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1 Introduction

The problem discussed in this paper arose from a study in [2] of the set of primitive

maximal subgroups of a finite symmetric group SymΩ containing a given subgroup

of SymΩ. Application of group theoretic results, depending on the classification of

finite simple groups, reduced the problem of describing one family of such maximal

subgroups to a problem concerning a certain kind of incidence structures. We chose this

topic because of the unexpected links between several types of mathematical objects.

For a finite set Ω the maximal subgroups of SymΩ may be divided into several

disjoint families: intransitive maximal subgroups, imprimitive maximal subgroups, and

several families of primitive maximal subgroups; see [6]. A given permutation group

G on Ω may be contained in many maximal subgroups of SymΩ. The intransitive and

imprimitive maximal overgroups of G may be determined from the G-orbits and the

G-invariant partitions of Ω. However, determining the primitive overgroups of G is a

difficult problem in general. It has been essentially solved in [6] and [9] in the case

where G itself is primitive, and even this case required significant use of the finite sim-

ple group classification. In [2] we were concerned with a more general situation: the

groups G of interest were innately transitive, in other words, they contain a minimal

normal subgroup that is transitive. The maximal overgroups of G studied in [2] were

wreath products in product action (see Section 3 for the definition of wreath products

and product actions). Investigating such overgroups led to a study of certain incidence

structures discussed in Section 2. Their connection with overgroups of innately tran-

sitive groups is described in more detail in Section 3, and a construction is given in

Section 4.
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2 Suitable ordered triple designs

Describing and constructing a certain family of overgroups of innately transitive groups

required incidence structures of the type introduced in the following definition. Note

that a permutation group H ^ Sym Ω acts naturally on the set

Q ( 3 ) = {(αi,α2,ot3) I oti, ot2, (X3 are distinct points of Ω}

of triples of distinct points of Ω via h : (αi ,α2,α 3 ) »-> ( α ^ α ^ α ξ ) for all h € H and
(<Xi, (X2, (X3) e Ω(3). We denote by S3 the symmetric group on a set of size 3.

Definition 1

(a) An ordered triple design H is a pair (Ω, T) in which Ω is a finite set, and T is a

subset of Ω^3), and for each 1 € {1,2,3} and each α € Ω, the number of triples in T

containing the point α in position i is independent of α, namely it is | T | / | Ω | .

(b) An ordered triple design (Ω, T) is said to be suitable if there exists H ^ SymΩ

that leaves T invariant and is transitive on both Ω and T . For such a group //, the

subgroup A of S3 induced on {αi,0X2,0X3} by the setwise stabiliser H^aχaia^ is the

same (up to isomorphism) for all triples (cci, 0x2, 0x3) € Ί \ Thus we also say that (Ω, T )

is A-suitable relative to H.

(c) If H < SymΩ and A ^ S3, such that H is transitive on Ω, then an //-orbit Ί

in Ω ^ is said to be A-suitable if, for (αi,(X2,(X3) € T, the setwise stabiliser in H of
{(Xi, (X2, (X3} induces a permutation group isomorphic to A on {a\, (X2, (X3}.

Definition l(c) enables us to characterise ^-suitable ordered triple designs group
theoretically. In Section 3 we explain how ordered triple designs arose in [2], while
in Section 4 we show that each suitable ordered triple design arises in relation to our
problem.

The proof of the following lemma is easy and is omitted.

Lemma 1
LetH be a transitive permutation group on a ήnite set Ω, let 1 be an H-orbit in Q^3\

andletA ^ S3. Then T is A-suitable if and only if (Ω,T) is an A-suitable ordered triple

design relative to H.

The concepts of generously 2-transitive and almost generously 2-transitive permu-

tation groups were introduced by Neumann [7]. In our terminology, a permutation

group H acting on Ω is generously 2-transitive if and only if every //-orbit in Ω(3)

is S3-suitable; and H is almost generously 2-transitive if and only if every //-orbit in

Ω(3) is A3-suitable or S3-suitable. It was shown in [7] that each almost generously 2-

transitive group is 2-transitive with the single exception of A3. The classification of

2-transitive groups is a consequence of the finite simple group classification, so the

generously and almost generously 2-transitive groups can be regarded as known.

