
Statistics, Probability and Game Theory
IMS Lecture Notes - Monograph Series (1996) Volume 30

ON MEASURABILITY AND REPRESENTATION
OF STRATEGIC MEASURES

IN MARKOV DECISION PROCESSES

EUGENE A. FEINBERG
State University of New York at Stony Brook

Abstract.
This paper deals with a discrete time Markov Decision Process with Borel
state and action spaces. We show that the set of all strategic measures
generated by randomized stationary policies is Borel. Combined with
known results, this fact implies measurability of the sets of strategic mea-
sures generated by stationary, Markov, and randomized Markov policies.
We consider applications of these measurability results to two groups of
problems: (i) measurability of value functions for various classes of poli-
cies and (ii) integral representation of strategic measures for randomized
Markov and arbitrary randomized policies through strategic measures
for corresponding nonrandomized policies.

1. Introduction. The foundations of dynamic programming for prob-
lems with uncountable state spaces were built by David Blackwell (1965,
1965a) and his student Ralph Strauch (1966). For the past thirty years,
these pioneering results have been developed in various directions such as:
(i) problems with more general measurability conditions (Blackwell, Orkin,
Freedman 1974, Freedman 1974, Bertsekas and Shreve 1978, Schal and Sud-
derth 1987, (ii) problems with more general summation assumptions than
positive, negative, and discounted dynamic programming problems (Hin-
derer 1970, Dynkin and Yushkevich 1979, Schal 1983, Feinberg 1982, 1982a,
1992, Schal and Sudderth 1987), (iii) dynamic programming on compact sets
(Schal 1975, Balder 1989 ). The previous sentence represents just a small
part of research directions and publications stimulated by research of David
Blackwell on dynamic programming.

One of the remarkable discoveries in these pioneering papers by Black-
well (1965, 1965a) and Strauch (1966) was that value functions may not be
measurable in a standard Borel sense, but they are measurable in a more
general sense, namely they are universally measurable. More precisely, if the
objective is to maximize the expected total rewards, the value function is
upper semianalytic and therefore it is universally measurable. This discov-
ery established connections between dynamic programming and the theory
of analytic sets (Lusin 1927, Kuratowski 1966), an area of pure mathematics
developed in the first part of twentieth century, and stimulated additional
research in the fields of topology, set theory, and analysis, including new
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developments related to selection theorems; Wagner (1977). It also allowed
Blackwell, Strauch, and future researchers to write optimality operators and
optimality equations for dynamic programming problems with uncountable
state spaces and to analyze these equations.

Dynamic programming models are a particular case of Markov Decision
Processes (MDPs) when the criterion is an expected total reward; see Put-
erman (1994) and references therein for various models of MDPs and related
problems. All natural criteria, including expected total rewards, expected
rewards per unit time, the Dubins-Savage criterion, and their measurable
combinations, belong to the class of measurable criteria introduced in Fein-
berg (1982a). The measurability property of value functions described in
the previous paragraph holds for any measurable criterion in an MDP with
Borel state and action spaces; Feinberg (1982a). In fact, it follows directly
from the Borel measurability of the set of all strategic measures; Dynkin
and Yushkevich (1979), sections 3.5, 3.6, and 5.5. We recall that any ini-
tial distribution and any policy define a probability measure on the set of
trajectories. This measure is called strategic.

Dubins and Savage (1965) introduced gambling models which are close
relatives of MDPs; see the papers by Blackwell (1976) and Schal (1989) on
the relationship between gambling models and MDPs. The first fundamental
contributions to the theory of Borel gambling models were by Strauch (1967)
and Sudderth (1969). In particular, Sudderth (1969, Theorem 1 on p. 403)
proved the measurability of the set of strategic measures for Borel gambling
problems. Theorems 1, 2, and 4(b) in Blackwell (1976) imply the similar
result for MDPs where it means the measurability of the set of all strategic
measures generated by nonrandomized policies.

