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Abstract

We explore an interesting connection between a family of incidence structures
and wreath products of finite groups.
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1 Introduction

The problem discussed in this paper arose from a study in [2] of the set of primitive
maximal subgroups of a finite symmetric group Sym€Q containing a given subgroup
of SymQ. Application of group theoretic results, depending on the classification of
finite simple groups, reduced the problem of describing one family of such maximal
subgroups to a problem concerning a certain kind of incidence structures. We chose this
topic because of the unexpected links between several types of mathematical objects.

For a finite set Q the maximal subgroups of Sym{2 may be divided into several
disjoint families: intransitive maximal subgroups, imprimitive maximal subgroups, and
several families of primitive maximal subgroups; see [6]. A given permutation group
G on Q may be contained in many maximal subgroups of SymQ. The intransitive and
imprimitive maximal overgroups of G may be determined from the G-orbits and the
G-invariant partitions of 2. However, determining the primitive overgroups of G is a
difficult problem in general. It has been essentially solved in [6] and [9] in the case
where G itself is primitive, and even this case required significant use of the finite sim-
ple group classification. In [2] we were concerned with a more general situation: the
groups G of interest were innately transitive, in other words, they contain a minimal
normal subgroup that is transitive. The maximal overgroups of G studied in [2] were
wreath products in product action (see Section 3 for the definition of wreath products
and product actions). Investigating such overgroups led to a study of certain incidence
structures discussed in Section 2. Their connection with overgroups of innately tran-
sitive groups is described in more detail in Section 3, and a construction is given in
Section 4.
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2 Suitable ordered triple designs

Describing and constructing a certain family of overgroups of innately transitive groups
required incidence structures of the type introduced in the following definition. Note
that a permutation group H < Sym{Q acts naturally on the set

QB) = {(oy,09,03) | 1, 01y, 03 are distinct points of Q}

of triples of distinct points of Q via h : (0t,0,03) — (o, 0k, 0) for all # € H and
(0g,0,03) € Q). We denote by S; the symmetric group on a set of size 3.

Definition 1

(a) An ordered triple design # is a pair (Q2,7) in which Q is a finite set, and 7 is a
subset of 9(3), and for each i € {1,2,3} and each o € Q, the number of triples in T
containing the point o in position i is independent of o, namely it is | 7| /|2|.

(b) An ordered triple design (2, 7) is said to be suitable if there exists H < SymQ
that leaves 7 invariant and is transitive on both Q and 7. For such a group H, the
subgroup A of S3 induced on {a;, 0,03} by the setwise stabiliser Hiq, 00,05} 18 the
same (up to isomorphism) for all triples (o}, 0z, 0t3) € 7. Thus we also say that (Q,T)
is A-suitable relative to H.

(c) If H < SymQ and A4 < S3, such that H is transitive on 2, then an H-orbit T
in Q©) is said to be 4-suitable if, for (a1, 0,03) € T, the setwise stabiliser in H of
{0y, 0,03} induces a permutation group isomorphic to 4 on {ot;,02,03}.

Definition 1(c) enables us to characterise 4-suitable ordered triple designs group
theoretically. In Section 3 we explain how ordered triple designs arose in [2], while
in Section 4 we show that each suitable ordered triple design arises in relation to our
problem.

The proof of the following lemma is easy and is omitted.

Lemma 1

Let H be a transitive permutation group on a finite set Q, let T be an H-orbit in Q©),
and let A < S3. Then T is A-suitable if and only if (Q,T) is an A-suitable ordered triple
design relative to H.

The concepts of generously 2-transitive and almost generously 2-transitive permu-
tation groups were introduced by Neumann [7]. In our terminology, a permutation
group H acting on Q is generously 2-transitive if and only if every H-orbit in Q(3)
is Ss-suitable; and H is almost generously 2-transitive if and only if every H-orbit in
Q) js As-suitable or S;-suitable. It was shown in [7] that each almost generously 2-
transitive group is 2-transitive with the single exception of A;. The classification of
2-transitive groups is a consequence of the finite simple group classification, so the
generously and almost generously 2-transitive groups can be regarded as known.