In our construction of innately transitive groups in Section 4, part of the input data

is an A -suitable ordered triple design relative to //. It turns out that the structure of
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the group that is the result of our construction depends on A. We were interested in

examples where A was either a cyclic group of order 2 or the trivial group. Hence the

question arose as to how prevalent 1-suitable ordered triple designs might be. For some

transitive permutation groups H on a set Ω, every //-orbit in Ω^3) is 1-suitable. Such

groups are characterised in Theorem 4 below. Here a permutation group G on a set Ω

is said to be semiregular if the only element of G that fixes a point of Ω is the identity

element.

Theorem 4

Let H be a transitive permutation group on a finite set Ω. Then all H-orbits in Ω^

are 1 -suitable if and only if\H\ is not divisible by 3 and a Sylow 2-subgroup ofH is

semiregular.

PROOF. Let us assume that \H\ is not divisible by 3, and a Sylow 2-subgroup of H is

semiregular. This implies that an element of// with even order has no fixed points in Ω.

Let Ί be an //-orbit in Ω<3) and (κi, κ2, κ 3) E T . Suppose that g € H and g stabilises
the set K = {κi,K2,K3}, and consider the permutation gf induced by g on K. Since the

order \g*\ of g7 divides the order of g, and hence divides |//|, we have that |g'| φ 3. If

\t£\ = 2 then g has even order and g7, and hence also g, fixes one element of the κz ,

which is a contradiction. Hence g* — 1 and it follows that T is 1-suitable.

Suppose now that every //-orbit in Ω^3^ is 1-suitable. If \H\ is divisible by 3, then

there is an element g £ H of order 3. If {κi,κ2,K3} is a (g)-orbit of size 3, then

(κj,K2,K3)// C Ω^3) is not 1-suitable. Hence \H\ is not divisible by 3. Suppose now

that there is a non-identity 2-element g in H that fixes a point Ki G Ω. Then gk is an

involution, for some k, gk fixes Ki, and if {κ2,K3} is a (g*)-orbit in Ω with size 2, then

( κ i , κ 2 , κ 3 ) / / C Ω^3) is not 1-suitable. Hence a Sylow 2-subgroup of// is semiregular.

D

The family of groups that satisfy the conditions of Theorem 4 contains some prim-

itive and some insoluble examples, though most groups in this family are imprimitive

and soluble.

Remark 1

Let H satisfy the conditions of Theorem 4.

(a) The only finite simple groups T for which 3 does not divide \T\ are the Suzuki

groups Sz(q), where q = 22α+ι ^ 8; see pages 8-9 of [5]. So if// is insoluble then

the non-abelian composition factors of H are all isomorphic to Sz(^) for various q.

There are certainly some insoluble examples H. For instance if H = Sz(q), and L is

any subgroup of// such that \L\ is odd, then the action of// by right multiplication on

{Lx I x e //} satisfies the conditions of Theorem 4.

(b) A transitive permutation group H is primitive on Ω if and only if the stabiliser

Hα in H of a point α € Ω is a maximal subgroup. The conditions in Theorem 4 are

equivalent to requiring 3 f \H\ and 2 \ |//α |. Since all maximal subgroups of Sz(#)

have even order (see [11]), none of the examples given in paragraph (a) are primitive.
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Indeed, it is not difficult, using the O'Nan-Scott Theorem (see Theorem 4.1 A of [4]),

to show that if H is primitive and satisfies the conditions of Theorem 4, then H is a

semidirect product NxL where N = l/p, with p a prime, p Φ 3, and L ^ GL</(/?), such

that gcd(6, \L\) = 1 and L leaves no non-trivial, proper subspace of Έd

p invariant. If

d = 1 then any subgroup L with gcd(6, | I | ) = 1 gives an example. Also if d ^ 2 and

pd - 1 has a prime divisor r ^ 5 such that r does not divide pa - 1 for any aζd—1

then GL</(/?) contains a cyclic subgroup of order r that satisfies these conditions. Such

a prime divisor always exists unless pd = 64 or d = 2 and /? is of the form 2α3^ — 1 for

some a, Z?; see [12].

Not every transitive group H gives rise to a 1-suitable orbit T . If// is 3-transitive

on Ω then the setwise stabiliser of each triple {α,β,γ} induces the symmetric group

S3 on {α,β,γ}, and so 3-transitive groups have no 1-suitable orbits on triples. In [8]

a transitive permutation group H on a set Ω was defined to be a three-star group if

for all 3-subsets t of Ω the setwise stabiliser Ht does not fix t pointwise. Thus H is a

three-star group if and only if it has no 1-suitable orbit in ΩS*\ Each 3-transitive group

is a three-star group, and there are other examples, for example the group H — PSLd(q)

(d ^ 3 and q a prime-power) acting on the set Ω of 1-dimensional subspaces of the

underlying ^-dimensional vector space. An investigation of finite three-star groups by

P. M. Neumann and the first author is in progress [8]. It has been shown in particular

that primitive three-star groups have rank at most 3, but a complete classification of

finite three-star groups is yet to be achieved.

