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Abstract

The sequence {Pk(t, x)} of two-variable Hermite polynomials are known
to have the property that, if {Mt,t > 0} denotes the standard Brownian
motion, then Pk(t,Mt) is a martingale for each k > 1. This property of
standard Brownian motion vis-a-vis Hermite polynomials motivated the
general notion of "polynomially harmonizable processes". These are pro-
cesses that admit sequences of time-space harmonic polynomials, that is,
two-variable polynomials which become martingales when evaluated along
the trajectory of the process. For Levy processes, this property is con-
nected to certain properties of the associated Levy/Kolmogorov measures.
Moreover, stochastic properties of the underlying processes (like indepen-
dence, stationarity of increments) turn out to be equivalent to certain
algebraic/analytic properties of the corresponding sequence of polynomi-
als. We first present a brief survey of these recently obtained general
results and then describe necessary and sufficient conditions for certain
classes of Levy processes to be uniquely determined by a finite number of
time-space harmonic polynomials.
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1 Introduction: General Definitions

The sequence of two-variable Hermite polynomials {Pk , k > 1} on [0, oo) x R
are defined via the classical one-variable Hermite polynomials {p^, k > 1} as
follows:

where

pfc(x) = (-Dke^

Some of the well-known properties of the sequence {P/J are:

• Pk(t,x) is a polynomial in the two variables t and x, for each k.
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154 Polynomially Harmonizable Processes

• Pk(t, ) has degree k in x, with the leading term having coefficient 1.

• γPk{t,x) = kPk-i{t,x), for each k > 1.

^ QVfc-2(*,*) = -\^m'x)'for e a c h fc - 2

For the last two properties, we take P0(t, x) = 1. The first two properties simply
tell us that we can write

3=0

where the Pj (t) are polynomials in t and p\. \t) = 1.

The sequence {P^} of Hermite polynomials as defined above is known to have
some deep connections with the standard Brownian motion. One of these is the
well-known fact that if {Mt, t > 0} denotes the standard Brownian motion,
then for each fc, {Pk(t,Mt), t > 0} is a martingale (for the natural filtration
of {Mt}) and standard Brownian motion is the only process with this property.
Moreover, if P(t,x) is any two-variable polynomial such that {P(t,M t)} is a
martingale, then P belongs to the linear span of the sequence {Pk}

A natural question that arises is: which stochastic processes admit such a se-
quence of 2-variable polynomials which when evaluated along the trajectory of
the process are martingales and, if so, to what extent do these polynomials de-
termine the process? Also, is it possible to get the sequences of polynomials so
as to satisfy properties similar to those of the Hermite polynomials mentioned
above? These questions were investigated in detail in Goswami and Sengupta
[2] and Sengupta [6]. Following are some notations and definitions that were
introduced in these works. Here we restrict ourselves only to continuous-time
processes.

Let M — {Mu t > 0} be a stochastic process on some probability space. The
time-space harmonic polynomials for the process M are defined to be all those
two-variable polynomials JP( , •) such that {P(t, Mt)} is a martingale (always for
the natural filtration of M). The two variables will be referred to as repectively
the 'time' and the 'space' variables. The collection of all time-space harmonic
polynomials for a process M will be denoted V(M). In other words,

V(M) := {P : P is a 2-variable polynomial and {P(t,Mt)} is a martingale}

k

Any two-variable polynomial P can be written as P(t,x) — J2 Pji.^)x^ f°r

3=0

some fc, where each Pj(t) is a polynomial in t. If in the above representation,
Pk(t) φ 0, we say that P is of degree k in the 'space7 variable x. For a stochastic
process M — {Mt}, we define Vk{M) to be the collection of those time-space
harmonic polynomials which are of degree k in the space variable, that is,

Vk{M) := {P G V(M) : P is of degree k in the space variable x}.
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Clearly,

P(M) = \JPk(M).
k

Definition: A stochastic process M is said to be polynomiαlly hαrmonizαble
(p-hαrmonizαble, in short) if Vk(M) φ 0, for all k > 1.

In this terminology, standard Brownian motion is a p-harmonizable process.
Indeed, Brownian motion is p-harmonizable in a somewhat stricter sense, to be
understood below.

