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DE FINETTΓS THEOREM IN CONTINUOUS TIME
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Abstract.
This paper gives a simpler proof of theorems characterizing mixtures
of processes with stationary, independent increments, or mixtures of
continuous-time Markov chains.

1. Introduction. This paper gives a simpler proof of two theorems. The
first, due to Bϋhlmann (1963), characterizes mixtures of processes with sta-
tionary, independent increments. The second theorem, due to Freedman
(1963), characterizes mixtures of Markov chains in continuous time with
recurrent, stable states; stationarity conditions are eliminated, as are condi-
tions on the sample paths.

To state the first result, let / be the real line with the Borel σ-field, Ω
the set of functions from [0, oo) to J, and {Xt} the coordinate process on
Ω. Let T be the product σ-field in Ω and let V be a probability on T. Let
P G Π iff P is the law of a process with stationary, independent increments,
which starts from 0, and which is continuous in probability. In particular,
P is a probability on T. As is easily verified, Π is a standard Borel space.

THEOREM 1. V = Jn Pμ(dP) for some probability μ o n Π iff:
(i) V(X0 = 0) = 1, and

(ii) {Xt} is continuous in P-probability, and
(iii) for each h > 0, the 7̂ -law of {Xnh — X(n-i)h : n = 1,2,...} is exchange-

able.
The mixing measure μ is unique.

For the second result, let / be a countable set, which will be the state
space. Let Ω be the set of functions from [0, oo) to /. As before, {Xt}
is the coordinate process on Ω, T is the product σ-field in Ω, and V is a
probability on T. Fix io G /, which will be the starting state. Let P G Π iff
P is a standard stochastic semigroup on a subset Ip of /, with Ip a single
recurrent class of stable states and io G /p. Again, Π is a standard Borel
space. Let P{0 make {Xt} a Markov chain with stationary transitions P,
starting from io Thus, P{0 is a probability on T.

The theorem characterizes V which are mixtures of P G Π, using a
certain kind of symmetry (Freedman 1962, 1963; Diaconis and Freedman,
1980a). To state the condition, let σ and r be finite sequences of states in /.
Write σi for the ith element of σ; suppose σo = To = io Write σ ~ r iff σ
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and T exhibit the same number of transitions from i to j , for every pair of
states i,j € / . For instance,

1 2 1 3 2 - 1 3 2 1 2 but 1 2 3 / 1 3 2.

As is easily seen, if σ ~ r, the two sequences have the same length and end
at the same state. The symmetry condition is the following: say

"the P-law of {Xnh : n = 0,1,...} depends only on the transition counts"

iff σ ~ τ entails

V{Xnh = σn for n = 0,1,.. . ,N] = V{Xnh = rn for n = 0,1,. . . ,iV},

where N is the length of σ.

THEOREM 2. V = Ju Pioμ(dP) for some probability μ on Π iff:
(i) V(X0 = io) = 1, and

(ii) {Xt} has no fixed points of discontinuity, and
(iii) V{Xn = io for infinitely many integers n} = 1, and
(iv) for each h > 0, the P-law of {Xnh : n = 1,2,...} depends only on the

transition counts.
The mixing measure μ is unique.

Neither theorem requires smoothness conditions on sample paths. In
both theorems, necessity is obvious, and the uniqueness of μ follows from
corresponding results in discrete time. Sufficiency is proved by approxima-
tion through the binary rationale i?, and only h of the form l/2fc, k = 1,2,...
are needed in Theorem l(iii) or Theorem 2(iv).

The two proofs follow the program of Diaconis and Freedman (1981),
and are very similar. Theorem 1 is proved in section 2: it is shown that,
conditional on a certain remote σ-field, the process has stationary, indepen-
dent increments. Characterizations are also given for mixtures of Brown-
ian motions or Poisson processes; connections are made with the Laplace
transform—analogous to the connection between de Finetti's theorem for
coin tossing and the Hausdorff moment problem. Extensions could be made
to processes taking values in Euclidean space, or second-countable, locally
compact abelian groups; that will not be done here. The proof of Theorem 2
is somewhat more technical, and it is given in section 3. Possible general-
izations, and the connection with David Blackwell's work, are discussed in
section 4.