3 Embedding permutation groups into wreath
products

Let Γ be a finite set, L ^ Sym Γ, ί ^ 2 an integer, and H ^ S .̂ The wreath product L wr//

is the semidirect product Lίy*H where for (jq , . . . , * / ) € Le and σ € S ,̂ (x\,... ,x^)σ =

(jc lσ-i,...,JC/σ-i). The product action of Iwr// is the action of Lwr// on Te defined by

for all fa , . . . , % ) € Γ*, (xγ,... ,*/)σ G Iwri/ .

The following couple of remarks give a summary of the elementary properties of

wreath products and product actions. The interested reader will find the proofs of

these comments in Section 2.7 of the book by Dixon and Mortimer [4]. If γ £ Γ then

(γ,... ,γ) 6 Γ^; set ω = (γ,... ,γ). The stabiliser (Lwr//)ω in Lwr// of ω is the sub-

group (LΊY x H = LγWr//, where LΊ is the stabiliser of γ in L. (It is easy to see that H

normalises {Ly)
e, and so {Ly)

e * H is indeed a subgroup of Lwr//.) The subgroup Le is

normal in Lwr// and is transitive on Γ^ if and only if I is transitive on Γ. Moreover no

non-identity element of Iwr// stabilises all points of Γ*. In other words, the product

action of Lwr// on Γ^ is faithful. Therefore LVJΓH can be considered as a permutation

group on Γ*.
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If |Γ| ^ 5 then SymΓwrS^ is a maximal subgroup of Sym (Γ*), and is primitive on

Γ*. The subgroups of a finite symmetric group Sym Ω of the form SymΓwrS^, where Ω

can be identified with Γ^ in such a way that SymΓwrS^ acts on Γ^ as above, form one

of several classes of primitive maximal subgroups of Sym Ω, identified by the O'Nan-

Scott Theorem; see [6]. Thus an important part of classifying the primitive maximal

subgroups of SymΩ containing a given (innately transitive) subgroup G is finding all

ways of identifying Ω with a Cartesian product Γ^ with ί > 2 and |Γ| ^ 5, so that G acts

as a subgroup of SymΓwrS^ in product action.

For the rest of this section suppose that G is an innately transitive group on a finite

set Ω and that M is a non-abelian, transitive, minimal normal subgroup of G. Let ΊA/Q

be the set of primitive maximal subgroups W of SymΩ such that W is a wreath product

in product action and G ^ W.

Let W G WG. Then W S SymΓwrS^ for some Γ and I ^ 2, and we can identify Ω

with the Cartesian product Γ*. It was proved in [3] that M ^ (SymΓ)*. Let ω be a fixed

element of Ω, say ω = (γi, . . . ,γ/), and for i = 1,... ,1 let Kt = MΊr It was shown in [3]

that the set %^{W) = {K\,... ,Kι} is invariant under conjugation by G ω , the Kt have

the same size,

f]Ki = Mω and Kilf]Kj)=M. (1)
ί=l W /

In general we say that a set 3£ = {K\,... , ^ } of subgroups of M is a Cartesian

system of subgroups for M if \Kj | = \Kj \ for all /, j G {1 , . . . ,£} and there is some ω G Ω

such that (1) holds. Cartesian systems provide a way of identifying the subgroups in

We from information internal to G.

Theorem 5 ([3])

For a fixed ω G Ω the map W ι-> %α(W) is a bijection between the set WQ and the set

ofGω-invaήant Cartesian systems 9ζ of subgroups forM such that ΓΪKZ^K = Mω.

Fix We<WG,saγW*ί Sym ΓwrS^ for some Γ and I > 2, and let πw : W -> S^ be the

natural projection. Then π^(G) is a subgroup of S .̂ Moreover, since M is transitive on

Ω, we have G = MGω, and since M ^ (SymΓ)^ = kerπ^, Uw(G) = π ^ ( G ω ) . Thus π ^

gives rise to an action of G ω on {1,... ,£}. It was proved in [3] that the Gω-actions on

{1, . . . , ί] and on the Cartesian system %ϋ{W) are equivalent. It can also be shown that

Kψ(G) has at most 2 orbits in {1, . . . ,£} , and a description of the maximal subgroups

W G *WG for which %w{G) is intransitive on {1,... ,t] is given in [2]. In this paper

we are interested in the remaining case, namely in primitive maximal subgroups W G

WG where π^(G) is transitive on {1,... ,1}. This is equivalent to requiring G ω to be

transitive on the corresponding Cartesian system !Kω{W).