In our construction of innately transitive groups in Section 4, part of the input data
is an A-suitable ordered triple design relative to H. It turns out that the structure of
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the group that is the result of our construction depends on 4. We were interested in
examples where 4 was either a cyclic group of order 2 or the trivial group. Hence the
question arose as to how prevalent 1-suitable ordered triple designs might be. For some
transitive permutation groups H on a set Q, every H-orbit in Q) is 1-suitable. Such
groups are characterised in Theorem 4 below. Here a permutation group G on a set Q
is said to be semiregular if the only element of G that fixes a point of Q is the identity
element.

Theorem 4
Let H be a transitive permutation group on a finite set Q. Then all H-orbits in Q)
are 1-suitable if and only if |H| is not divisible by 3 and a Sylow 2-subgroup of H is
semiregular.

PROOF. Let us assume that |H| is not divisible by 3, and a Sylow 2-subgroup of H is
semiregular. This implies that an element of H with even order has no fixed points in Q.
Let 7 be an H-orbit in Q) and (x;,%2,%3) € 7. Suppose that g € H and g stabilises
the set ¥ = {x;,%2,%3}, and consider the permutation g’ induced by g on k. Since the
order |g’| of g’ divides the order of g, and hence divides |H|, we have that |g’| # 3. If
|g| = 2 then g has even order and g’, and hence also g, fixes one element of the x;,
which is a contradiction. Hence g’ = 1 and it follows that 7 is 1-suitable.

Suppose now that every H-orbit in Q) is 1-suitable. If |H| is divisible by 3, then
there is an element g € H of order 3. If {k),%;,k3} is a (g)-orbit of size 3, then
(x1,%2,%3) C QB) is not 1-suitable. Hence |H]| is not divisible by 3. Suppose now
that there is a non-identity 2-element g in H that fixes a point k; € Q. Then g* is an
involution, for some &, g" fixes k), and if {k;,x3} isa (g")-orbit in Q with size 2, then
(x1,%2,%3)" C Q) is not 1-suitable. Hence a Sylow 2-subgroup of H is semiregular.
[m]

The family of groups that satisfy the conditions of Theorem 4 contains some prim-
itive and some insoluble examples, though most groups in this family are imprimitive
and soluble.

Remark 1
Let H satisfy the conditions of Theorem 4.

(a) The only finite simple groups T for which 3 does not divide |T'| are the Suzuki
groups Sz(g), where g = 224! > 8; see pages 8-9 of [5]. So if H is insoluble then
the non-abelian composition factors of H are all isomorphic to Sz(g) for various g.
There are certainly some insoluble examples H. For instance if H = Sz(q), and L is
any subgroup of H such that |L| is odd, then the action of H by right multiplication on
{Lx | x € H} satisfies the conditions of Theorem 4.

(b) A transitive permutation group H is primitive on Q if and only if the stabiliser
Hy in H of a point o € Q is a maximal subgroup. The conditions in Theorem 4 are
equivalent to requiring 3 { |[H| and 2 { |Hy|. Since all maximal subgroups of Sz(q)
have even order (see [11]), none of the examples given in paragraph (a) are primitive.
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Indeed, it is not difficult, using the O’Nan-Scott Theorem (see Theorem 4.1A of [4]),
to show that if H is primitive and satisfies the conditions of Theorem 4, then H is a
semidirect product N x L where N = ZZ, with p a prime, p # 3, and L < GL4(p), such
that gcd(6,|L|) = 1 and L leaves no non-trivial, proper subspace of Zf, invariant. If
d = 1 then any subgroup L with gcd(6,|L|) = 1 gives an example. Also if 4 > 2 and
p? — 1 has a prime divisor 7 > 5 such that » does not divide p® — 1 for any a < d — 1
then GL4(p) contains a cyclic subgroup of order r that satisfies these conditions. Such
a prime divisor always exists unless p? = 64 or d = 2 and p is of the form 293% — 1 for
some a, b; see [12].

Not every transitive group H gives rise to a 1-suitable orbit 7. If H is 3-transitive
on Q then the setwise stabiliser of each triple {0, B,Y} induces the symmetric group
S3 on {0, B,Y}, and so 3-transitive groups have no 1-suitable orbits on triples. In [8]
a transitive permutation group H on a set Q was defined to be a three-star group if
for all 3-subsets ¢ of Q the setwise stabiliser H, does not fix ¢ pointwise. Thus H is a
three-star group if and only if it has no 1-suitable orbit in Q(3). Each 3-transitive group
is a three-star group, and there are other examples, for example the group H = PSL4(q)
(d > 3 and g a prime-power) acting on the set Q of 1-dimensional subspaces of the
underlying d-dimensional vector space. An investigation of finite three-star groups by
P. M. Neumann and the first author is in progress [8]. It has been shown in particular
that primitive three-star groups have rank at most 3, but a complete classification of
finite three-star groups is yet to be achieved.