For a process M, let us denote Pk(M) to be the set of those time-space harmonic
polynomials of degree k in x, for which the leading term in x is 'free' of f, that
is, the coefficient of xk is a non-zero constant. In other words,

k

ψk(M) := {P e Vk(M) : P(t,x) = ^pj{t)xj with pk( ) a non-zero constant},

j=o

and we let,

P(M):=\Jψk(M).
k

Clearly, Pk(M) C Pk(M) V k and so, P(M) C P(M). Also, if Pk(M) φ 0,
k _

then there is P(t,x) = Σ Pj(t)χj e *Pk(M) with pk( ) = 1.
j=o

Definition: A stochastic process M is said to be p-hαrmonizαble in the strict
sense if Pk{M) φ 0, for all k > 1.

The second property of the two-variable Hermite polynomials listed earlier shows
that standard Brownian motion is actually p-harmonizable in the strict sense.
The other classical example of a strict sense p-harmonizable process is the Pois-
son process. For a Poisson process, with intensity 1 for example, a sequence of
time-space harmonic polynomials is given by the so-called two-variable Charlier
polynomials

(
j=0 KJ/ 2 = 0

where < . > denote the Stirling numbers of the second kind. The Gamma
I. ι J

process is another example of a strict sense p-harmonizable process.

In keeping with the special properties of the sequence of Hermite polynomials
mentioned earlier, we introduce here a list of properties for a sequence of two-
variable polynomials. Let{Pfc, k > 1} be a sequence of two-variable polynomials
with Pk being of degree k in x. We define Po = 1. Let us write Pk(t,x) —

k

^ , where the pf\t) are polynomials in t. We are going to refer to
3=0

the following properties in the sequel.

(i) Strict sense property: For each k > 1, pk (•) = 1.
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(ii) The Appell property: For each k > 1, —— = kP^-i, that is, jp- (t) —
(JX

(in) The pseudo-type-zero property: There exists a real sequence {hk} such that

for each k > 1, ̂  = Σ (^Λift-i.thatis, ^pf\t) = Σ (ί)^?" '^*).

1 < j < k.

Uniqueness property: For each /c > 1, P/e(0,x) = xfc, that is, pj (0) =
0, 0 < j < k - 1.

The sequence of Hermite polynomials satisfies all the properties (i) — (w;); prop-

erty (Hi) holds here with h2 = — 1 a n d ftfc = 0 for fc ̂  2. It is easy to verify

that the two variable Char her polynomials satisfy these properties as well. The-

orems 2.3 and 2.4 in the next section will establish that these are reflections

of the fact that both Brownian motion and Poisson process are homogeneous

Levy processes. Let us make some basic observations about the properties listed

above. First of all, with the convention that PQ = 1, property (i) will always

imply property (ii). Secondly, in our applications, the sequence {Pk} will be

arising as time-space harmonic polynomials of a process M. Now if, the process

itself happens to be a martingale, we can always take P\ — x, in which case

property (ii) will actually imply a slightly stronger property than (i), namely,

(%') for each k > 1, Pfc(t, x) — xk has degree at most k — 2 in x, that is, pk = 1

and p^\ = 0.

Properties (ii) and (in) for a sequence of polynomials were studied analytically
in an entirely different context in Sheffer [7], which is the source of our ter-
minolgy for these properties in this context. It turns out that for a stochastic
process M, the properties (ii), (in) and some other algebraic/analytic properties
the corresponding sequence of time-space harmonic polynomials are intimately
connected to some stochastic properties of M.

2 Levy Processes and p-Harmonizability

In this section, we describe some of the results on p-harmonizability of Levy
processes. Details of these can be found in [6]. Discrete-time versions of many
of these results were proved earlier in [2]. For us, a Levy process will mean a
process M — {Mt,t > 0} with independent increments and having no fixed
times of discontinuity. A homogeneous Levy process is one which is homoge-
neous as a Markov process, that is, whose increments are stationary besides
being independent. In the results that follow, we will often need to impose two
conditions on the process M, to be referred to as the moment condition and
support condition. They are as follows:

• Condition (Mo) : For all t, Mt has finite moments of all orders.



A. Goswami and A. Sengupta 157

• Condition (Su) : There is a sequence tn | oo, such that, for all k > 1,
|support(M ί n)| > k for infinitely many tn.