Markov chains are discussed in Chung (1967), also see Freedman (1983).
For surveys on de Finetti's theorem, see Aldous (1985) or Diaconis and
Freedman (1981); section 10 in the first reference has a nice discussion of
the present Theorem 1. Kallenberg (1973) has a weak convergence argument;
Kallenberg (1982) gives a martingale argument which is connected to ideas
of Ryll-Nardzewski (1957). For a proof via Choquet theory, see Accardi and
Lu (1993). These papers also have interesting extensions. Other work on de
Finetti's theorem will be referenced, below.
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2. The Proof of Theorem 1. The first lemma is easy, and the proof is
omitted.

LEMMA 2.1. Let μn, μ be probabilities in j-dimensional Euclidean space.
Suppose μn —> μ in the weak-star topology. Define the real-valued function
/ as the sum, /(a?i,...,JCj)=fl?H hXj. Then μnf~~ι -* μ/"1.

Next, a brief review of de Finetti's theorem for real-valued random
variables. Suppose that {ξn} are real-valued and exchangeable, on some
probability triple (Ω,^7,^). Let T be the tail σ-field of the ξ% and let
φn(ω) be the empirical distribution of the £i(ω),... ,£n(ω), assigning mass
1/n to each ξj(ω). Let Fω = limn-x^ 0n(u;), on the set G(ξ) where the
weak-star limit exists.

A fairly standard version of de Finetti's theorem asserts that G(ξ) is in
T, with V{G(ξ)} = 1; and the ξ's are conditionally independent given T,
with common distribution Fω. The next lemma states this more precisely,
and a little bit more. Indeed, let φj,n{u) be the empirical distribution of
the first n j-tuples of ξ, assigning mass 1/n to (ξ(u-ι)j+1(ω),... ,£^(0;))
for each v = 1,... ,n. Thus, φjin(u) is a (discrete) probability in Euclidean
j-space. Let Gj(ξ) be the set of ω G G(ξ) with φjin(u) —> i ^ 7 a s n - ^ o o ;
again, it is weak-star convergence that is at issue. Here, x is the cartesian
product; if F is a distribution function, Fxn is the n-fold product of F with
itself—a distribution in Euclidean π-space. Likewise, * denotes convolution,
so F*n is the n-fold convolution of F with itself—a distribution on the line.

LEMMA 2.2.

(i) Gj(ξ) e T and V{Gj(t)} = 1 for j = 1,2,... .
(ii) Given the tail σ-field T, a regular conditional P-distribution for the £'s

makes them independent with common distribution Fω.

REMARKS.

(i) For all ω G Gj(ξ), as n —• 00, the empirical distribution of the n sums

+ + ξj(ω),... ,ξni- iM + • • + ξnj(ω)

converges weak-star to

(ii) Let Goofc) = Π; Gi(O- Then Goo^) G T and 7>{Goo(ί)} = 1-
PROOF. The case j = 1 in the Lemma may be found in, e.g., (Diaconis

and Freedman, 1980b). The case j > 1 follows, or may be proved by similar
arguments. Remark (i) follows from Lemma 2.1, and (ii) is clear. 0

Recall that R is the binary rationale, while the probability V on T
makes the coordinate process {Xt} have exchangeable increments, in the
sense of Theorem 1. Let h = 1/2* for k = 0,1,
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LEMMA 2.3. Suppose {Xr : r G R} has stationary, independent increments.
For each fixed real t > 0, as r -» ί, Xr converges a.e.

PROOF. This is well known; the restriction of the time domain to a
countable set is critical. A relatively simple direct argument can be made
by considering for each s G R the martingale

E{ei8Xr}. 0

Let Th be the tail σ-field of {Xnh — X(n-i)h : n = 1,2,...}. Given T^,
the differences Xnh — X(n-i)h a r e independent with common distribution
Fhtu)' Lemma 2.4 states this more carefully.

