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Bayesian Robustness
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PROTECTION AGAINST OUTLIERS USING A
SYMMETRIC STABLE LAW PRIOR1

B Y JEAN-FRANCOIS ANGERS

Uniυersite de Montreal

Estimation of the expectation of a multivariate normal random vector
is considered. The components of the mean vector are assumed to be
exchangeable. This information is modeled using a hierarchical prior
with independent symmetric stable law at the first stage level. It is
shown that the first stage Bayes estimator has an analytic expression
and that it is robust with respect to the presence of outlying observa-
tions.

1. Introduction. Let X = ( X ^ X ^ >-Xp)* have a p-variate normal
distribution with mean vector θ — (#1,02? ?0p)* a n ( i covariance matrix
σ2lp, where σ2 is assumed to be known. The components of θ are believed
to be exchangeable, and hence "shrinkage" estimation of them is desired.

The assumption of exchangeability of the components of θ can be mod-
eled easily in a hierarchical Bayesian fashion with a two stage prior. The
use of hierarchical models provides a way to consider more complex models
since it allows the location and the structural information to be modeled
separately. In this paper, the first stage prior is of the form 7Γi(0|μ, r ) =
Πj=i πι,a(θj\μ,τ) where πi j t t denotes the density of a symmetric stable law
with parameters α, μ and r. The hyperparameter a controls the tail behav-
ior of the prior and it is assumed to be known. (As it will be seen at the end
of the third section, a does not need to be specified very accurately.) The
hyperparameters μ and r represent the common location and scale parame-
ters of τri jα and their prior density is denoted by 7Γ2(μ,r). (Applications to
finance of the symmetric stable law are discussed in Press (1975).)

In Angers and Berger (1991), a generalized Bayes estimator was devel-
oped for the special case a = 1. In Angers (1992), a similar problem was
considered but a Student-t density with 2k + 1 (k £ N) degrees of freedom
was used as the first stage prior.

The goal of this paper is to present an estimator which is insensitive to
the presence of outlying coordinates, that is, one bad data point will not
overly influence all estimates. Furthermore, this estimator can be written
in an analytic form involving only hypergeometric functions. In Section 2,
the hierarchical Bayesian formulation of the problem is presented and the
proposed robust estimator is derived. In Section 3, its robust behavior is
studied. In the last section, a numerical example comparing the estimator
for several values of a is discussed.

1AMS 1991 Subject Classifications: Primary 62F35; secondary 62F15, 62E25
Key words and phrases: Robust estimator, symmetric stable law, outliers.

273



274 J. Angers

2. The robust hierarchical Bayes estimator. Let X ~ Np(θ,σ2lp)

with mean vector θ and covariance matrix σ 2 l p , where σ2 is assumed to

be known. The components of θ are believed to be exchangeable which is

typically modeled via a two-stage prior:

p

θ\μ,τ ~ 7Γi(0Jμ,r)= JJ πljO[(θj\μ,τ) and (μ,r) ~ τr2(μ,r).

i=i

£.i. Preliminaries. Let 5ri|Cr be the Fourier transform of the first stage

prior density τri)α(0j|O, 1) and /W be the Zί/ι derivative of the Fourier trans-

form of the likelihood function with θj — 0 Vj and σ2 = 1. It can be shown

that, under the squared error loss (cf. Angers, 1995) we have:

m(xj\μ, T) = the first stage marginal density of Xj

θj(xj\μ, T) = the first stage Bayes estimator of θj

i I ( / j ] / )) ,

= the posterior expected loss of θj(xj\μ,τ)

σ
2

4π 2

j - μ]/σ)[xj - μ]

lo(τ/σ,[xj-μ]/σ) σ j

I2(r/σ,[xj-μ]/σ)]

I0(τ/σ,[xj-μ]/σ)\ '

where i = J^ϊ, Iι(a,b) = / ^ P\s)π1(as)ei2πbsάs for / = 0,1,2.
Hence, the hierarchical Bayes estimator of θj is given by

(1)% = * i - ^

( ) [ ( ^ j (μ, r)dμάτ

fo°° /-°°oo [ΠΓ=i Jo 0 , *=*)} x 2(μ, r )dμdr

and its posterior expected loss is given by

2 f-Poolσ2

In this paper, we consider the choice of the independent symmetric stable

law, denoted by 5 a(//,r), as the first stage prior. This model was chosen
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because of its range of tail behavior (from Cauchy to normal tails) and also
because the first stage Bayes estimator of θj has an analytic expression. Ex-
cept for α = 1 (Cauchy density) and α = 2 (normal density), the density of
5Ό,(μ, T) can not be written in closed form, but it is known (c/. Feller, 1966)
that the Fourier transform of πιyOί(θ) is given by πιiQ(s) = exp{-(2w\s\)a}.