The moment condition (Mo) is clearly necessary for the process to be p-harmonizable.
The role of the condition (Su) is more technical in nature. However, it may be
noted that any homogeneous Levy process always satisfies this condition (unless,
of course, it is deterministic). For a general Levy process, a simpler condition
that gurantees (Su) is that Mt — Ms be non-degenerate for all 0 < s < t, that is,
the increments are all non-degenerate. We now state some of the main results
from [6].

Theorem 2.1. Any homogeneous Levy process M = {Mt,t > 0} with Mo = 0
and satisfying the conditions (Mo) and (Su) is p-harmonizable in the strict
sense. Moreover, there exists a unique sequence Pk G Pk(M), fc > 1 satisfying
properties (i) — (iv) and such that P(M) is just the linear span of {Pk, k > 1}.
Further, the process M is uniquely determined by the sequence {Pk} upto all the
moments of its finite-dimensional distributions.

Remark: (i) The fact that P(M) equals the linear span of {Pk, k > 1} im-
plies, in particular, that P(M) = V{M). This is actually a special case of a
more general fact proved by Goswami and Sengupta in [2], namely, that for any
process M satisfying (Su), if Pk(M) φ 0 V k, then Ψk(M) = Pk(M) V k.
(ii) The property of M being determined by the sequence {Pk} can be strength-
ened as follows. If we assume, for example, that for some t > 0 and e > 0,
E(exp{aMt}) < oo V |α| < e, then the sequence {Pk} completely determines
the distribution of the process M.

Theorem 2.2. Let M = {Mut > 0} be a Levy process with Mo = 0 and
satisfying the conditions (Mo) and (Su). Then M is p-harmonizable if and only
if for each k > 1, E(M^) is a polynomial in t. In this case, there exists a
unique sequence Pk G Vk{M), k > 1 satisfying properties (i), (ii) and (iv) and
such that V(M) is just the linear span of {Pk, k > 1}. Further, the process
M is uniquely determined by the sequence {Pk} upto all the moments of its
finite-dimensional distributions.

Remark: Note the absence of the pseudo-type-zero property (Hi) in this case.
In fact, property (Hi) would not hold unless the process is homogeneous, [see
Theorem 2.4].

We now describe a characterization of p-harmonizability of a Levy process M in
terms of the underlying Levy measure, or, equivalently the Kolmorov measure.
Associated to any Levy process, there is a σ-finite measure m on [0, oo) x (R \
{0}), called its Levy measure, such that,

φt(a) = E{exp(iaMt)}

= exp \iaμ(t) - \a2σ2(t) + J (e^u - 1 - ^ Λ m([0, t] (8) du)} ,

where //(•) and σ2( ) are the mean and variance functions of the 'gaussian part'
of M. It can be shown that p-harmonizability of M is equivalent to requiring
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that all the following functions be polynomials in t:

/

u3 f
-m([0,t]^du),h2(t) = σ 2 ( ί ) + / u2m([0,t] 0 du),

V -\- u J

and for k > 2,

hk(t) = / ukm([0,t]®du).

The above characterization takes on a slightly simpler form when expressed in
terms of what is known as the Kolmogorov measure associated with the process.
It is the unique Borel mesure L on [0, oo) x R such that

log E{exp(iaMt)} = iav(t) + j ( ^ J , ^ ) L([0, t] <8> du),

where v(t) = EΆft is the mean function of the process M. We refer to Ito
[3] for the definition and the transformation that connects the Kolmogorov
measure and the Levy measure. A necessary and sufficient condition for p-
harmonizability of the process M is that : v(t) as well as the functions hk(t) =
f uk~2L([0,t] 0 du), k > 2 are all polynomials in t.

We have seen that for any Levy process M satisfying the conditions (Mo) and
(Su), we can get a sequence Pk G 7\(M), k > 1, such that Appel property (ii)
holds. Moreover, if M is homogeneous, then the sequence {Pk} can be chosen
so as to satisfy the pseudo-type-zero property (in). The next two results show
that, under some conditions, the converse is also true. In both the following
theorems, M — {Mt,t > 0} will denote a continuous-time stochastic process
with r.c.1.1. paths starting at MQ = 0 and satisfying conditions (Mo) and (Su)
and {Tt-, t > 0} will denote the natural filtration of M.

Theorem 2.3. // there exists a sequence Pk G Vk(M), k > 1, satisfying
the Appel property (ii), then for each 0 < s < t, the conditional moments
E^Mf — Ms^l^s) are degenerate for all k. If moreover, for each t, the moment-
generating function of Mt is finite on some open interval containing 0, then M
is a Levy process.