In this paper, we show that the set of all strategic measures generated
by randomized stationary policies is measurable. This result and measur-
ability of the sets of all strategic measures (Dynkin and Yushkevich 1979)
and of all strategic measures generated by nonrandomized policies (Sudderth
1969, Blackwell 1976) imply measurability of the sets of strategic measures
generated by the following classes of policies: (nonrandomized) stationary,
Markov, and randomized Markov. These results imply that value functions
of these classes of policies are upper semianalytic and therefore they are uni-
versally measurable. These results also allow us to write representation of
randomized Markov and general randomized policies through nonrandom-
ized ones in a simpler form than has been known before; see Gikhman and
Skorokhod (1979), Feinberg (1982, 1982a), and Kadelka (1983).

This paper is organized in the following way. Section 2 introduces major
definitions. Section 3 describes the measurability of various sets of strategic
measures. Sections 4 and 5 deal with two different applications of the results
of Section 3. We describe the results related to measurability of value func-
tions in Section 4. Section 5 deals with the representation of randomized
strategic measures through nonrandomized ones.
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2. Definitions. We consider a standard discrete time MDP with Borel
state and action spaces with the following elements:

(i) The state space X is a standard Borel space (i.e. a nonempty Borel
subset of some Polish space endowed with the σ-field of Borel subsets of X).

(ii) The action space A is also a standard Borel space.
(iii) The mapping D which assigns to each x E X the set of available

actions D(x) which is a nonempty measurable subset of A. It is assumed
that the set

graph D = {(z, α); x E X, α E D(x)}

is a measurable subset of X x A and contains the graph of a measurable
map of X into A. (Throughout the paper "measurable" means "Borel mea-
surable").

(iv) The law of motion (or transition probabilities) p which is a measur-
able stochastic kernel on X given X x A; that is p( |a;,α) is a probability
measure on the σ-field of Borel subsets of X and p(2?| , •) is a measurable
function on X x A for each B C X.

(v) The reward criterion w which will be defined later.

The history spaces are defined as Hn = X x (X x A)n, n = 0,1,2,..., oo.
On each set Hn a Borel σ-fϊeld generated as a product of Borel σ-fields on
X and A is denoted. As usual, a general (randomized) policy π = {πn}
is defined as a sequence of transition probabilities from Hn to A such that
πn(D(xn)\xoao ... xn) = 1 for each xo^o #n € ifn, n = 0,1,2, A non-
randomized policy φ = {φn} is defined as a sequence of measurable functions
from Hn to A such that φn(xoa>o #n) € D{xn) for each xo^o - #π € #n>
n = 0,1,2,— A randomized Markov policy is defined as a sequence of
transition probabilities from I to A such that πn(D(x)\x) = 1 for each
x e X, n = 0,1,2, A Markov policy is defined as a sequence φ = {φn}
of measurable functions from X to A such that φn(x) € D(x) for each
x E X, n = 0,1,2, — If decisions depend just on current states, a policy
is called randomized stationary. A randomized stationary policy is defined
by a transition probability π from X to A such that π(D(x)\x) = 1, x G X.
And a stationary policy is a measurable function φ from X to A such that
0(a?) E D(x).

We denote by ΛΠ, Π, RM, M, JSS, and by S the set of all, nonrandom-
ized, randomized Markov, Markov, randomized stationary, and stationary
policies respectively. Obviously, RS C RM C ϋΠ, 5 C M C Π, and
F C RF, where F = 5, M, or Π.

For any standard Borel space E we use the following notations:
B(E) — the σ-field of Borel subsets of E;
V(E) — the set of probability measures on (E,B(E))\
M(E) — the minimal σ-field on V(E) such that for any A! E B(E)

the function μ —> μ{A') is measurable. If E is a standard Borel space then
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(P(E), M{E)) is a standard Borel space too; f.i. see Dynkin and Yushkevich
(1979), Appendix 5.

By the Ionescu Tulcea theorem (Neveu 1965), each policy π and ini-
tial distribution μ G V(X) define a probability measure P£ on the space

^ d x n d a n ...)