Suppose that M =Tk where T is a finite, non-abelian, simple group and k ^ 1, and

let Cj.M —> T denote the i-th coordinate projection map (t\,... ,/*) »->• tim Let W G ^G

and set %x{W) = {K\,... ,Kι}. The properties of Cartesian systems imply that for all
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i ^ k and j ^ ί

Thus it is important to understand the following sets of subgroups:

The set % is independent of/ up to conjugation by Gω, in the sense that for all ί'i, ii G
{1,..., k} there is a g G Gω such that 7h = ?* = {Iβ\L£?h}. Moreover, using the
finite simple group classification, it was shown in [1] that the number of indices j such
that Gi(Kj) G 7ι is at most 3. It is easy to see that this number is also independent of
the choice of ω, and we denote this number by c(G, W). In [2] the study of subgroups
W G We for which %w{G) is transitive is split into several cases corresponding to the
value of c{G,W) G {0,1,2,3} and to the group theoretical structure of the Cartesian
system elements. In the case when c(G, W) = 3 we prove the following theorem.

Theorem 6
Suppose that G is an innately transitive permutation group with a non-abelian, tran-
sitive, minimal normal subgroup M, and suppose that W G 'WG such that nw(G) is
transitive. Let {K\,... ,Λ^} be the corresponding Cartesian system HQoiW) for a fixed
ω G Ω, and suppose that c(G, W) = 3. Then the following hold.

(a) The isomorphism type of the simple direct factor T ofM and those of the sub-
groups A, B, and C in 7Ϊ are as in Table 1.

(b) Forj= 1,... ,£, C\(KjY x ••• x σ*(Jζ))' ^ Kj and if T is as in row I or row 2 of
Table 1 then σj (Kj) x x αk(Kj) = Kj.

(c) Fori=l,...,kletα(ή,b(i),c{i)e{h...,i}besuchthatσi{Kα{i))^
S B, and Ci{Kc{i)) £ C, and set <T = {{Kα{ή,Kb{ή,Kc(i)) | i = 1,...,*}. Then
(%ΰ(W),T) is a suitable ordered tπple design relative to the faithful action of
κw{G) on

PROOF. Suppose that M = Tk for some k and for i = 1,... , k let σ,?: M -> T be the
z-th coordinate projection defined by σ, {x\,... ,**) = *2. Also for i\, 12 G {1,... , /:} we
define σ { z 1)2 2} : M -> T x T by σ{/1)/-2}(xi,... ,xk) = (xh ,xh).

(a) By (1), Kj {^mφjKm) = M for all y, and hence

f|σI-(Am)]=σί(Aί) = Γ for i= 1,... ,kmdj = 1,... ,
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1

2

3

T

Sp4a(2), α > 2

PΩ8(3)

SP6(2)

A

Sp2a(4) 2

Ω7(3)

G2(2)
G2(2)'

G2(2)

G2(2)

B

04.(2)
Ί\ x PSU(3)

0,(2)
O6-(2)
O6~(2)'

O«(2)

C

Oi(2)
PΩ 8 (2)

O6

+(2)

O6

+(2)

O6

+(2)

O f i

+(2)'

Table 1: Strong multiple factorisations {A,B, C} of finite simple groups T

Thus if % = {A,B,C} for some i then the set {A,B,C} is a strong multiple factorisation

of T (see [1] for definitions), and, using [1, Table V], we obtain that Γ, A, B, and C

must be as in one of the lines of Table 1.