3 Embedding permutation groups into wreath
products

Let I" be a finite set, L < SymT, £ > 2 an integer, and H < Sy. The wreath product LwrH

is the semidirect product L¢ x H where for (xi,... ,x;) € L* and 6 € Sy, (x1,... ,x¢)° =
(¥16-15- - - yXgg-1)- The product action of Lwr H is the action of LwrH on I'* defined by
(Yl’ tte ”Ye)(XI " VX()O = ’Y‘:;’:l‘ It 77:’60__1' )

for all (yy,... ,Ye) € T¢, (x1,...,x;)0 € LwrH.

The following couple of remarks give a summary of the elementary properties of
wreath products and product actions. The interested reader will find the proofs of
these comments in Section 2.7 of the book by Dixon and Mortimer [4]. If y € T then
(Y,-..,Y) €T set @ = (y,...,7). The stabiliser (LwrH), in LwrH of o is the sub-
group (Ly)! x H = LywrH, where Ly is the stabiliser of yin L. (It is easy to see that
normalises (Ly)¢, and so (Ly)¢ x H is indeed a subgroup of LwrH.) The subgroup L* is
normal in Lwr H and is transitive on I'¢ if and only if L is transitive on I. Moreover no
non-identity element of LwrH stabilises all points of I'¢. In other words, the product
action of LwrH on I'¢ is faithful. Therefore LwrH can be considered as a permutation
group on I'¢.
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If |T'| > 5 then SymT'wrS, is a maximal subgroup of Sym (I'¥), and is primitive on
I'¢. The subgroups of a finite symmetric group SymQ of the form Sym "'wrS,, where Q
can be identified with I'¢ in such a way that SymI"'wrS, acts on I'¢ as above, form one
of several classes of primitive maximal subgroups of Sym(2, identified by the O’Nan—
Scott Theorem; see [6]. Thus an important part of classifying the primitive maximal
subgroups of SymQ containing a given (innately transitive) subgroup G is finding all
ways of identifying Q with a Cartesian product I' with £ > 2 and |T'| > 5, so that G acts
as a subgroup of SymI'wrS, in product action.

For the rest of this section suppose that G is an innately transitive group on a finite
set Q and that M is a non-abelian, transitive, minimal normal subgroup of G. Let W5
be the set of primitive maximal subgroups # of SymQ such that /¥ is a wreath product
in product action and G < .

Let W € Ws. Then W = SymI'wrS, for some I" and £ > 2, and we can identify Q
with the Cartesian product It It was proved in [3] that M < (Sym I‘)( . Let o be a fixed
element of Q, say ® = (Y1,...,Ye), and fori = 1,... ,£ let K; = M,,. It was shown in [3]
that the set G, (W) = {Ki,...,K¢} is invariant under conjugation by G, the K; have
the same size,

4
(Ki=M, and K,-(ﬂK,—):M. 1)
i=1 J#I

In general we say that a set X = {Kj,...,K;} of subgroups of M is a Cartesian
system of subgroups for M if |K;| = |K;| forall i, j € {1,...,£} and there is some @ € Q
such that (1) holds. Cartesian systems provide a way of identifying the subgroups in
Wg from information internal to G.

Theorem 5 ([3])
For a fixed € Q the map W — K, (W) is a bijection between the set W and the set
of Gy-invariant Cartesian systems X of subgroups for M such that (\xex K = M.

Fix W € Wg, say W = SymT'wrS, for some I"'and £ > 2, and let ty : W — S, be the
natural projection. Then 7y (G) is a subgroup of S,. Moreover, since M is transitive on
Q, we have G = MGy, and since M < (SymT')¢ = kernw, nw (G) = tw (Gy,). Thus

gives rise to an action of G, on {1,...,£}. It was proved in [3] that the G-actions on
{1,...,£} and on the Cartesian system X, (W) are equivalent. It can also be shown that
7w (G) has at most 2 orbits in {1,...,£}, and a description of the maximal subgroups

W € W; for which ntw (G) is intransitive on {1,...,£} is given in [2]. In this paper
we are interested in the remaining case, namely in primitive maximal subgroups W €
W5 where ny (G) is transitive on {1,...,¢}. This is equivalent to requiring G, to be
transitive on the corresponding Cartesian system X, (W).