= μ(dx0) J|(πi(dαi|rroαoxiαi. ..Xi)p(dxi+ι\xi,ai)).
ΐ=o

We denote by E£ the mathematical expectation with respect to this measure.
If μ(x) = 1 for some x € X we will write P£ and EJ instead of P£ and Wμ.

For Δ C RU we define the set L Δ = {P£; μ G V(X), π G Δ } of strategic
measures generated by Δ. Then L = LRU is the set of all strategic measures.
If one considers a σ-field C on L induced by σ-field Λί(i?oo) then (L, C) is
a Borel space (Dynkin and Yushkevich 1979, Section 5.5), i.e. L G M^HQO).

It is also known that Ln € M(iϊoo); see Blackwell (1976) and, for gambling
problems, Sudderth (1969).

We consider a general situation when a criterion w is an arbitrary func-
tion on L. In other words, a numerical function w : L —+ [—oo; oo] is called
a criterion. We define w7Γ(x) = u/(P£).

Let Δ be a subset of ϋΠ. We define a value of Δ by

= supwπ(x).
Δ

We also define s(x) = ^s(x), s#(a;) = Vβ5(x), and υ(x) =
Following Feinberg (1982a) we say that a criterion w is called measur-

able if the function iι (P) is measurable on L. As was observed in Feinberg
(1982a), if w is a measurable criterion, then υ(x) is upper semianalytic and
therefore it is universally measurable function on X.

In fact every natural criterion for a Borel MDP is measurable. In con-
clusion of this section, we provide examples of measurable criteria.

Let g be a measurable function on HOQ. Then any expected utility
criterion, defined by

wπ(μ) = E£5(zoαo£iαi - - -)

is measurable. In order to provide the correctness of integration, we agree
everywhere in the paper that (—oo) + (+oo) = —oo. In particular, one can
consider measurable functions r, i?, and u on X x A and define

limsup— y . R(χn,o n) + limsupti(a;n,αn).
N^°° N n=0 n^°°
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When R = u = 0 we have a dynamic programming problem in a broader
sense than it is usually considered in the literature, when r = u = 0 we have
a version of an average reward criterion, and when r = R = 0 we have the
Dubins-Savage criterion for gambling problems. If lim sup is replaced with
lim inf in some of three summands in (2.2), we get different versions of these
criteria.

We say that the General Convergence Condition holds if

n=0

for all x G X and for all π G Π. If the General Convergence Condition holds
then the criterion

w*(x) - Eζ
t=0

is well-defined for any initial state x and any policy π. Problems satisfying
the General Convergence Condition are more general than positive program-
ming (r is nonnegative and (2.3) holds for r+ = r, Blackwell 1965a), negative
programming (r is nonpositive, Strauch 1966), and discounted programming
(r is bounded and the system moves at each step to an absorbent state with
a given fixed positive probability and the one-step reward in this absorbent
state is 0, Blackwell 1965).

For discounted dynamic programming problems, one can also write

.) = ^ βnr(xn, α n),
n=0

where β G [0,1[. In a more general situation,

K oo

fe=ln=0

where if is a positive integer, r* are bounded above measurable functions
on X x A, and βk G [0,1[, we get weighted discounted criteria; see Feinberg
and Shwartz (1994).

Examples of measurable criteria, which are not expected utility criteria,
are an average reward per unit time criterion

N-l

wπ(μ) = Ijmhif — E£ 2 ^ r(xn,an)
"~*°° n=0

and its lim sup version; see Derman (1970), Feinberg and Park (1994) and
references therein. We also notice that a measurable function of a sev-
eral measurable criteria is a measurable criterion. It is true, for example,
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for a sum of a finite number of measurable criteria and other operations
such as maximum and minimum; see examples of particular criteria in Fein-
berg (1982a), Krass, Filar, and Sinha (1992), Filar and Vrieze (1992), and
Fernandez-Gaucherand, Ghosh, and Marcus (1994).