Theorem 2.4. If there exists a sequence Pk G 7\(M), k > 1, satisfying both
the Appel property (ii) and the pseudo-type-zero property (Hi) and if for each t,
the moment-generating function of Mt is finite on some open interval containing
0, then M is a homogeneous Levy process.

Remark: Under the hypothesis of either of the above theorems, it can further
be shown that the sequence {Pk} satisfies the properties (i) and (iυ) as well and
is the unique sequence to do so. Moreover, the sequence {Pk} span all of V(M)
and also determines the distribution of M.

Next, we briefly mention some connections between the time-space harmonic
polynomials of a process and what is known as semi-stability property, as devel-
oped in Lamperti [5]. Recall that a process M with Mo = 0 is called semi-stable
of index β > 0 if for every c > 0, the processes {Mct, t > 0} and {c^Mt, t > 0}
have the same distribution. It can be easily shown that if {Pk G Vk(M)} is
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a sequence of time-space harmonic polynomials of a semi-stable process M, of
index /?, then each Pk satisfies the following homogeneity property:

where pk(-) is the one-variable polynomial Pfc(l, •)• In other words, each Pk is
homogeneous in ί̂  and x. It can be shown that, under mild technical conditions,
the converse is also true, that is, the existence of a sequence {Pk G Vk(M)} such
that each Pk is homogeneous in t& and x, for some β > 0, implies that the process
M is semi-stable of index β. It is also worthwhile to point out here that if a
process M admits a sequence {Pk} of time-space harmonic polynomials which
are homogeneous in t@ and x, then 2β must be an integer and that in case 2β
is odd, the finite dimensional distributions of M are all symmetric about 0.

Finally, let us mention how an intertwining relationship between two markov
processes, as developed in Carmona et al [1] relates the time-space harmonic
polynomials of the two processes. If M and N are two markov processes with
semigroups (Pt) and (Qt) respectively, one says that the two processes (or,
the two semigroups) are intertwined if there exists an operator Λ such that
ΔPt = QtΛ V t. In many cases, the operator Λ is given by the "multiplicative

kernel" for a random variable Z, that is, Λ/(x) = Ef(xZ). In such a case, it is
k

easy to show that, if P(t,x) = Σ pj(t)χi is a time-space harmonic polynomial
j=o

_ k

for the process M, then P(t,x) = ΛP(ί, x) = ]P pj(t)E(Z^x^) is time-space
3=0

harmonic for N. This has proved to be very useful in that if one knows the
time-space harmonic polynomials of a process M, then one can get those for
other processes which are intertwined with M. This is illustrated with examples
in Section 4.

Finitely Polynomially Determined Levy Pro-
cesses

In this section, we address the main question of this article, which involves
obtaining a characterization of Levy processes whose laws are determined by
finitely many of its time-space polynomials. In a sense, this is an extension of
Levy's characterization of standard Brownian motion, which says that, under
the additional assumption of continuity of paths, standard Brownian motion is
characterized by two of its time-space harmonic polynomials, namely, the first
two 2-variable Hermite polynomials Pι(t,x) = x and P2(ί, x) — x2 — t. One
knows that the continuity of paths is a crucial assumption here, without which
the characterization does not hold. In the results that follow, the only path
property we will assume is the standard assumption of r.c.1.1. paths for Levy
processes. Let us start with some general definitions.

Let C be a given class of processes.
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Definition A process M G C will be called k-polynomially determined in C (in
short, k-p.d. in C), if Vj{M) φ 0, V j < fc, and, for any N e C, Vj(N) =

Vj(M) V j < k => TV = M. (Here = means equality in distribution.) Processes
which are fc-p.d. in C for some k > 1 are called finitely polynomially determined
in C (in short, f.p.d. in C).

Let us remark here that an f.p.d. process need not be p-harmonizable. A general
question that we may address is: for what classes of processes C, can one get
a complete characterization of the f.p.d. members of C? For two important
classes of processes, such a complete characterzation has been obtained and are
presented below.