Suppose that M = T* where T is a finite, non-abelian, simple group and £ > 1, and
let 6; : M — T denote the i-th coordinate projection map (¢),...,4) — t;. Let W € W
and set X, (W) = {Kj,...,Kz}. The properties of Cartesian systems imply that for all



108 C. E. Praeger and C. Schneider

i<kand j </

ci(K;) (ﬂ Gi(Kj')) =T

J#E]

Thus it is important to understand the following sets of subgroups:
% = {GI(KJ) I .]= la "ea oi(Kj) # T}

The set ¥ is independent of i up to conjugation by G, in the sense that for all i}, i €
{1,... ,k} there is a g € G, such that ;, = 7 = {L# | L € F;, }. Moreover, using the
finite simple group classification, it was shown in [1] that the number of indices j such
that 6;(K;) € % is at most 3. It is easy to see that this number is also independent of
the choice of ®, and we denote this number by ¢(G, ). In [2] the study of subgroups
W € W for which Ty (G) is transitive is split into several cases corresponding to the
value of ¢(G,W) € {0,1,2,3} and to the group theoretical structure of the Cartesian
system elements. In the case when ¢(G, W) = 3 we prove the following theorem.

Theorem 6

Suppose that G is an innately transitive permutation group with a non-abelian, tran-
sitive, minimal normal subgroup M, and suppose that W € W such that nw(G) is
transitive. Let {Kj,...,K;} be the corresponding Cartesian system K, (W) for a fixed
® € Q, and suppose that ¢(G,W) = 3. Then the following hold.

(a) The isomorphism type of the simple direct factor T of M and those of the sub-
groups A, B, and C in ¥; are as in Table 1.

(b) Forj=1,...,£,061(K;) x--- xox(K;)' <K; and if T is as in row 1 or row 2 of
Table 1 then 61(K;) x --- x 6k(K;) =K.

(c) Fori=1,... ,kleta(i), b(i), c(i) € {1,... ,£} be such that 6;(K,(;)) = 4, 6:(Ky(;))
= B, and O’i(Kc(,-)) =C, and set T = {(Ka(i),Kb(i)ch(i)) | i=1,...,k}. Then
(% (W), T) is a suitable ordered triple design relative to the faithful action of
7w (G) on Ko (W).

PROOF. Suppose that M = T* for some k and for i = 1,... ,k let 6; : M — T be the
i-th coordinate projection defined by o;(x,... ,xx) = x;. Also for iy, ip € {1,... ,k} we
define 6y, ;) : M = T x T by G{,-h,-z}(xl,... WXk) = (X0, %)

(a) By (1), K (N Km) = M for all j, and hence

Gi(Kj) (n G,‘(Km)) =Ci(M) =T for i= 1, ,kandj: 1,... ,e.
m# j
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T A B C

1] Spsa(2), a>2 | Spy,(4).2 0,,(2) 0.,(2)

2 PQs(3) Q;(3) | Z§xPSLy(3) | PQs(2)

3 Sps(2) G2(2) Og (2) 0z (2)
G2 | 0;(2) 0.2
G2 | 0,2 072
G2(2) O, (2) 07 (2)

Table 1: Strong multiple factorisations {4, B,C} of finite simple groups T

Thus if % = {4,B,C} for some i then the set {4, B,C} is a strong multiple factorisation
of T (see [1] for definitions), and, using [1, Table V], we obtain that T, 4, B, and C
must be as in one of the lines of Table 1.