3. Measurability of Sets of Strategic Measures. The goal of
this section is to show measurability of the sets LSR, I>S, LMR<> and LM in
addition to the known results that the sets L and Lπ are measurable. Our
central result is that the set LRS is measurable. Measurability of L5, LMR,
and LM follows from this result and from measurability of Lπ

For anyP G L we define a probability measure Q{ \P) on (X x A, B(X x
A)) and a probability measure v(-\P) on (X, B(X)):

Q(E\P) = f;2"("+ 1)p{( a ; n )α n) G E},
n=0

v{E'\P) = Q(E' x A\P),

where E e B(X x A), E1 G B(X).
Since the map P —> P{{xn,a>n) £ E} is measurable for each n =

0,1,... and E G B(X x A) then Q is a measurable map from (L,B(L))
to (P(X x AJjΛίί-X' x A)). Hence v is a measurable map from (L,B(L)) to
(P(X),.MpO). By Proposition 7.27 in Bertsekas and Shreve (1978), there
exists a measurable map g( |P, x) : from (L x X, B(L x X)) to (P(A), M(A))
such that

x D\P) = I q{D\P,x)v{dx\P) (3.1)

E

for any i? G B(X) and any D G B(A). We fix some measurable map q :
(L x X,B(L x X)) -> ( P ( A ) , J M ( A ) ) satisfying (3.1).

For any measure P = PJ G L we define a measure JP(P) on (-Boo?

( 3 2 )

Note that P -> P( ) is a measurable map from (L,#(L)) to (V(X),
Λί(X)), and q('\P,x) is a measurable map from v(L x X,B(L x X)), and
j?( |#,α) is a measurable map from (X x A,B(X x A)) to pΓ,2?(X)). By
the Ionescu Tulcea theorem (Neveu 1965), F(P) is a measurable map from

to (7>(tf00),

Lemma 3.1. X Λ S = {P € L : P = F(P)}.

Proof. First we show that P = F(P) for all P G LΛS Fix P G
Then P = P£ for some μ G T^X), σ G RS. Consider marginal distributions
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Pn(X',A') = P{xn G X',αn G A'}, P^(X') = P{xn G X',αn G A}. Then
Pn(dxdα) = Pi{dx)σ{dα\x) and

?n(dxda)
n=0
oo

— V^ 9~(n+1)P1f//τW/V/ϊl'rΛ — u(ήΊ*\P\fτ(i1n\^\
• nil Ύ £ ^ i \Jb*Mj IC/ I vvCv IJU I ^^~ »^ I xJb Ju I A J CΛ I tviX I«// I

/ -j lh\ / V 1 / V I / V 1 /

n=0

So for any A' € # (A)

i.e. q(A'\P, xn) = σ(A'|rz;n) ( P - a.s.) for any n = 0 , 1 , 2 , . . . .
To prove P ( P ) = P it is sufficient to prove that

F(P)(dxodαo . . . dxn) = P{dxodαx... dxn) (3.4)

for each n = 0,1,2,... . For n = 0 we have from (3.2) that F(P)(dx0) =
P(dx0). Let (3.4) be fulfilled for some n = 0,1,... . Then

P(dxodαo . . . dxndαn) = P(dxodαo . . . dxn)σ(dαn\xn) = (3.5)

αo . . . dxn) - q(dαn\P, xn) = F(P)(dxodαo . . . dxndαn)

(the first and the last equations follow from (2.1) and (3.2); the second
equation follows from the induction hypothesis and (3.3)). And

P(dxodαo . . . dxn+ι) = P(dxodαo . . . dαn)p(dxn+ι\αn) =

F(P)(dxodαo . . . dαn) p(dxn+1\αn) = F(P)(dxodαo . . .

(the first and last equations follow from (2.1) and (3.2); the second equation
follows from (3.5)). So (3.4) is proved for any n.