LEMMA 2.4. There is a set Gh G Th with V(Gh) = 1, and for each ω e Gh

a distribution function FhiLJ, such that
(i) ω —> Fhiω is ^-measurable, and

(ii) a regular conditional P-distribution for the differences Xnh — X(n-i)h
given Th makes these differences independent with common distribution

Fh,ω, and

(iii) Gh C G2h for h < 1/2, and
(iv) ωeGh entails Fhj0J • Fh,ω = F2h,ω for h < 1/2.

PROOF. This is immediate from Lemma 2.2: let ξn = Xnh — X(n-i)hi
and let Gh be the Goo(£) in Remark (ii) after Lemma 2.2; the only j ' s of
interest are the powers of 2. 0

Clearly, Th increases as h j 0; let TQ be the σ-field spanned by U/i^λ
Let Go = f\ Gh. Then Go € Fo and V{G0) = 1. In view of Lemma 2.4(iv),

we can define Fj/2*,ω

 == {Fi/2k,ω)*3 > w ^ h n 0 ambiguity. Then Sω = {Frjω :
r G Λ} is a convolution semigroup for each ω G Go:

The martingale convergence theorem and Lemma 2.4 yield the following.
Given To, a regular conditional P-distribution for {Xr : r G R} makes
{Xr : r G R} have stationary, independent increments governed by Sω. Let
Q(ω,A) denote this regular conditional distribution. In particular, Q(α;, •)
can be viewed for each ω G Go as a probability on the σ-field in Ω spanned
by {Xr : r G R}. Recall that ^ is the σ-field Ω spanned by {Xt : t > 0}.

LEMMA 2.5. For each ω G Go, the probability Q(ω, •) can be extended to
all of T. Call this extension Q(ω, •). Then Q is an red for [Xt] given ̂ Ό?
relative to P.
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PROOF. Fix non-negative real times t\ < ί2 < - < ίfc and bounded
continuous functions /i, Λ,--.,/*- Let TJ —> fy through JR. The Q(ω,•)-
integral of

can by Lemma 2.3 be safely defined as

k

The rest of the extension argument is omitted. That Q is an red for {Xt}
given T{s follows from condition (ii) of the theorem. 0

Theorem 1 is more or less immediate from Lemma 2.5. Two special
cases may be worth noting.

1) Suppose that a version of {-Xt} has continuous sample paths, under
V. Then Ω can be taken as the set of continuous functions, Q(α;, •) can be
restricted to the set of functions on R with continuous extensions to [0, oo),
and Q(ω, •) can be restricted to the set of continuous functions on [0, oo). Of
course, a process with continuous sample paths and stationary, independent
increments is Brownian motion. In consequence, V must be a mixture of
Brownian motions with different scale and drift parameters.

2) Suppose that a version of {Xt} has sample paths which are step func-
tions, under V. By similar reasoning, V is a mixture of Poisson processes.
Implications are discussed in section 4.

3. The Proof of Theorem 2. Let {ξn : n = 0,1,...} be a discrete-
time process (not necessarily Markov), whose state space is a subset of the
countable set /. Let V{n be the number of visits to i E / up to time n, i.e.,
the number of indices m < n with £m = i. Similarly, Uijn is the number of
doublets ij up to time n, i.e., the number of indices m < n with ζm = i and
£m+l = j

CONDITION 3.1. Let {£n} be a discrete-time Markov chain with stationary
transitions P, starting from io; suppose that ξn returns to io infinitely often
with probability 1.

LEMMA 3.1. Condition 3.1 is in force. For each i € / , either
(i) yin = 0 a.e. for all n, or

(ii) vin -» oo a.e. as n -> oo, and Vijnjvin —> P(iJ) a.e. for all j G / .
Let Jo = {i : i G / and V{n —> oo a.e.}. Then P is a stochastic matrix on
h 3 «05 and /Q forms a single, recurrent class of states relative to P.
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LEMMA 3.2. Let P be a stochastic matrix on Jo; suppose Jo consists of one
recurrent class of states; and suppose that P(io,io) > 0 for some io € Jo-
Then Jo consists of one recurrent class of states for P2.