2.2. The first stage Bayes estimator.

THEOREM 1 Suppose that X ~ N(θ,σ2) and θ ~ Sa{μ,τ) where σ, μ, τ
and a are known. Then,

i(α,6) = -i2Λ/26Gi(α,6),

2(α,δ) = -2v/2π[G0(α,&)-2G2(α,δ)],

where 0^,6) =

J=f [la + j-'k] , 1 b2\

iFi(7,£,z) denotes the degenerate hypergeometric function (cf. Gradishteyn
and Ryzhik, 1980) and where k = 0 if j is even and 1 otherwise.

P R O O F 1 We know that f(s) = e~2^s2 and 5ri|Cr(θ) = e-(2 πW>α. Hence

fW(s) = -4τr25/(θ) and /(2)(s) = -4τr2[l - 4τr252]7(5). Consequently, in

order to compute the X\ 's, we need to evaluate
/•oo

hj(a,b)= / sjf(s)τr1(as)eiMsάs.
J — OO

Using some algebra and special functions, we can show that

and
2 oo / i \lΓ(f/a+j+2i/2) / /ό

a 2 ' 2 ' T j

J ^ T T ^ ) , if j is odd.

Hence,
I0(a,b) = ^

2i(a,6) = -

I2(a,6) = -4τr2[h0(a,6)-4π2h2(a,6)]

= -2Λ/5τr[Go(o,6)-2G2(o,6)].
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THEOREM 2 If Xj ~ N(θj,σ2) and θj ~ Sa(μ,τ) independently for j =

l , . . . ,p where σ, μ, r and a are known and if L(θ,θ) = Σj = 1 (0j - Θj)2,

then

(2)
(2)

m(xj\μ, T) =

- x
- x3

- ~2

Go (r/σ, [XJ - μ]/σ),

G l { τ / σ Λ X j ~ μ ] / σ ) (

= σ2 1 - 2
Go (r/σ, [a j - /i]/σ)

- 2
Gi(τ/σ,[xj - μ]/σ)[xj - μ]"

Go(τ/σ,[xj-μ]/σ) σ

2.3. The hierarchical Bayes estimators. From equation (1), it is clear
that θj is obtained by integrating equation (2) with respect to

(3) π2(μ,τ\x) =
[Πj=i G0(r/σ, [XJ - μ]/σ)] π2(μ, r)

/o°° Πo

THEOREM 3 Under the model given by Theorem 2 and ifπ2(μ, r) is the prior

density of(μ,τ), then, provided that all the integrals exist,

1 z o o z cx
m(x) = 7-7=—— / /

(y/2πσ)PJΌ J-c
Y[G0(τ/σ,[xj- μ]/σ) τr2(μ, r)dμdr,

- x

where 7Γ2(μ, r|a?) z*5 ̂ riven 6?/ equation (3),

THEOREM 4 Ifπ2(μ,τ) = 1, then all the integrals given in Theorem 3 exist
provided that p > 1 + 2/α.

PROOF 2 Using algebra, it can be shown that

i: cΎσ{x- μ]J

(a2[l + 2aa]/2+[x-
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where c\ is an appropriate normalizing constant. Using Angers and Berger
(1991), we obtain

where μ0 £ R. Hence E*2^TW[e3] < oo if

snμdi

-μO\3-m

Γdμdr

. , v ^ i I J 1 L ,, I i—m ( <J i " P i 771+1 \ "p

< oo ifp> 1 + 2/α.

Note that if the tail of the π2(μ, r) behaves as r~c, it can be shown that
the integrals given in Theorem 3 exist provided that p > 1 + 2(1 — c)/α.

One way to evaluate the different quantities given in Theorem 3 is to use
Monte Carlo method with importance sampling. Since

(4) m(x\μ,τ) < c

(5)

we can choose, as importance sampling function,

(6)μ\a -

fp-l 1 1 \
( 7 ) a „ Burr ^ - - , - , α j , i.e. g(a) =

2 α α ) ( [ p _ 1 ] / 2 ) _ [ l H )

3. Behavior of ^j(^) in presence of outlier. In order to study the
behavior of θj(x) in presence of outliers, we need to know the asymptotic
behavior of the hypergeometric function. In Olver (1974), it is shown that
iFi(7, δ, z) = γ^zzzΊ~δ X [1 + 0{z-λ)} if 7 is not a negative integer. Oth-
erwise, it can be shown that χYι{η,δ,z) = ( - i Γ f f S y ^ " 7 x f1 + O^'1)}.

Using this result, the following lemma can be easily proven.
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LEMMA 1 If 1 < a < 2 and if \b\ is large, then

1=1

χT{la+n+1)(w\) '
where k — 0 if j is even and 1 otherwise. If a = 2, then

Go(o,6) =
Gi(α,δ) = G0(α,6)/2,

G2(α,6) = [

In the next theorem, the behavior of the first stage Bayes estimator (and
its posterior expected loss) is given for large values of \x - μ\.