Now we prove that if P = F(P) then P e L Λ 5 . Let P = F(P) and
P = PJ. Then by (2.1) and by (3.2)

πnidαnlxoαox^x ...xn) = q(dαn\P,xn) (P - a.s.)

for any n = 0 , 1 , 2 , —

For n = 0,1,2,... we consider the sets

Hn(P) = {hn G Hn; πn(A'\hn) φ q(A'\P,xn), hn = xoαQxλ... xn).

T h e n P(Hn(P)) = 0 for any n = 0 , 1 , 2 , . . . .



36 Eugene A. Feinberg

We fix some σf G RS and define

(\h U I
σ{'{>ln) \ σ'(-\xn), if hn € Hn(P),

where n = 0,1,2,..., hn =
#n) = 0"M#π) (P —a.s.) for any n = 0,1,2,

Consequently, P = P£ = P£, where σ G i?5. •

Theorem 3.2. (i) L G
(ii) Lu G

(in) LRM G
(iv) L M 6
(v) L Λ 5 G

(vi) L 5

Proof, (i) See sections 3.5, 3.6, and 5.5 in Dynkin and Yushkevich
(1979). (ii) This fact was proved by Blackwell (1976, Theorems 1, 2, and
4(b)). Similar results were established for Borel gambling problems by Sud-
derth (1969) and for analytic gambling problems by Dellacherie (1985). We
remark that, since the derived model defined in Blackwell (1976) has the
state space Ax X and its transition probabilities do not depend on the first
component α, Blackwell (1976) proved in fact that V(A) x Lu G M(AxHoo).
This fact implies (ii). (v) By Lemma 3.1 LRS = {P G L : P = F(P)}. Let
I(P) = P. Since L G ,M(i2oo) and / and F are (Borel) measurable maps,
then LRS is measurable, (iii) We expand the state space X to X x N, where
N = {0,1,...}. This is a standard construction which transforms the sets
of Markov and randomized Markov policies respectively into the sets of sta-
tionary and randomized stationary policies in a new model; see Feinberg and
Sonin (1985) or Feinberg and Shwartz (1994). Let #<*> = (X x N x A)°° be
the set of trajectories in a new model. We slightly abuse the notations and
write ffoo = X°° xA° °x N°° = H^ x N. Let LRS be the set of strategic
measures in the new model. By (iii) LRS = M(Hoo) = Λ4(lϊoo) x ΛΊ(N°°).
Then LRS = LRM X {#(0), 5(1),...,}, where δ(i) is a probability distribution
on N concentrated at i. Therefore (iii) is proved, (iv, vi) LM = LRM^LJJ G
Λί(Jϊoo) and Ls = LRS ΠLue Mf.H^). •

Remark 3.3. Our proof of LRS G M(HOO) is based on Lemma 3.1.
Ashok Maitra and Bill Sudderth pointed out to the author an alternative
proof of this fact which is based on Lemma 2.2 in Maitra, Purves, and
Sudderth (1990), according to which for any P G V(Hoo) it is possible to
fix versions P[#o], P[rrotto]) P[xodoXi],... of the conditional distributions
of αo given #i, x\ given (a?oαo)> o>i given (#oαo£i)> •••> respectively, that
are jointly measurable in P and in conditioning variables. Then LRS is a
collection of all P such that

P[P[xo](D(xo)) = 1, P[xoao] = p ( |*o,αo), P[XOOQXI](D(XI)) = 1,...] = 1
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and P[P[xodo ... xn] = ί^n]? n = 1,2...] = 1. The measurability of LRS
can be established by using Corollary 1 on p. 403 in Sudderth (1969).

4. Measurability of Value Functions. A function g : X x [—oo, oo]
is called upper semianalytic if the set {x G X : g(x) > c} is analytic for
each c. If all these sets are universally measurable, the function is called
universally measurable; see Bertsekas and Shreve (1978) and Dynkin and
Yushkevich (1979) for details.