Proofs are omitted; Lemma 3.1 is well known, and 3.2 is routine. Next,
a review of de Finetti's theorem for discrete-time chains. As before, let
Iω = {i : i E I and uin(ω) -» oo}. Let Pω(i,j) = limn^ooiyijn(u)/uin(u)
when this limit exists. Let T be the tail σ-field of ξn. let G be the set of ω
such that, for all i E J, either

(i) Vin{ω) = 0 for all n, or

(ii) vin(ω) -» oo, and Vijn{w) / vin(ω) —> Pω(hj) as π —> oo for all j e J,

UM) = 1-
Plainly, G € T, P. is T-measurable, and {ω : j G J^} € T.

CONDITION 3.2. Let {ξn} be a discrete-time process on the probability
triple (Ω, T,V)j starting from io; suppose the law of {ξn} depends only on
the transition counts, as defined in section 1; and suppose that £n returns
to io infinitely often with probability 1.

LEMMA 3.3. Condition 3.2 entails V(G) = 1; furthermore, a regular con-
ditional P-distribution for {ξn} given T makes this process Markov with
stationary transitions Pω\ Iω is one recurrent class of states relative to Pω\
and io € Jw.

PROOF. The Lemma follows from Diaconis and Freedman (1980a) via
Lemma 3.1. φ

The next lemma demonstrates a kind of consistency among the regular
conditional distributions given the tail σ-fields for ξn : n = 0,1,2,... and for
2̂n : n = 0,1,2,.... In discrete time, the result may seem a bit artificial; its

utility will be apparent later. Let T2 be the tail σ-field of ^ n ! let V2,%n be Vin

applied to 2̂n> i e., the number of indices m = 0,1,. . . ,n — 1 with £2™ = i-
Define 1/2,1 jn? ^2? and P2^ in the analogous way. It is an irritating feature of
the situation that i/2,in Φ Vi(2n)- The condition for the next lemma is a bit
stronger than Condition 3.2, because recurrence at even times is required.

CONDITION 3.3. Let {ξn} be a discrete-time process on the probability
triple ( Ω j ^ P ) , starting from io; suppose the law of {ξn} depends only on
the transition counts, as defined in section 1; and suppose

^{^2n = io infinitely often } = 1.

LEMMA 3.4. Condition 3.3 implies that V{G2) = 1, and a regular conditional
7^-distribution for {̂ 2n} given T2 makes this process Markov with stationary
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transitions P2,ω; there is one recurrent class of states 72,u; and io £ h^ω-
Furthermore, I2,ω = Iω and Pi,ω = P% for almost all ω with Pω(io,io) > 0.

PROOF. The first assertion is just Lemma 3.3 applied to 2̂n- Plainly,
h,ω C /ω; if io has period 2, the inclusion may be strict—but that is pre-
cluded when Pω(io,io) > 0: see Lemma 3.2. Now, given T, ξ2n is Markov
with transitions P j ; but, given 72, this process is Markov with transitions
P2,α; Lemma 3.1 completes the argument. φ

Turn now to continuous time. Let V satisfy the conditions of Theorem 2.
Let h = 1/2* for some k = 0,1,... . Let Th be the tail σ-field of {Xnh - n =
0,1,...}. The proof of Lemma 3.5 is omitted as routine.

LEMMA 3.5. Th increases as h [ 0.