(b) Suppose that J\ = {A,B,C} for some subgroups A, B, and C of T. We see from

Table 1 that Af, Bf, and C are perfect groups. Moreover for all i € { 1 , . . . , k} we have
that either θi(Kj) = Γ, or θi{Kj) is isomorphic to one of A, B, and C. We show next

that

for i = l , . . . , £

Since Oi(Kj)1 is a perfect group, for all i and y, it follows from [10, Lemma 3.2] that we

only have to prove that

for j = 1,... , {1,. . . ,*} . (2)

Suppose that j G { l , . . . , Q and i \, z'2 G {1, . ,k} are such that (2) does not hold. If

σ,-, (Kj) = T or σ i2 (Jζ}) = T then [10, Lemma 2.2] implies that o^^Kj) is a diagonal

subgroup ofTxT isomorphic to T. Suppose that this is the case. By assumption, there

are 7 l , y2, y3, U € { 1 , . . . Λ}\{j] such that σ ^ J ^ J S σ / 2 ( ^ 2) ^ ^ a n d σ Z l ( ^ 3 ) ^

σ, 2(-K}4) = 5 . Nov/KjiKjt Γ\Kj2ΠKj3Γ)Kj4) =M, and so applying the projection O{il)/2}

gives

Γ x Γ = ΠA >3

On

and

the

σ

so

other hand,

{iuii}(KJιnKJ2

we obtain

TxT =

nκj4) ζ (σ. , (^ y i) nσ,,(K h)) x (σ , 2 (^ 2 ) nσ,-

) Π σ Z l
x (σ/2(K j2) nσ / 2

(3)

Note that (σ/, (^-J n σ , - , ^ ) ) x (σ,-^^) Πσ ί 2 (^ 4 )) ^ (^Π5) x (^Π5). Therefore (3)

is a factorisation of the characteristically simple group T x T in which one factor is a di-

agonal subgroup and the other factor is the direct product of two isomorphic subgroups.

Therefore [10, Theorem 1.5] applies and we find that σ ^ ^ J ί l σ , , ^ ) has to be a
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maximal subgroup of T. On the other hand, A7lAy3 = M implies σ, , (Ay, )σ, , (Ay3) = T,

and so σ, , (ΛL/, ) Π σ , , ^ ) is properly contained in σ^Ay,) and σ/,(Ay3). This is a

contradiction, and so each of σ, , (Ay), σ, 2 (Ay) is isomoφhic to one of A, B, or C.

Suppose without loss of generality that σ, , (Ay) =A. Then there are indices j \ , j'2,

73,74 e {1,... ,i}\{J} such that σ / l (A,,) *oh{Kh) ^5andσ,,(Ay 3 ) *ci2{KJ4) ^C.

The defining properties of Cartesian systems imply that

{*{hh}(Kj)^h (*/i) X M * * ) * ^ (Ay3) X σ, 2(Ay4)}

is a strong multiple factorisation of T x Γ, as defined in [10]. However, [10, The-

orem 1.7] implies that (2) holds, and we assumed that this was not the case. Thus

If T is as in row 2 then σ, (Ay) is a perfect group, for all / G {1, . . . , k} and j G

{1 , . . . , £ } , and so A, = σj (Aj ) x x σ*(A, ). Let us now suppose that T is as in row 1

and set Az = σi (A,) x x σ*(A|) for all i. Since fl/A, = H; A; (see [1] page 181), it

follows that 9ί — {K\,... , A^} is a Cartesian system of subgroups for M. Therefore

M:
I

n*
ί=l

Aί:
£

ι=l i=\

which forces \M: A, | = |Λ/: A2|, and hence Az = A,- for all ί.

(c) Finally let T be as in (c), and let us show that (^(W), T ) is a suitable ordered

triple design. It is clear that T C %o{W)(3\ Note that G ω is transitive on ^ ( F F ) . Sup-

pose that T\,..., Tk are the simple direct factors of M. If g G G ω and /1, j'2 € {1 ? ? £}

such that 7* = 7}2, then^ S σ,-, (Aσ ( / l )) S σZl (Afl(z } ) g = σ/2 ( (A f l ( / l ) )
g ), and soK a { h ) =

(A α ( z i ) )
g . The same argument shows that Kb{h) = (A ό ( / l ) )

g and Kc{h) = {Kc{h))
8.

Hence Tjf = 7 2 implies (Afl(l- ) ,A M i l ) ,A c ( l l ) )
g = (A f l ( z 2 ),AM z 2 ),Ac ( ί 2 )). For each t G T

let It = {Ti \ (Aα(J ),A^,(2),Ac(/)) = ί}. Then {/, | / G T } is a Gω-invariant partition of

{T\,... , 7*} such that the Gω-actions on T and {// | / G T } are equivalent. Since Gω is

transitive on {Tu... , 7*}, we obtain that G ω is transitive on T. Thus (%,(»"), T ) is a

suitable ordered triple design relative to the group π ^ ( G ω ) induced by Gω on %»(}¥).