It is well-known that v is upper semianalytic for dynamic programming
problems; Strauch (1966). This follows from Theorem 3.2 (i); see Dynkin
and Yushkevich (1979). The similar proof holds for an arbitrary measurable
criterion; Feinberg (1982a). In this section, we show that Theorem 3.1 im-
plies that vπ, VRMJ VM, SR, and s are upper semianalytic functions. For
gambling problems, the result for υu was established by Sudderth (1969).

Lemma 4.1 Let E G M(Hoo) and for each x € X there exist a policy
π such that P£ £ E. Then the function g(x) = sup^π: P J 6 # } v(P£) is upper
semianalytic.

Proof. Consider the sets L(x) = {P G L : P{xo = x} = 1}, where
x G X, L° = U L(x), E{x) = L(x) Π E, and E° = L°Π E. By Dynkin and

xex
Yushkevich 1979, Sections 3.5, 3.6, and 5.5, the sets L(x),x G X, and L° are
measurable. Therefore the sets E(x),x G X, and E° are measurable too.

Consider a map k : LΌ -> X, k(P) = x if P G L°(x). By Dynkin and
Yushkevich 1979, Section 5.5, A; is a measurable map from (LQ,B(LO)) onto
(X, B(X)). We consider a map I : E° —> X which is equal to k when the
argument is from E°, l(P) = k(P) for P G E°. Since E° G B(L°), the map
/ is measurable. Since

g{x) = sup{tι/(P); P G Γ 1 ^ ) } , a; G X,

the function g(x) is upper semianalytic; see Theorem B from Chapter 3 in
Dynkin and Yushkevich (1979) or Proposition 7.47 in Bertsekas and Shreve
(1979). •

We remark that the proof of Lemma 4.1 is similar to the proof that v
is upper semianalytic in Dynkin and Yushkevich (1979). Theorem 3.2 and
Lemma 4.1 imply the following result.

Theorem 4.2. If w is a measurable criterion than each of the value
functions v, vπ> VRM, % , SR, and s is upper semianalytic and therefore
universally measurable.

Until the end of this section, consider a dynamic programming problem
(or an MDP with the expected total rewards). For a universally measurable
function g on X, we define an optimality operator

Tg(x)= sup Tαg{x\
α£D(x)
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where for x G X and a E D(x)

Tag(x)=r(x,a) + / g(y)p(dy\xJa).
Jx

In view of Theorem 4.2, Tg is defined for g G {v, Ί>Π,
If the General Convergence Condition holds then the optimality equa-

tion υ = Tv holds; see f.i. Dynkin and Yushkevich (1979). Under this
condition 5 = SR ( Feinberg 1992) and VM = v under even weaker condi-
tions (Feinberg 1982, 1982a). However, it is possible that v φ s for negative
dynamic programming (Strauch 1966) which is a particular case of dynamic
programming problems satisfying the General Convergence Condition. Un-
der the General Convergence Condition, Feinberg and Sonin (1983) proved
that s = Ts when the state space X is countable. It is easy to see that
Ts > s when X is Borel. Indeed, wφ(x) = Tφ^wφ{x) for any station-
ary policy φj where φ(x) is an action that stationary policy φ prescribes
at state x. Therefore Ts(x) = s u p α 6 D ( x ) T

αs(z) > snpφ£S Tφ^wφ(x) =
s\xpπeSw

φ(x) = s(x). If X is Borel, the validity of s = Ts is an open
question, because it is not clear why s >Ts. For the countable state space
case, the proof in Feinberg and Sonin (1983) used the existence of uniformly
nearly optimal stationary policies proved in that paper. The example by
Blackwell and Ramakrishnan (1988) demonstrates that this fact does not
hold for Borel state problems even for universally measurable policies. The
question whether there exist (a.s.) uniformly nearly optimal policies within
the class of stationary policies is open for Borel state dynamic program-
ming problems satisfying the General Convergence Conditions. In Schal and
Sudderth (1987) the existence of stationary uniformly (a.s) uniformly nearly
optimal policies was proved for some classes of Borel models for which s = v.

