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1 Introduction

The origin of the term “ancillary statistics” is clear and well known. It was
introduced in 1925 by Ronald A. Fisher in his paper “Theory of Statistical
Estimation” (Fisher, 1925); it then lay dormant for nearly a decade until
Fisher returned to the topic in his “Two new properties of mathematical
likelihood,” which was sent to the Royal Society of London in December
1933 and published as Fisher (1934). The term arose in these two papers
in Fisher’s characterization of statistical information and its relationship to
the likelihood function. When a single sufficient statistic existed it would
contain all of the information in the sample and serve as the basis for a fully
efficient estimate, that estimate to be found from differentiating the likeli-
hood function to find the maximum. When this was not the case, auxiliary
or “ancillary” information was needed and could frequently be obtained from
statistics arising from looking more closely at the likelihood in the neighbor-
hood of the maximum, in particular at the second or higher order derivatives
there.

Fisher expanded upon his earlier usage a year later, treating “ancillary”
as a broader term of art not specifically wedded to local behavior of the
likelihood function in “The Logic of Inductive Inference,” read to the Royal
Statistical Society on December 18, 1934 and published with somewhat ac-
rimonious discussion as Fisher (1935). Partly as a result of this broadened
view, the precise nature of the concept, and hence of its history both be-
fore and after the introduction of the term, has been elusive. In these early
publications (and indeed also in later ones), Fisher explained the term most
clearly by describing what “ancillary statistics” accomplished rather than
what they were: They supplied auxiliary information to supplement the
maximum likelihood estimate. In Fisher (1935) he wrote that when the best
estimate fails to use all the information in the sample, when it “leaves a
measurable amount of the information unutilized,” he would seek to supple-
ment the estimate to utilize that information as well. He asserted that “It
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is shown that some, or sometimes all of the lost information may be recov-
ered by calculating what I call ancillary statistics, which themselves tell us
nothing about the value of the parameter, but, instead, tell us how good an
estimate we have made of it. Their function is, in fact, analogous to the part
which the size of our sample is always expected to play, in telling us what
reliance to place on the result. Ancillary statistics are only useful when dif-
ferent samples of the same size can supply different amounts of information,
and serve to distinguish those which supply more from those which supply
less.” No specific general guide was provided, although examples of their
use were given, use that invariably involved conditional inference given the
ancillary statistics.

In 1934 Fisher had included as a prime example the estimation of the
location parameter of a double exponential distribution. There the maxi-
mum likelihood estimate, the sample median, is neither sufficient nor fully
efficient. “The median is an efficient estimate in the sense of the theory of
large samples, for the ratio of the amount of information supplied to the
total available tends to unity as the sample is increased. Nevertheless, the
absolute amount lost increases without limit.” (Fisher, 1934, p. 300). By
conditioning upon the sample spacings — what Fisher called the sample
configuration — he was able to show in great detail that the median was
conditionally efficient on average, and he noted that this conclusion extended
to more general location-scale families (Hinkley, 1980).

A year later, Fisher (1935) illustrated the ancillarity idea through a new
example, testing for homogeneity in a 2 x 2 table conditionally upon the
marginal totals, an example that as we shall see introduced other complica-
tions to the discussion. In concluding that paper he indicated that ancillary
statistics would be useful in the case, “of common occurrence, where there
is no sufficient estimate.” Then “the whole of the ancillary information may
be recognized in a set of simple relations among the sample values, which I
called the configuration of the sample.” These statements were not clear to
the audience at the time. The discussants who commented on this portion of
his paper were distracted by other features of the example; only J. O. Irwin
mentioned the term ancillary and then simply to say “it was not absolutely
clear how one should define an ancillary statistic.”

In a few scattered comments on the term in later writings, Fisher added
little by way of elaboration. Some later writers, such as Cox (1958), Cox
and Hinkley (1974, pp. 31-35), Lehmann and Scholtz (1992), and Welsh
(1996, p. 383), have added clarity and specificity to the definition in cases
such as where a minimal sufficient statistic exists; others, such as Basu
(1964), Buehler (1982, with discussion), and Brown (1990, with discussion),
have pointed to difficulties with the concept due to the non-uniqueness of
ancillary statistics in some even well-structured parametric problems, or to
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paradoxes that can arise in a decision theoretic framework. Despite these
misgivings and the vagueness of the definition, the notion has come to be key
to powerful ideas of conditional inference: When an ancillary statistic can
be found (usually taken to be a part of a sufficient statistic whose marginal
distribution does not depend upon the parameter of interest), it is best (or at
least prudent) to make inferences conditional upon the value of the ancillary
statistic.

The goal here is not to explore the history of ancillarity subsequent to
Fisher (1934, 1935), still less to attempt a rigorous and clear explication of
the concept and its realm of appropriate application (for which see Fraser,
1979, Lehmann and Scholtz, 1992, Lloyd, 1992, and the recent book by
Barndorff-Nielsen and Cox, 1994). Rather it is to present three earlier ex-
amples that bear on the understanding of the concept, examples which may
help us better understand Fisher’s idea as a not-fully crystallized recognition
of a common thread in a variety of problems in statistical inference.

2 Laplace and the Location Parameter Problem, 1772-1777

It is common today, even where there is disagreement about the extent and
usefulness of the idea of ancillarity, to adopt as sound statistical logic some
of its consequences when considering location parameter problems. For ex-
ample, in making inferences about u in a random sample from a Uniform
[u — h,u + h] distribution with known h, where by inference we mean esti-
mation and the assessment of the accuracy of the estimate of u, we should
condition on D = X™aX — X™in since the usual estimator (X™aX 4 xmin) /2
must invariably lie within A — D/2 of the unknown p. Any assessment of the
accuracy of this estimator that did not condition on the observed value of D
could lead to absurd results (e.g. Welsh, 1996, p. 157). More generally (for
other population distributions) we should assess accuracy conditional upon
the residuals or the spacings between the observations. This practice has a
long and distinguished provenance.