T H E O R E M 5 If\x- μ\ » 0 and i f l < a < 2 , then

m W / , , τ ) . sitt(
7Γ LLI

P R O O F 3 If \b\ is large and if a < 2, using the previous lemma, we have
that,

Go(o,6) = V2s ^

G l { a , b ) = ^

G a ( β , 6 ) = _sin(

Consequently, using Theorem 2, one can show that

m ( x l μ , τ ) =

 s i " (

l
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Figure 1: Behavior of SF(x) = (θ(x | μ,r) — x\jσ for outlying values of x

for μ = 0,r = σ = 1 and σ = 1 (solid line), 1.25 (dotted line), 1.5 ("en"

dashed line) and 1.75 ("em" dashed line).

In Figure 1, the behavior of SF(x) = 0(#|μ,r) — x\ /σ is illustrated for

several values of α. It can be seen from this figure that the chosen value of a

does not affect much the behavior of SF(#). For all values of a considered,

SF(x) is almost linear for small values of \x - μ\/σ. However, if \x - μ\/σ

is large, the shrinkage function is monotonically decreasing towards 0. The

rate of decrease of SF(z) is controlled by α. The smaller a is, the faster

SF(z) goes to 0.

In the next theorem, the robustness behavior of θj(x) is given.

THEOREM 6 For j = 1,2,...,/ - 1,/+ l , . . . , p , let Xj - N(θj,σ2) (σ2

known), andθj ~ 5α(μ,r) where 1 < a < 2 andp > 3+2/a. If\xι~μ\ -> oo,

that is x\ is an outlier, then

π2(μ,r|f)

θι(x)

Θ3{x)

p(π,θι\x)

for j φ

σ2,
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where 7r|(μ, τ\x(_z)) oc r α Πf̂ / m(zj|μ, r ) .

P R O O F 4 Lei <// = minj^/ \xι — XJ\. Using the dominated convergence theo-

rem and Theorem 5, we have:

l im k ί h o o Jo00 Π . [{x^mixtlμ, r)] [π^, m(Xj\μ, r)] dμdr

{
- 1

 fcί,/2

Jdι/2

oo

ifp>3 + 2/α. ΓΛe resi o/ iΛe proof follows directly from this result.

Note that, if there is k outliers a?^,.. .#/ fc, then

τr^(μ,r|x(_/lv..?_/fe)) oc τkaπ2(μ,r) J J m(xj |μ,r) .

If 7Γ2(μ, r) = 1, then all the quantities given in Theorem 6 exist if p >
2k+1 + 2/a.

4. Numerical example. For the numerical example discussed in this
section, the second stage prior was chosen to be π2(μ,τ) = 1. To evaluate
the integrals given in Theorem 3, the Monte Carlo method with importance
sampling was used. The importance sampling functions are given by equa-
tions (6) and (7). The observations vector used in this section has been
generated according to the following scheme:

1. generate θj - 5Ί(0,1), for j = 1,. . . , 10;

2. generate Xj ~ N(θj, 1), for j = 1,. . . , 10.

Using these observations we computed θj(x), j = l , . . . ,10 with a = 1.0,

1.25, 1.5, 1.75 and 2.0. These values are given in Table 1 along with their

posterior expected loss (numbers in parentheses). From this table, one can

see that the choice of a does not influence much on θj(x) as long as a < 2.

Furthermore, θj(x) (for a < 2) has a limited shrinkage for large values of

Xj, that is #i, and #io. However, this does not prevent the shrinkage for the

other coordinates.
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•TABLE 1 : Values of θ(x) and p(π,θ
XJ \\α = 1.0|α = 1.25|α = 1.5|α = 1.75

-4.55

-1.88

-0.54

-0.44

0.54

0.91

1.09

2.31

2.58

4.16

-4.35

(1.16)
-1.51

(1.18)
-0.20

(0.87)
-0.12

(0.86)

0.58
(0.87)

0.83
(0.85)

0.95
(0.85)

1.92
(0.94)

2.19
(1.01)

3.87
(1.25)

-4.34
(1.22)

-1.45

(1.17)
-0.16

( 0.80)

-0.08
(0.78)

0.61
(0.86)

0.86
(0.86)

0.97
(0.85)

1.87
(0.83)

2.13
(0.92)

3.83
(1.30)

-4.31
(1.26)

-1.41

(1.26)
-0.13

(0.79)

-0.05
(0.79)

0.61
(0.82)

0.85
(0.84)

0.97
(0.83)

1.84
(0.83)

2.08
(0.88)

3.79
(1.43)

-4.31
(1.27)

-1.41
(1.91)

-0.16
(1.32)

-0.08
(1.22)

0.77
(0.66)

0.97
(0.80)

1.08
(0.84)

1.89
(0.83)

2.21

(0.89)
3.75

(1.29)

X)

α = 2.0|

-3.32
(0.83)

-1.27
(0.80)
-0.24

(0.80)

-0.17
(0.80)

0.59
(0.80)

0.87
(0.81)

1.01
(0.81)

1.94
(0.82)

2.15
(0.83)

3.36
(0.86)
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