Let To be the σ-field spanned by (JΛ^Λ The program is to construct
a set Go G fo with V(Go) = 1, and for each ω € Go a standard stochastic
semigroup Ptiω with state space Iω such that
(i) io € Iω, and

(ii) Iω consists of one recurrent class of states relative to Ptiω, and
(iii) given ^Ό? a regular conditional 7^-distribution for {Xt} makes this pro-

cess Markov with stationary transitions PtiLJ starting from io

The next lemma proves the analogous—but easier—result for Th. and
{Xnh : n = 0,1,...}. Use the notation of Lemmas 3.1-3. Fix h = l/2fc. Let
Vhin be the number of indices m < n with Xmh = i\ similarly, Vhijn is the
number of m < n with Xmh = i and X(rn+i)h — j - Let Ih,ω be the set of i 6 /
with vhin{ω) -* oo as n -• oo. Let Ph^ihj) = limn_ooi//ιίin(α;)/ι//ιin(α;)
when this limit exists. Let Gh be the set of ω such that, for all i G /, either

(i) Vhin{u) = 0 for all n, or
(ii) uhin{ω) -> oo as n -> oo, and vhijn(ω)/vhin(ω) -> Ph,ω(hj) for all

We also require of α; G G^ that 7/^ consists of one recurrent class of states
relative to Ph,ω, and io € Ih,ω

LEMMA 3.6. Fix h = 1/2*.

(i) ω —> Ph α, is .^-measurable,
(ii) GΛ G ̂  and V(Gh) = 1.

(iii) Given ^ , a regular conditional P-distribution for {Xnh : n = 0,1,...}
makes this process Markov with stationary transitions Ph,ω starting
from io

PROOF. This is immediate from Lemma 3.3. 0

The next step is to make sure that the Ph fit together properly as
h = l/2fc varies; Lemma 3.7 is a preliminary.
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LEMMA 3.7.

(i) Pfc,.(io,io) -> 1 in P-probability as h -> 0.
(ii) PΛ,α,(io,io) -+ 1 f°Γ ^-almost all ω, as Λ -> 0 rapidly,

(iii) Ph,ω(io,io) > 0 for all h = 1/2*, for P-almost all ω.
PROOF. Of course,

as h —> 0 by conditions (i) and (ii) of the theorem. This proves (i); claim (ii)
is immediate, and then (iii) follows. φ

Let Gh be the set of ω € Gh Π G2h such that Ph,ω(io,io) > 0, /2h,ω =

LEMMA 3.8. Fix Λ = l/2 f c. Then Gh 6 ^λ and P(GΛ) = 1.

PROOF. Measurability follows from Lemmas 3.5-6; and the probability
assertion, from Lemmas 3.4 and 3.7(iii). 0

Let G = f)hGh Recall ^Ό is the σ-field spanned by (JΛ^Λ Plainly,
GeT0 and V(G) = 1.

LEMMA 3.9.

(i) For all ω e G and Λ = 1/2*, JΛ|(4, = Ji|(4,; abbreviate Iω = Ji>ω.
(ii) Suppose Hi and n2 are positive integers, and nχΛi = 722̂ 2- For all

PROOF, hi = l/2 f c l and Λ2 = 1/2*2; without loss of generality, sup-
pose fci > A;2. Then ni = Π22fcl""A:2 and

— pni/2 _ pni/4 __ _ p«2 Λ

In particular, for all ω € G, P / ^ extends to a stochastic semigroup
5^ = {Pr,ω

 : r € -R}, where i? consists of the non-negative binary rationale;
the matrices are all defined on the state space Iω 3 io Indeed, Pj/2*,ω

 ιs

well-defined as Pf/2* ω by Lemma 3.9; and the semi-group property follows:

LEMMA 3.10. Given T§, relative to V, an red for {Xr : r G i2} makes this
process Markov with stationary transitions S^ starting from io

PROOF. Use the martingale convergence theorem and Lemma 3.6. 0
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The next objective is extending Pφjω from R to [0, oo). Recall that {Xt}
is the coordinate process on Ω.

LEMMA 3.11. Fix t > 0; liπir-t Xr(ω) = Xt(ω) for 7^-almost all ω: as usual,
r is restricted to R.

PROOF. This follows from condition (ii) of the Theorem 2, by a standard
countable-additivity argument. Fix j G / and let A = {ω : Xt(<*0 = j}- Let

4 n = {ω e A : 3r G i? with |< - r| < 1/n and Xr(ω) φ j}.