(b) Suppose that F; = {4,B,C} for some subgroups 4, B, and C of T. We see from
Table 1 that A, B', and C’ are perfect groups. Moreover for all i € {1,... ,k} we have
that either o;(K;) = T, or 6;(K]) is isomorphic to one of 4, B, and C. We show next
that

1K) x---x oK) <K; for i=1,...,¢L

Since 0;(K)' is a perfect group, for all i and j, it follows from [10, Lemma 3.2] that we
only have to prove that

G,’l(Kj)lXG,‘z(Kj)Igc{ihiz}(Kj) for j=1,...,€andi1, 126{1,,k} (2)

Suppose that j € {1,...,£} and i}, i> € {1,...,k} are such that (2) does not hold. If
0;,(Kj) =T or 6;,(K;) = T then [10, Lemma 2.2] implies that 6;, ;,1(K) is a diagonal
subgroup of T x T isomorphic to 7. Suppose that this is the case. By assumption, there
are ji, j2, Jj3, ja € {la- . ,E} \ {.1} such that 6;, (Kjl) =0, (sz) =4 and 0;, (KJJ) =
0,(Kj,) = B. Now K;(K;, NK}, NK;; NK;,) = M, and so applying the projection 6;, ;,}
gives

TxT= G{il,iz}(Kj)G{iI,iz}(Kjl ﬂsz ﬂKjJ ﬂKﬂ).

On the other hand,
Oiin} (K NKjy NK; NK;) < (04 (Kjy) N3y (K )) % (05 (K ) N0, (Ki))
and so we obtain
T x T = oy, ,}(K)) (04 (Kjy) N o5, (Kj)) x (64, (Kj) N0, (K))) - 3

Note that (6;, (K;,) N0;,(K}3)) % (05,(K},) N0,(K},)) = (ANB) x (AN B). Therefore (3)
is a factorisation of the characteristically simple group 7 x T in which one factor is a di-
agonal subgroup and the other factor is the direct product of two isomorphic subgroups.
Therefore [10, Theorem 1.5] applies and we find that o, (K};,) No;, (Kj;) has to be a
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maximal subgroup of T. On the other hand, K;,K;, = M implies o;, (K;,)0;, (K;;) =T,
and so o;,(K;,) No; (K};) is properly contained in o, (K;,) and o;(K);). This is a
contradiction, and so each of 6;, (K}), 6;(K}) is isomorphic to one of 4, B, or C.

Suppose without loss of generality that 6;, (K;) = 4. Then there are indices ji, j2,
J3, J4 € {1, ,E}\{j} such that G (Kjl) %’G,'Z(sz) = B and O (KjJ) = O'iz(Kj4) ~C.
The defining properties of Cartesian systems imply that

{o{il ,iz}(Kj)’Gil (an) X Oi, (sz)aoix (Kja) X Oj, (Kj4)}

is a strong multiple factorisation of T x T, as defined in [10]. However, [10, The-
orem 1.7] implies that (2) holds, and we assumed that this was not the case. Thus
0'1(]{,')’ X e X Gk(K,‘)’ < K,'.

If T is as in row 2 then o;(K) is a perfect group, for all i € {1,... ,k} and j €
{1,...,£}, and so K; = 01 (K;) X --- X ok(K;). Let us now suppose that T is as in row 1
and set K; = 01(K;) x -+- x 0x(K;) for all i. Since N;K; = N;K; (see [1] page 181), it
follows that X = {K),...,K;} is a Cartesian system of subgroups for M. Therefore

14

ﬁlM:K,-[ = ,M: Nk
i=1

{
= H]MK,I,
i=1

i=1

=|M;r‘m,.

i=1

which forces |M : K;| = |M : K;|, and hence K; = K; for all i.

(c) Finally let 7 be as in (c), and let us show that (X, (W), T) is a suitable ordered
triple design. It is clear that T C %, (#)(®). Note that G, is transitive on X, (W). Sup-
pose that T7,... , Ty are the simple direct factors of M. If g € G, and iy, i € {1,... ,k}
such that Tf = T;,, then 4 2 6;, (Ko(,)) = 0, (Kagiy))® = 0, ((Kagi))®)» and s0 Kyiy) =
(Ka(,-‘))g. The same argument shows that Kb(iz) = (Kb(,-l))g and Kc(iz) = (Kc(i,))g.
Hence T = T;, implies (Ko, Ka(i)»Ke(ir))® = (Kain)»Kb(in)»Ke(in))- For each t € T
let I = {T; | (Ka(i)> Kn(i),Ke()) = t}. Then {I, | t € T} is a Gy-invariant partition of
{T,..., T} such that the Gy-actions on T and {/; | ¢ € T} are equivalent. Since G, is
transitive on {7,..., T}, we obtain that G, is transitive on 7. Thus (X,(W),T) is a
suitable ordered triple design relative to the group w (G,) induced by G, on Ky, (#).
Since w (G) = nw(Gy,), the proof is complete. a

