = 0, V peMn,τ- Now let s = σ(α ), t = τ{ω) in (3.20),
(3.19) for arbitrary stopping times σeSUiτ and τeTniτ, and take conditional
expectations with respect to Tn\ thanks to the above observations, we obtain
(3.15), which then leads directly to (3.16) in conjunction with (3.14).

4. The Infinite-Horizon Case (T = oo). We shall describe now,
briefly, how Theorems 3.1 and 3.2 can be extended to the infinite-horizon
case T = oo. We shall take here ξ = 0 (that is, if neither player ever
decides to stop the game, the amount paid is zero), so that the payoff of
(2.3) becomes

ft(σ,τ) = Uσl{σ<τy + L τl{ τ < O O ) T<σ}.
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In this case it is known (cf. Neveu (1975), pp. 139-144) that there is α unique
IF-adapted random sequence X = {Xn,ne2Vo}> which satisfies the equation
(2.8) and the double inequality

(4.1) Un<Xn< Ln (neJVo).

Here {Zn,neWo} and {—Un,nelN} are the smallest nonnegative supermar-
tingales that dominate the random sequences {L n, πeJVo} and {—{7n

respectively.
In particular, let us notice (with Neveu (1975)) that {lE(supk>n

neJVo} and {iE(sup f c > n U^\Fn),ne]NQ} are nonnegative supermartingales,
and that they dominafe the random sequences {L n, πelVo} and {—£/n, JN}
respectively. We deduce from (4.1) that

|^ n ) , -Xn < -Un <
k>n k>n

thus also

(4.2) -EUupUΓ \rn) <X<Xn < ίeN0.

To proceed with a minimum of technical fuss, let us impose from now
on the additional conditions

(4.3) ΠSnLn < 0 <

(4.4) E Σ(L«_i - -E(Ln|^n-i))+ < oo
n = l

(4.5) EΣiEφnpn-x) - J7n_!)+ < 00.
n = l

Prom (4.2) we have then

< inf flimϋsfsupLί FΛ) = inf(supLί) = ϊί

< inf f Km Έ (sup ί/Γ ^ n ) ) = inf (sup ί/Γ) = ϊϊ

and in conjunction with the assumption (4.3) these imply that

(4.6) the limit Xoo = limXn exists and equals ζ = 0, a.s.
n



124 Ioannis Karatzas

In other words, the terminal condition (2.7) is satisfied here as well

We can proceed now as in section 3, all the way up to the decomposi-

tion (3.8) which now holds for neJ/V0. The increasing, predictable random

sequences A = {An,neN0},B = {Bn,neN0} as in (3.6), (3.7) are now dom-

inated by the random variables AQO = limn | An and Boo = limn | Bn given

by

n = l n = l
oo oo

Boo = £ > » - ! " *7(Xn|^-l))+

n = l n = l

respectively, which are integrable, thanks to the assumptions (4.4), (4.5).
Therefore, A and B are uniformly integrable; but so is also Λ', as it is

bounded from above and from below by two uniformly integrable martin-
gales (recall (4.2) with ί = 0, as well as the assumption (2.2)). Thus, the
martingale

Mn = Xn - Xo + Bn - An

of the decomposition (3.8) is also uniformly integrable; in particular

Mn —• Moo = -Boo ~~ ^oo — Xθ) both a.s. and in JL1

n—*oo

(recall (4.6)), and Mn = JE^Mool^n) for nelNoy00.
We deduce from all this, that the non-adapted random sequence

λn = Moo - Mn (neJV0,oo)

is well-defined, by analogy with (3.9), and satisfies iBfλpl^] = 0, for every
peΛ4njOO by the optional sampling theorem. It is then straightforward, to
verify that Theorems 3.1, 3.2 are still valid in this case (T = oo), under the
additional assumptions (4-3) - (4-5).
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