The first result characterizes the f.p.d. processes in the class of all homogeneous
Levy processes. As mentioned in the previous section, for any Levy process M,
one has the representaion

_ I _ jn/iι\

)L([0,t}®du)

= iaμ(t) - ±α2σ2(ί) + ί (eiau - 1 -

where L and m are called respectively the Kolmogorov measure and the Levy
measure associated to the process M. In case M is homogeneous, the measures
L and m turn out to be the product measures

L(dt 0 dx) = dί 0 l(dx), m(dt 0 dx) = dt 0 η(dx),

where / and η are σ-finite measures on M and R\ {0} respectively and the above
representations take on the following special forms

log(£7(eiαAf')) = iavt +1 ί ( ^ " J , ~ %<XU\ l{du)

= iaμt - \a2σ2t + t I eίau - 1 ^ ) η(du).

It may be pointed out in this connection that the relation between the measures
I and η is simply given by

= σ2δ{0}(A)+ f u2η{du), for A G B(R).
y A\{o>

An important property of / that will be used subsequently is that for all k > 2,
the fc-th cumulant of Mi equals / uk~2l(du). the following theorem now gives a
characterization of f.p.d processes in the class of all homogeneous Levy processes.

Theorem 3.1. A process M is finitely polynomially determined in the class
of all homogeneous Levy processes if and only if the associated measure I, or
equivalently the measure η, has finite support.

Proof. It is immediate from the above relation between the measures I and η
that whenever one of them has finite support, so does the other. In the proof,
we will work with I.
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n

Suppose first that / has finite support, say, / = Σ θiδ{riy, where θ{ > 0, i —
1,... ,n and r '̂s are distinct real numbers. Here 5{r} denotes the 'dirac' mass
at r. We show that M is k-p.d. among homogeneous Levy processes with
k — 2n+2. Let TV be any homogeneous Levy process with Vj{N) = Vj(M) V j <

2n + 2. We will show that v^ = VM and Ẑv = ^M which will imply that TV = M.
It is easy to see that Vj(N) = Vj(M) V j < 2n+2 implies the equality of the first
2n + 2 moments of TVi and Mi, which in turn implies the equality of their first
2n-\-2 cumulants. This entails, first of all, that vjq = VM and also, in view of the
above mentioned property of Z, that / uH^{du) — J ujlM(du) V j = 0,1,.. ., 2n.
From these, one can easily deduce that for any choice of distinct real numbers
αχ,. . ,α n,

r n r n

I Y[(u - αi)2lN(du) = / Y[(u - αi)2lM(du).
J i = l ** i=l

/

n
Y[ (u — cii)2l]sι(du) = 0,

i=l
n

implying that IN is supported on { r i , . . . , r n } , that is, IN = Σ ^^{r,}? f° r

i—l

non-negative θ[, 1 < i < n. Using the facts VN = ^M and JUHN((1U) =
f ujlM(du) V j = 0,1,.. ., 2n, it is now easy to conclude that θ[ = ^ V i, that
is, ZJV = IM>

To prove the converse, suppose that M is a homogeneous Levy process for which
the associated measure / is not finitely supported. We show that M is not f.p.d.
by exhibiting, for any A;, a homogeneous Levy process TV, different from M, such
that Vj{N) = Vj(M)Vj < k. This is done as follows. Fix any k > 1. Since I is
not finitely supported, we can get disjoint borel sets Ai C R, i — 1,..., k such
that l(Ai) > 0, V i Consider the real vector space of signed measures on R

ί fc 1
defined as V = < μ : μ( ) = J ] Q / ( Π ̂ ) , Q G R , l < i < / c > and consider the

I i=i J
linear m a p Λ : V —> R ^ " 1 defined by

i f f f
A(μ) = ί / μ(du), / uμ(du), • • • , / uk~2μ(du

Λ being a linear map form a space of dimension k into a space of dimension
k — 1, the nullity of Λ must be at least 1. Choose a non-zero μ in the null-space
of Λ. Further, we can and do choose μ so that |μ(Ai)| < l(Ai), V i. If we
now define / = / + μ, then / is a positive measure with I φ I but J uH(du) =
J uH(du), V j — 0, , fc — 2. It is now easy to see that if TV is the homogeneous
Levy process with VN — VM and Kolmogorov measure L(dt 0 dx) — dt 0 l(dx),

then Vj(N) = V3{M) V j < k but TV φ M. D

Remarks: (i) A simple interpretation of the above therorem is that a homo-
geneous Levy process is f.p.d. if and only if its jumps, if and when they occur,
are of sizes in a fixed finite set.