5. Representation of Strategic Measures. In this section, we
give a new formulation of the following results: (i) any strategic measure
can be represented as a mixture (integral convex combination) of strategic
measures from Lπ; (i) any strategic measure from LRM can be represented
as a mixture of strategic measures from L M

Each nonrandomized policy is defined by a measurable map φ from
H = U£L0(X x A)n x X to A such that φ(xoao ...xn) € D(xn) for each
(xoαo Xn) € H. Let (Ω, B(Ω)) be a Borel space. We consider a measurable
map φ of (Ω,H) to A such that for a given ω each map φ(ω, •) defines a
nonrandomized policy which we denote by φ[ω].

Similarly, each Markov policy is defined by a measurable map φ from
X x N to A such that φ(xn,n) G D(xn). We consider a measurable map φ
of (Ω,X x N) to A such that φ(ω,x,n) e D(xn) for all ω G Ω,, x e X, and
n G N. If we fix some α;, the map φ(ω, , •) defines a Markov policy which
we denote by φ[ώ\. By the Ionescu Tulcea theorem (Neveu 1965), given an
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initial distribution μ, ω —> Pμ ω* are measurable maps from Ω to MiHoo) in
the both cases of Markov and arbitrary policies.

Let E be a Borel set and v be a probability measure on (V(E), M(E)).
We write 77= / jw(dp) if τ/(C) = / p(C)v(dp) for each C € #(£). Also,

let m be a probability measure on a Borel set Ω and let / be a measurable
map of Ω to (V(E),M(E)). Then we write η = J l(ω)m(dω) if η{C) =

Ω

J l(ω)(C)m(dω) for any measurable subset C of E.
Ω

Theorem 5.1. (Feinberg 1982, Theorem 1). Let an initial distribution
μ be fixed. There exists a Borel space Ω and a probability measure m on
(Ω, B(Ω)) with the following properties:

(i) For any policy π there exists a measurable map φ : (Ω x H) —> A
such that φ(ω, xo, αo,..., xn) € D(xn) for all (ω, xodo ... xn) € (Ω x H) and

Pμ = / PJ^ra(du;); (5.1)

Ω

(ii) For any randomized Markov policy π there exists a measurable map
φ : (Ω x X x N) -> A such that φ(ω,x,n) G D(x) for all (ω,x,n) G
(Ω x X x N) and (5.1) holds.

The method of using an auxiliary space (Ω, /3(Ω), m) was introduced by
Aumann (1964) for games. A version of Theorem 5.1 can be found in Sec-
tion 1.2 of Gikhman and Skorokhod (1979). Feinberg (1982) used Theorem
5.1(ii) to prove that, given an initial distribution, for any policy there exists
a Markov policy with the same or better expected total rewards. A question
on the existence of such a policy was formulated by Strauch (1966) for pos-
itive programming. Feinberg (1982a) studied applications of Theorem 5.1
to various criteria. Kadelka (1983) announced a result similar to Theorem
5.1. Feinberg (1991) described a sufficient condition (Strong Non-Repeating
Condition) that a result similar to Theorem 5.1 holds for a class of policies.
In view of Feinberg (1991), M and Π are particular classes of policies for
which that condition holds.

For a countable state problem, the measure can be introduced directly
on the sets of Markov and nonrandomized policies by using Kolmogorov's
theorem. In this case there is no need to consider an auxiliary space. For
countable state MDPs, Krylov (1965) proved the result similar to Theorem
5.1(i) and Feinberg (1986) proved such result for arbitrary classes strategies
satisfying the so-called Non-Repeating Condition. Hill and Pestien (1987)
applied a statement similar to Theorem 5.1 to a countable gambling problem
and Sonin (1991) applied it to a finite state gambling problem.