In principle, the r in the definition of An may depend on ω. Of course,
Λn is monotone decreasing as n increases; suppose by way of contradiction
that V(An) > e > 0 for all π. There would then be a rapidly growing—but
deterministic—sequence g(n) of positive integers such that V(f)n Bn) > e/2,
where

Bn = {ω eA:3r eR with \t - r\ < 1/n

and order(r) < g(n) and Xτ{ω) φ j}.

(The "order" of r is the least integer k such that 2kr is an integer.) Let
now sm be the deterministic sequence which enumerates the binary ratio-
nals r with order(r) < g(n) and |ί — r\ < 1/n; here, r\ precedes r2 if
order(ri) < order(r2), or order(ri) = order(r2) and r\ < r<ι. Of course,
Sm -* * while V {X8rn ~h Xt) > e/2. This violates condition (ii) of the The-
orem, a contradiction which proves the Lemma; that R is countable is a
critical ingredient. 0

Lemma 3.12. For P-almost all ω €G,

(3.1) Pr,ω{hj) —• 1 as r —> 0 through R, for each j G Iω.

PROOF. Let Hά = {ω e G : j e Iω} and H^n = {ω e G : Pniω(ioJ) > 0},
so that Hj = \JnHjiU. lίV(Hj) = 0, there is nothing to prove; otherwise,
find an n with V(HjiTl) > 0. By Lemma 3.11, for P-almost all ω, given
Xn(ω) = j , Xr(ω) must equal j for all r G [n,n + e(α )). This remains true
conditional on JΓ0, and the Lemma follows. 0

We may assume that (3.1) holds for all ω G G.

LEMMA 3.13. Fix ω G G, restrict r to i? and i,j, fc to Iω. Claim (iii) holds
for all ί > 0; claim (iv) holds for all t, s > 0.

(i) Pr,ω0\ k) is uniformly continuous in r.
(ii) P.iLJ(j,k) extends to a continuous function on [0, oo).

(iii) Ptiω is a substochastic matrix on J^.

(iv) Ay
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PROOF. The argument is straightforward. To begin with, for r, s G R
and j , k G Iω,

Pr+8tω(j,k) =

Therefore,

The first term on the right is negative; the second is positive; each is in
absolute value bounded by 1 — Ps,ω{j,j)> Thus

Lemma 3.12 completes the proof of (i); the continuity is even uniform in k,
although that will not matter here. Claim (ii) immediate. Claims (iii) and
(iv) now follow via Fatou's lemma. φ

Fix ω G G. If i G Iω and j £ Iω, then Pr,ω(h j) = 0 for all r G R.
(See Lemma 3.6.) Setting Pt,ω{h j) = 0 gives the continuous extension to
t > 0. If i £ Jω, set Pt,ω(h j) = 0 for all t > 0 and j G /. Again, this gives
continuity.

LEMMA 3.14. Fix a sequence of times 0 = ίo < *i < h < * < tk and states

io,*i,*2,-- 5ijb e J. Let

A = {Xtm =im for m = 0,.. ., n} .

Let flGfo Then

(3.2) V(A Π ΰ ) = π«t , J —

.m=0

V(dω).

The integrand in (3.2) is 0 unless im G Iω for all m.

PROOF. Equation (3.2) holds for binary rational t by Lemma 3.10. Now
approximate real tm by binary rationale. The left side of (3.2) converges to
the correct limit by condition (ii) of the Theorem. The right side can be
handled by Lemma 3.13(ii) and dominated convergence. 0

We do not yet know that Ptiω is a standard stochastic semigroup, so
Lemma 3.14 is not the end of the road—but it is close. Recall from Lemma
3.12 that Hj = {α; G G : j G Iω] and HjiTl = {ω G G : Pn,w(io, j) > 0}.
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LEMMA 3.15. Fix t > 0 and j G /. For P-almost all ω G Hά,

PROOF. By Lemma 3.14,

(3.3) V(Xn=j)= I Pniω(ioJ)V(dω)

(3.4) V(Xn=j, Xn+t = k) = ί PnΛioJ)PtΛJ,k)V(dω).