Thus each W € W such that ny (G) is transitive and ¢(G,W) = 3 gives rise to
a suitable ordered triple design # relative to 7ty (G). In addition, for this to occur the
simple direct factor T of M and the three subgroups 4, B, C such that ANBNC = 6;(My)
are restricted to those given in one of the rows of Table 1. In the next section we give
a construction for such groups G to demonstrate that each T, 4, B, C given in Table 1
and each suitable ordered triple design (L2, 7) relative to a subgroup H of SymQ can
occur in Theorem 6. The groups will be wreath products as defined above.
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4 The construction

Let T, 4, B, C be as in one of the rows of Table 1, let (X,T) be a suitable ordered
triple design relative to a subgroup H of Sym X, and set £ = | X| and k& = |T|. We may
assume without loss of generality that X = {1,...,£}. Set A= {(ANBNC)x |x € T},
so T acts transitively on A by right multiplication. It follows from Definition 1 that
H acts transitively and faithfully on 7, and so we can view H as a subgroup of Sy.
Consider the wreath product G = TwrH = T* x H defined with respect to this action
of H. Set Q = A*. Then G acts on Q in its product action. Let M denote the normal
subgroup T* of G.

Now we use the properties of T wr H discussed in the second paragraph of Section 3.
The group G acts faithfully and transitively on €2, and M is a transitive normal subgroup
of G. Moreover, since H is transitive on 7, H permutes the k coordinate subgroups of
M transitively, and hence M is a minimal normal subgroup of G. Thus G is innately
transitive and M is a transitive, minimal normal subgroup of G. Let y denote the trivial
coset ANBNC in A, and set ® = (Y,...,7). Then o € Q, M, = (ANBNC)* and
Go=MuH.

For each element i € X set K; =[] jc7 Kij where

if the first coordinate of j is i;

if the second coordinate of ; is i;
if the third coordinate of j is i;
otherwise.

ij=

N O Do

Let X = {Ki,...,K¢}. We claim that X is a Gy-invariant Cartesian system for M and
N;Ki =M. Let 6;: M — T denote the i-th coordinate projection mapping (x,... ,Xx) —
x;. First note that the X are direct products of their projections and for all i,

oi(Ky)N---Noi(Ky) =4ANBNC.

Therefore KyN---NKy, = (ANB nc)" = My,. The choice of 4, B, and C implies that
fori=1,...,kand j=1,...,¢

ci(K;) (ﬂ Gi(Kj')) =

J'#]

Since 6;(K;) < K; for each i, j, it follows that K (N 4 Ky) = M for all j. Thus
(1) holds and :7( is a Cartesian system for M. Let us prove that the set ‘.7( is invariant
under conjugation by H. Leti € X and g = H. Then K¢ =] jeT Kg If K;j = A then
j = (i,#,i") for some #, i € K and ;& = (i8,/"%,"%), and o K,gjg =4. Slmllarly, if
Kij =B, C, T then Kigje = B, C, T, respectively. Therefore K =K € 17( Hence 9(
is H-invariant, and, since M, = (4 ﬂBﬂC)k <K foralie {1 ..., 2}, the set K is
invariant under conjugation by G, = M,H.
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Therefore the conditions of Theorem 5 hold, and there is a wreath product W € Wg
such that X = %, (W). It follows from the definition of X that ¢(G,W) = 3. Finally,
transitivity of H on X implies that G, is transitive on f( = Ku(W), and it follows from
our comments above that 1ty (G) is transitive. Thus all conditions of Theorem 6 hold.

The group G constructed above has the very interesting property that there are
two different maximal subgroups in Wg. The first is the subgroup W in the previous
paragraph, and it is of the form W = SymI'wrS, where I'| = |M : K;| (1 <i < ).
It follows from the definition of G that G is contained in SymAwrS;, and so also
SymAwrSy € Wg. These are necessarily different subgroups, for example ¢(G, W) = 3,
while c(G,SymAwrS;) = 1. Thus the set Q can be identified with both A* and I't, and
G preserves both of these Cartesian decompositions of .
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