(ii) The proof of 'if part of the theorem shows that if the measure I is supported
on precisely k many points, then the process is determined by its first 2k + 2
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many time-space harmonic polynomials. A natural question is whether 2k + 2
is the minimum number of polynomials necessary. As we shall see in Section
4, that is indeed the case for the most common examples of homogeneous Levy
processes. We conjecture that it is perhaps true in general.

Our next reult will give a similar characterization of the f.p.d. property in a
more general class of Levy processes than the homogeneous ones. To be specific,
we consider the class of those Levy processes for which the Kolmogorov measure
admits a 'disintegration' w.r.t. the Lebesgue measure on [0, oo). Formally, let
us say that the Kolmogorov measure L of a Levy process M admits a 'derivative
measure' / if

L(dt,dx) = l(t,dx)dt,

where l(t,A),t G [0,oo), A E β i s a transition measure on [0, oo) x B. Here B
denotes the Borel σ-field on R. We denote C to be the class of all those Levy
processes whose Kolmogorov measure admits such a derivative measure.

Clearly, all homogeneous Levy processes belong to this class, since in that case
Z(ί, •) = l( ) . The class C is fairly large. For example, Gaussian Levy processes
as well as non-homogeneous compound Poisson processes belong to this class.
Since C is clearly a vector space, any Levy process that arises as the sum of
independent Levy processes of class C also belong to this class. As expected,
our characterization of f.p.d. processes among the class C will be in terms of the
derivative measure l(t, •) defined above and the general idea of the proof runs
along the same lines as in the case of homogeneous Levy processes. However,
the actual argument becomes a little more technical. For example, we would
show that a process M in the class C cannot be k-p.ά. unless for almost all
ί, the derivative measure l(t, •) is supported on at most k points. This is the
content of the following Lemma 3.1. The idea of the proof is analogous to that
of the 'only if part of Theorem 3.1 for homogeneous Levy processes. That is,

assuming the contrary is true, we will have to define a new process N in class
d

C such that Vj(N) = Vj(M) V j < k but TV φ M. However, getting hold of
this process TV or equivalently its derivative measure /(£,•) involves using an
appropriate variant of a result of Descriptive Set Theory, known as Novikov's
Selection Theorem, stated below as Lemma 3.2. We refer to Kechris [4] for
details.

L e m m a 3.1. Suppose the process M is k-polynomially determined in class
C. Then for any version of I, the set T C [0, oo) defined by T = {t > 0 :
\supp(l(t, ))| > k} is Borel and has lebesgue measure zero.

We omit the proof of this lemma here. As mentioned above, the proof uses the
following selection theorem (see [6] for details).

L e m m a 3.2. Suppose U is a standard Borel space and V is a σ-compact subset
of a Polish space. Let B C U x V be a Borel set whose projection to U is the
whole of U. Suppose further that, for each x G U, the x-section of B is closed
in V. Then there is a Borel measurable function g : U —> V whose graph is
contained in B.
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We now state and prove the characterization result for f.p.d.-processes in the
class C.

Theorem 3.2. Let M be α Levy process of the class C.
(a) If there exists an integer k > 1 and a measurable function
(xi, ,x/c,pi, ,pk) : [0, oo) —> Mfc x [0, oo) f c such that (i) for each j —

k

0,1, . . . , 2k, Σ Pi(t)(χi(t)y is a polynomial in t almost everywhere, and, (ii)
2 = 1

k

K^i') = Σ Pi(t)δ{χi(t)}(') is a version of the derivative measure for M, then M
2 = 1

is finitely polynomially determined (indeed, (2k + 2) -polynomially determined)
inC.
(b) Conversely, if M is finitely polynomially determined in C, then there exists
an integer k > 1 and a measurable function
(#1, , #fc,pi, ,pk) - [0, oo) —> R f cx [0, oo)^ such that a version of the deriva-

k

tive measure associated with M is given by /(£, •) = Σ Pi(t)δ{χi(t)}(')
2 = 1

As mentioned above, the idea of the proof is similar to the homogeneous case
except that it is a little more technical. One of the key observations used in
the proof is that for a process M in the class C, Vj(M) 7̂  0, 1 < j < k if
and only if the first cumulant c\ (t) of the process M is a polynomial in t and
for all 2 < j < /c, the functions t \—> f u^~2l(t,du) are polynomials in t almost
everywhere, where / is a version of the derivative measure associated to M.
Using this, here is a brief sketch of the proof of the theorem.