Since π^(G) = π ^ ( G ω ) , the proof is complete. D

Thus each W G ^ G such that π^(G) is transitive and c(G,W) = 3 gives rise to

a suitable ordered triple design H relative to Kψ(G). In addition, for this to occur the

simple direct factor T of M and the three subgroups A,B,C such that AΠBΓ\C=Ci (Mω)

are restricted to those given in one of the rows of Table 1. In the next section we give

a construction for such groups G to demonstrate that each T,A,B,C given in Table 1

and each suitable ordered triple design (Ω, T) relative to a subgroup H of SymΩ can

occur in Theorem 6. The groups will be wreath products as defined above.



Ordered Triple Designs and Wreath Products of Groups 111

4 The construction

Let Γ, A, B, C be as in one of the rows of Table 1, let (3C,T) be a suitable ordered
triple design relative to a subgroup H of Sym 30 and set ί = 19(] and k = |T | . We may
assume without loss of generality that % = {1,... ,ί}. Set Δ = {(^Π5ΠC)x | x G Γ},
so Γ acts transitively on Δ by right multiplication. It follows from Definition 1 that
H acts transitively and faithfully on T, and so we can view H as a subgroup of S*.
Consider the wreath product G — Γwr// = Tk xH defined with respect to this action
of//. Set Ω = Δ*. Then G acts on Ω in its product action. Let M denote the normal
subgroup Tk of G.

Now we use the properties of T wr// discussed in the second paragraph of Section 3.
The group G acts faithfully and transitively on Ω, and M is a transitive normal subgroup
of G. Moreover, since H is transitive on T, H permutes the k coordinate subgroups of
M transitively, and hence M is a minimal normal subgroup of G. Thus G is innately
transitive and M is a transitive, minimal normal subgroup of G. Let γ denote the trivial
coset AΠBΠC in Δ, and set ω = (γ,... ,γ). Then ωeΩ, Mω = (AΓ)BΠC)k and

For each element i G 3C set Kι = Πjer
κij where

if the first coordinate of j is /;
if the second coordinate of j is i;
if the third coordinate of j is i\
otherwise.

Let Ĉ = {K\,... ,Ke}. We claim that 9C is a Gω-invariant Cartesian system for M and
f)jKj = Mω. Let Oi'.M-ϊT denote the i-th coordinate projection mapping (x\,... ,**) ι-»
JC, . First note that the Kf are direct products of their projections and for all ί,

σ ^ i ) n n σ,-(A:*) = A n 5 n c.

Therefore K\ Π Π/Q = (Λ Π5 Π C)* = Mω. The choice of Λ, 5, and C implies that
for/ = 1,... ,

Since σ, (A:7 ) < Kj for each ι, y, it follows that Kj (f]f^jKf) = M for all j . Thus
(1) holds and % is a Cartesian system for M. Let us prove that the set %. is invariant
under conjugation by //. Let i e K and g = H. Then £f = UjerKfj. lfKu = A then
j = (i,ι\f) for some ί', ΐ" G ̂ C and / = (^,//g,///r), and so Kigj8 = ^. Similarly, if
/ξ/ = 5, C, Γ then AT*,* = 5, C, T, respectively. Therefore Kf = Kβ e ^ Hence %
is //-invariant, and, since Mω = (AΓ)BΓ)C)k ^ ΛΓ, for all ί G {1,... ,^}, the set Ĉ is
invariant under conjugation by Gω = Mω//.
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Therefore the conditions of Theorem 5 hold, and there is a wreath product W £ W?G

such that 9t = Xω{W). It follows from the definition of %. that c(G, W) = 3. Finally,

transitivity of H on Hζ implies that G ω is transitive on άζ = %a{W), and it follows from

our comments above that τtw{G) is transitive. Thus all conditions of Theorem 6 hold.

The group G constructed above has the very interesting property that there are

two different maximal subgroups in 7Φ^. The first is the subgroup W in the previous

paragraph, and it is of the form W = SymΓwrS^ where |Γ| = \M: i ζ | (1 < i ^ ί).

It follows from the definition of G that G is contained in SymAwrS*, and so also

SymΔwrSjfc G Ήfc These are necessarily different subgroups, for example c(G, W) = 3,

while c(G, SymΔwrS*) = 1. Thus the set Ω can be identified with both Δ* and Γ*, and

G preserves both of these Cartesian decompositions of Ω.
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