Theorem 3.2 (ii, iv) allows us to formulate a more natural version of
Theorem 5.1, in which we do not have to introduce an auxiliary space Ω.
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Theorem 5.2. Let an initial distribution μ be fixed. For any policy π
there exists a probability measure v on Lπ such that

P £ = ( Pv(dP). (5.2)

Ln

Ifπ is a Markov policy then v can be chosen in a way that U(LM) = 1.
Proof. Consider the auxiliary space (Ω,/3(Ω),ra) introduced in Theo-

rem 5.1. Since the set Lπ is measurable, the measurable map Ω —• P*' w ' ,
considered in Theorem 5.1(i), induces a probability measure u on Lu- There-
fore, (5.1) implies (5.2). If π is a randomized Markov policy then the proof
is the same, but we follow Theorem 5.2(ii) and consider a measurable map
ω —> P^ωJ from Ω to LM which satisfies (5.1). •

For μ e V(X) we denote L(μ) = {P e L : P = P£ for some π G RU}.
This set is measurable; Dynkin and Yushkevich (1979). We remark that, for
an arbitrary policy, the measure v from (5.2) is concentrated on L Π Π L(μ).
If π is randomized Markov and v satisfies (5.2) and is concentrated on LM
then v is concentrated on LM Π L(μ).

A natural question is whether a measure v that satisfies (5.2) is unique.
The following example gives a negative answer to this question.

Example 5.3. Let X = {0,1,2,3}, A = {1,2}, D(0) = D(3) = {1},
and JD(1) = D(2) = A. Let also p(i|0,1) = .5, p(3|i,j) = p(3|3,1) = 1, i,j =
1,2, with other probabilities equal zero. Let XQ = 0. The process always
moves from 0 to either 1 or 2 with probabilities .5 and then it moves to 3
which is an absorbing state. We consider a randomized Markov policy π such
that τri(i|j) = .5, i, j = 1,2, and four Markov policies φ[ij] with 0[i?]i(l) = i
and # j ] i ( 2 ) = j . Then PJ = .5P£ [ 1 1 ] + .5P# [ 2 2 ) = .5P£ [ 1 2 1 + .5Pf[21]. •

Let π be a randomized Markov policy. As we see from the previous
example, a measure v that satisfies (5.2) may not be unique. According
to Theorem 5.2, it is possible to select v such that (5.2) holds and v is
concentrated on LM The following example shows that it is possible that
there exists v which satisfies (5.2) and is not concentrated on LM-

Example 5.4. Let X = {0,1,2,3}, A = {1,2}, D(0) = D(ΐ) = D(2) =
{1}, and D(3) = A. Let also p(i|0,1) = .5, p(3|i, 1) = p(3|3, t) = 1, i = 1,2,
with other probabilities equal zero. Let #o = 0. Like in the previous example,
the process always moves from 0 to either 1 or 2 with probabilities .5 and then
it moves to 3 which is an absorbing state. We consider a randomized Markov
policy π such that π2(i|3) = .5, t = 1,2, and πn(l |3) = 1 for n = 3,4,... .
We also consider four nonrandomized policies φ[ij], i,j = 1,2, such that
Φ[iJh(0,1,1,1,3) = i, φ[ij]2(0,1,2,1,3) = j , a n d φ[ij]n(xoαo ...xn) = l for

2 2 ....

Then PQ = Σ) Σ -25PQ . In this case, v is concentrated on four

points and I / ( P Q ^ ) = -25. Since each policy φ[ij] is not Markov, v(LM) = 0.
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On the other side, one can consider Markov policies φ[i], i = 1,2, with
02[*](3) = i and 0[i]n(3) = 1 for n = 2,3, In this case V{LM) = 1, where
v is concentrated at two points with V(PQ) = .5, i = 1,2. We also have
PQ = .5PQ + 5PQ The second selection of measure v is consistent with
the statement of Theorem 5.2 for Markov policies. •

We also remark that if π is a randomized stationary policy then it
is randomized Markov. Theorem 5.2 states that (5.2) holds for some v
concentrated on LM . However, it is possible that there is no v for which
(5.2) holds and which is concentrated on Ls) see Remark 3.1 in Feinberg
(1986) or Example 2.3 in Hill and Pestien (1987).
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