Proof, (a) In view of the above observation, the conditions (i) and (ii) clearly
imply that Vj(M) φ 0, 1 < j < 2k + 2. If now N is another process of class C
with Vj(N) = Vj(M) V 1 < j < 2k + 2, then it will follow that TV has the same
mean function as M and also for all 0 < j < 2k, f ujl]y{t,du) = f ujlM(t,du)
for almost all t e [0, 00), where IN and IM denote (versions of) the derivative
measures associated with TV and M respectively. Consequently, one will have

k k

I Π {u — Xi(t))2lN(t,du) = / Π (u — Xi(t))2lM(t, du). By the same argument as
2 = 1 2 = 1

in the proof of the 'if part of Theorem 3.1, we get /#(*> •) = ZM(£> •) for almost

every ί, and hence TV = M.

(b) Suppose that M is /c-polynomially determined in C. Using Lemma 3.1, one
can get a version /(£,-) of the derivative measure associated to M such that
\supp(l(t, ))| < k for all t G [0, 00). For each 1 < j < fc, let Tό = {ίG [0, 00) :
\supp(l(t, ))| = j}. It can be shown that each Tj and hence UjTj is a Borel set.
For t G Tj, order the elements of supp(l(t, •)) as x\(t) < < Xj(t) and denote
the l(t, )-measures of these points by pi(t), — ,Pj(t) respectively. Also, for
j < i < /c, set Xi(t) = Xj(i) + 1 axiά pi(t) = 0. Finally, for t £ UjTj, set Xi(t) = yι
and Pi(t) = 0 for all 1 < i < k, where y±, , yk is any arbitrarily chosen set
of k points. With these notations, it is clear that /(£, •) has the form asserted.
One can now show that the mapping t 1—> (#i(ί), ,x/c(t),pi(t), ,Pk(t)) as
defined above is measurable and that completes the proof. •

Remark: In the next section, we will see some examples of possible forms of
the functions xι(t) and Pi(t). Let us remark here that it is possible to formulate
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the definition of the class C in terms of the Levy measures and then to give
a characterization involving the 'derivative measure' arising out of the Levy
measure. However, it is not clear how to go beyond the class C and to even
formulate a condition that will, for example, characterize the f.p.d. processes
among all Levy processes.

4 Some Examples

The most commonly known examples of polynomially harmonizable processes
are the standard Brownian motion and the standard Poisson process. One can
easily see that for a Brownian motion with μ and σ 2 as its drift and diffusion co-
efficients respectively, a canonical sequence of time-space harmonic polynomials

rp i ι4-

is given by Pk(t, x) = (σt)h/2pk(—7=-), where the pk are the usual one-variable
y/σt

Hermite polynomials as defined in Section 1.

Similarly, for the Poisson process with intensity λ, a sequence of of time-space

harmonic polynomials is given by Pk(t,x) = Σ \)χJ Σ \ i ( (^)% where

denote the Stirling numbers of the second kind.

If M is a non-homogeneous compound Poisson process with intensity function
λ( ) and jump-size distribution F, then it is not difficult to see, using the results
described in Section 2, that M is polynomially harmonizable if and only if
λ( ) is a polynomial function and F has finite moments of all orders. It is
possible, though cumbersome, to get an explicit sequence of time-space harmonic
polynomials.

A not so well-known example of a p-harmonizable process is the process M =
BES2(1), the square of the 1-dimensional Bessel process. It is well-known that

, u , , . . , d o d2

this is a semi-stable markov process whose generator is given by -—\- 2x——^.
dx dx

Using this, one can show that M is polynomially harmonizable and that a
k

sequence of its time-space harmonic polynomials is given by Pk(t, x) — Σ (~^)j

k-jri t k - i χ i
k-j)\L X *(2j)\(k-j)\

Using the technique mentioned at the end of Section 2, we can now get other
examples of p-harmonizable processes that arise as markov processes whose
semigroups are intertwined with that of the process BES2(1). Some examples
of random variables which lead to interesting semigroups intertwined with that
of BES2(1), in the sense described in Section 2, are
(i) Z = Zij, having the beta distribution with parameters | and b,
and,
(ii) Z = 2Zb+i, where Zb+i has gamma distribution with parameter b + \.