We may suppose that V(Hj) > 0; now fix n so the left side of equation (3.3)
is positive. Sum equation (3.4) over k. Since Σk V(Xn = j , Xn+t = k) =
V(Xn = i), and Σk Pt,ω(j, k) < 1 with ^-probability 1 by Lemma 3.13(iii),
the Lemma follows. 0

In principle, the exceptional null set in Lemma 3.15 could depend on ί;
that difficulty is eliminated by the next result.

LEMMA 3.16. For ̂ -almost all ω € G, {P.,ω} is a standard stochastic
semigroup.

PROOF. Let B be the Borel σ-field in [0, oo). Plainly, (t,ω) -+ Ptiω(i,j)
is B x .Fo-naeasurable. Restrict ω to G. Let

Lω = {t: ΣPt,ω(iJ) = 1 for all i e Iω}.

Let Lω be the complement of Lω with respect to [0, oo). Of course, Lω and
Lω are Borel subsets of the line. By Lemma 3.15 and Fubini's theorem, for
^-almost all ω, Lω has Lebesgue measure 0. On the other hand, Lω is closed
under addition, by Lemma 3.13. Thus, Lω = [0, oo) for P-almost all ω. For
such ω, Pt,ω is a stochastic matrix for all t > 0; then the semigroup property
also follows from Lemma 3.13. 0

REMARK. Let Go = {ω : ω e G and LebesgueίXα,) = 0}. Then Go G J^o,

V(GQ) = 1, and P.jU, is a standard stochastic semigroup for each ω G Go-

As noted before, Iω 3 io and is a single recurrent class of stable states

relative to P#,ω. (See Lemma 3.6.) Lemmas 3.14-16 prove the next result,

which in turn gives the theorem.

Proposition 3.1. Relative to V, given T§, the process {Xt} is conditionally
Markov with stationary transitions PtiLJ.
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4. Discussion. We discuss some features of Theorem 2, then turn back
to Theorem 1. Loosely speaking, a state in a Markov chain is "instanta-
neous" if the process stays there for no proper interval of time. Thus, if j
is instantaneous and Xt = j , there must be binary rationale r converging
to t from the right with Xr —> oo; of course, there will also be r—and in
some sense many more of them—with Xr = j. David Blackwell (1958) gave
a beautiful example of a chain whose states were all instantaneous. Theo-
rem 2 excludes such cases, by assumption. If condition (ii) is replaced by a
continuity-in-probability assumption, the theorem may go through and cover
the instantaneous case. In particular, if {Pr} is a stochastic semigroup on
binary rational times, it is conceivable that P#(i,j) automatically extends
to a continuous function on [0, oo). This would be a good substitute for
Lemma 2.1. (That there may also be non-measurable extensions is one of
the charming complications.)

Turn back now to Theorem 1 for Poisson processes. As pointed out by
David Aldous and Persi Diaconis, there is an interesting connection with the
theory of the Laplace transform, analogous to the idea of using de Finetti's
theorem for coin tossing to solve the Hausdorff moment problem (Feller,
1971, p.228). Let L be a function on [0, oo). The question to be addressed is
this: when is there a probability μ on [0, oo) such that L(t) = /0°° e~xt μ{d\)Ί

Necessary conditions are that L(0) = 1 and L is CΌo while V < 0,
L" > 0, etc. According to Bernstein's theorem, these conditions are also suf-
ficient (Feller, 1971, p.439). For a probabilistic proof, we want to construct
a process {Xt} with exchangeable increments, whose sample functions are
counting functions, and L(t) = P(Xt = 0). This seems hard to do directly;
instead, we make a "completely exchangeable" process of trees To, TΊ, T2,... .
More specifically, Tn = {Xns}, where Xns = 0 or 1, and the node ns consists
of the non-negative integer n followed by a finite string s (perhaps empty)
of 0's and l's. These Tn are required to be exchangeable. Also, each Tn

splits into TnQ and Tn\\ the fragments Tio,Tn,T2o,T2i,... are required to
be exchangeable too. And so on.

We require that each variable be the maximum of the variables at the
two successor nodes, so Xns = Xnso V Xnsi Finally, we require that

(4.1) P{first j variables at level k are 0} = L(j/2k).

Here, the nodes are ordered lexicographically. For instance, the first three
nodes at level 0 are 0, 1, 2; the first six nodes at level 1 are 00, 01, 10, 11,
20, 21; and so forth. The nodes correspond to sub-intervals of [0,00); e.g.,
the node n corresponds to the interval [π,n + 1], the node πO to [n,n + | ] ,
the node nl to [n + | , n + 1], etc. The idea is that Xns = 0 iff there is no
dot in the corresponding interval for the counting process—which is yet to
be constructed.

What has to be checked is that (4.1)—and exchangeability—specifies
the joint distributions consistently down to level k\ then the Kolmogorov
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consistency theorem can be used to get the infinite tree. For example, why
does (4.1) give the full joint distribution at level 0? For instance,

= P{XX = ... = χN_x = 0} - P{X0 = = XN-X = 0}

= L(N - 1) - L(N)

by (4.1) with k = 0—and exchangeability; L(N-l) > L(N) because V < 0.
And so forth.

Why is (4.1) consistent for levels 0 and 1? Construct the level 1 variables

to be exchangeable and satisfy (4.1); then define the level 0 variables as

Xo = Xoo V -XΌi) Xi = ^io V Xii, Xi = -X20 V X215 —

Now check that the level 0 variables are exchangeable, and

P{Xo = = XN-I = 0} = P{Xoo = ^01 = = XN-I,O = XN-I,I = 0}

(The second equality follows from (4.1) with k = 1.)
Consider next the tail σ-field of the tree. Clearly, Tn is a 1-1 function of

(Tn 0,Tni). So the tail σ-field of {Tn} equals the tail σ-field of {Tnβ}, where
us is lexicographically ordered, along any fixed level k. (The ns at level k
consists of strings of length k + 1 , beginning with a non-negative integer and
continuing with 0's and l's.)

Condition on the tail σ-field Σ of {Tn}. Given Σ, we have at level k
a set of iid 0-1 variables Xn8; each is 0 with conditional probability pk,ω

1 Ink.

Clearly, pkyLϋ = vk+iiU>, and then pk,ω = po[ω . If pOiω = 0 then pk)UJ = 0

for all k. In this case, let \ω = 00. On the other hand, if po,u> > 0, let
λ^ = - logpo,α;5 so pktLJ = exp(λω/2k) and 0 < Xω < 00. Of course, given Σ,
the relationship of nodes in level k to their children at level k + 1 remains
as it was: Xns = Xn8θ V Xnsι.

In effect, then, we have a version of de Finetti's theorem for our trees.
As a consequence, for j > 1,

L(j/2k) = P{first j variables at level k are 0}

exp(-\ωj/2k)P(dω).-L/λ<oo

On {λ = 00}, all variables are 1 and L = 0. Thus, for t > 0,

L(t) = ί ,
Jλ«x>
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Let t I 0 to see that P(λ < oo) = L(0+) = 1. This completes the proof of
the sufficiency part of Bernstein's theorem, using the version of de Finetti's
theorem for trees that was sketched above—but not Theorems 1 or 2.

These ideas go back to Choquet (1953-54); also see Kendall (1974) and
Matheron (1975). For a derivation through the Martin boundary, see Watan-
abe (1960). For connections with point processes, see Kurtz (1974), Matthes,
Kerstan and Mecke (1978), or Kallenberg (1986, chapter 9). There are ref-
erences below to a number of other works on exchangeability; some discuss
current research, others provide useful reviews; also listed are some papers
that initiated major lines of activity.
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