The first one leads to the process BES2(26), the square of the Bessel process of
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dimension 26, while the latter leads to a certain process detailed in Yor [8] with
"increasing saw-teeth" paths.
Another interesting example of a process intertwined with BES2(1) in the same
way is what is called Azema's martingale (see Yor [9]) defined as Mt = sgn(Bt)
•yjt — gt, t > 0, where B is the standard Brownian motion and gt denotes
the last zero of B before time t. The multiplicative kernel here is given by
the random variable mi, ther terminal value of " Brownian meander". In [9],
Yor uses Chaotic Representation Property to give an alternative proof of p-
harmonizability of Azema's martingale as well as each member of the class of
"Emery's martingales'. As an illustration of our method, we use the time-space
harmonic polynomials of BES2(1) as obtained above and the intertwinning to
describe time-space harmonic polynomials for two of the cases mentioned above.

In the case of BES2(26), a sequence of time-space harmonic polynomials are

given by Pk(t,x) = Σ f2 Λlffr + ^ (k- 1 ! ^ ' W h e Γ β ^ k s t a n d s f o r t h e p r o d "

fc-l

uct Π (2/ + *)
i=0

For the Azema's martingale, one uses the fact the mi has a Rayleigh distribution
to obtain a sequence of time-space harmonic polynomials given by Pk(t,x) —

k

EHk(t,mιx) = Σ 2^Γ(i + l)M \t)χi, where Γ( ) denotes the gamma function
3=0

and Hk(t,x) = Σ M (t)χi are the 2-variable Hermite polynomials.
j=o

We now discuss some examples of f.p.d. processes. First of all, it is not difficult
to see that the only 2-p.d. Levy processes are those that are deterministic, that
is, Mt is identically equal to a polynomial p(t). Our first example of a non-trivial
f.p.d. process is the standard Brownian motion, which is a homogeneous Levy
process with l{du) = δ{Oy(du). Thus, by our Theorem 3.1, standard Brownian
motion is uniquely determined among homogeneous Levy processes by its first
four time-space harmonic polynomials, for example, by the first four 2-variable
Hrermite polynomials. This result should be contrasted with the well-known
characterization due to Levy, which says that the first two Hermite polynomials
suffice if one assumes continuity of paths in addition. In contrast, our result says
that among all homogeneous Levy processes, standard Brownian motion is the
only one for which the first four hermite polynomials are time-space harmonic.
A natural question is whether we can do with less than four. The answer is
an emphatic 'no'. An example of another homogeneous Levy process for which
the first three Hermite polynomials are time-space harmonic is the mean zero
process determined by the Kolmogorov measure L(dt,du) = dt ® l(du), where
l(du) = \ [δ{_ιy(du) + δ{ι}(du)].

It is not difficult to see that any gaussian Levy process, with mean and variance
functions being polynomials, is also 4-p.d.

For the homogeneous Poisson process with intensity λ, one has l(du) = λ<5{i},
so that once again it is 4-p.d. among all homogeneous Levy processes. Here
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also, four is the minimum number needed, since one can easily construct an ex-
ample of a different homogeneous Levy process for which the first three Charlier
polynomials are time-space harmonic.

For the non-homogeneous compound Poisson process, it can easily be seen that
it is f.p.d. if and only if the jump-size distribution is finitely supported and
the intensity function is a polynomial function and that in this case, it is ac-
tually (2k + 2)-p.d. where k is the cardinality of the support of the jump-size
distribution.

We conclude with some examples of f.p.d. processes in the class C. We have a
characterization of such processes in Theorem 3.2. Here are some examples of
possible forms of the functions x%(t) and Pi(t), that appear in that Thoerem.
We consider only the case k = 2. The simplest possible case is that x\(t),X2(t)
and pι(t) > 0,p2(t) > 0 are themselves polynomials. Another possibility is that
xλ(t) = α(t) + y/b(ϊ),x2{t) = α(t) - v/δfepiW = Φ) + d(t) ̂ /b(t), p2(t) =
c(t) — d(t) y/b(t), where α, b, c, d are polynomials so chosen that c + dVb, c — dVb
are both non-negative on [0, oo). One can similarly construct other examples.
From Theorem 3.2, it follows that all these would lead to processes that are
f.p.d (in fact, 6-p.d.) in the class C.
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