In subjecting the location parameter problem to formal treatment, nota-
tion is necessary, and the choices of notation will reflect, however imperfectly,
conceptual understanding. One common choice today is to introduce a sym-
bol for the target value, say p, and then describe the n observations X; in
terms of 4 and the errors of observation, say e;, by X; = p + e;. The dis-
tribution of errors, a probability density, is represented by ¢(e), and so the
likelihood function is [[i=; ¢(X; — ).

This notation reflects in principle the approach taken by some early
mathematical statisticians. For example, in 1755 Thomas Simpson worked
with the errors and the error distribution in showing that an arithmetic mean
would improve upon a single observation. Simpson’s approach in terms of
errors made the inverse step to theoretical statistical inference an easier one,
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as I have argued before (Stigler, 1986a, pp. 88ff.). Indeed, this approach un-
derlies Fisher’s fiducial probability and Neyman’s confidence intervals. But
it is not the only possible approach, nor, since the errors are not directly
observable, is it even in practical matters necessarily the most natural. Oth-
ers, and Laplace was a significant example, chose to frame the problem in
a way where conditioning on ancillaries was much more tempting, in terms
of the correction to be made to the first observation and the distances be-
tween the observations. This tendency was already present in Laplace’s first
serious memoir on mathematical statistics (Laplace, 1774; translated with
commentary in Stigler, 1986b, see also Stigler, 1986a, pp. 105ff., and Hald,
1998, p. 176), but for present purposes it is clearer in a memoir Laplace
read to the Académie des Sciences on March 8, 1777. The memoir remained
unpublished until 1979 (Gillispie, 1979).

Laplace’s memoir is unusual in presenting two approaches to the estima-
tion problem, from two different, clearly delineated statistical vantage points.
He explained that one might address the problem of choosing a mean from
either an a priori perspective (before the observations have been made), or
a posteriori (after they have been made). In the latter case — the one that
concerns us here — he described the problem of choosing a mean as one of
“determining a function of the observations a posteriori, that is to say taking
account of the respective distances between the observations” (Laplace, 1777,
p. 229). He provided interesting analyses from both perspectives leading to
quite different results; we focus here upon the second.

Laplace began as we might now with the observations (he wrote a, a’, a”,
..., where we write X;, X9, X3,...), but in one section of the memoir he re-
expressed these data in a different notation. He let  denote the correction
that would be applied to the first observation to arrive at the true value;
in our notation £ = p — X1, s0 X; + = = u. And he let ¢®,q® ¢ .
represent the distances of the second and subsequent observations from the
first. We could write these as q(i) = X;+1 — Xi1. The likelihood function
would then become ¢(—z)@(q™") — z)¢(¢'? —z) - - -. Laplace quoted his 1774
“principe général” for reasoning to inverse probabilities — what we would
now describe as Bayes Theorem with a uniform prior distribution; see Stigler
(1986a, pp.100ff.; 1986b). He concluded that the probabilities of the differ-
ent values of the correction z given the respective distances between the
observations ¢1), ¢®,¢® ... would be proportional to this same function,
d(—z)d(q¢") — 2)$(¢'® — z)---. This agrees with the result that Fisher ob-
tained in 1934 for the case of the double exponential or Laplace density
%e"“', as the conditional distribution of the difference between the median
and the location parameter given the spacings. Fisher had noted that in
general this “frequency distribution ... is the mirror image of the likelihood
function.” (Fisher, 1934, p. 303).
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As an example Laplace considered a sample from a Uniform [u—h, u+h|
distribution, A known. He wrote,

Suppose for example that the law of facility of errors is constant and
equal to K, that it is the same for all observations, and that the errors
are each taken between t = —h and ¢t = h; a(® 1) being the time fixed
by the last [largest] observation, we set a1 —M =hand N—a=h
[that is, M = a®1Y — h and N = a + h, where a is the minimum
observation]. It is clear that the true time of the phenomenon falls
necessarily between the points M and N; further that the probability
that each of the intermediate points will be this instant is proportional
to K™; ... and that the mean we need to choose, X, is evidently the
midpoint of the line segment (a,a(®1)), and so in this case, to take the
mean among n observations it is necessary to add to the smallest result
half the difference between the smallest and the largest observations.”
(Laplace, 1777, p. 241)

He thus concluded that the posterior distribution for the true value was
Uniform [X™2% — p, X™" 4 h] leading him to suggest the midrange (that
is, the posterior mean) as a posterior estimate. Some of Laplace’s language
was suggestive of Fisher, particularly his conditioning upon the spacings
between the observations (“en ayant égard aux distances respectives des
observations enter elles”), which was echoed by Fisher’s “configuration of
a sample.” Laplace’s perspective was closer to a Bayesian analysis than a
Fisherian fiducial one, but then perhaps so was Fisher’s in his initial foray
into likelihood-based inference in 1912, before he took great pains (not always
successfully) to distinguish his approach from others from 1922 on; see Zabell
(1989, 1992), Edwards, (1997a,b), Aldrich, (1997).

3 Edgeworth, Pearson, and the Correlation Coefficient

Another area in which the idea of ancillarity has been appealed to is in in-
ference about the parameters of a bivariate normal distribution,where the
values of (say) X may be treated as ancillary with respect to inference about
E(Y | X) = aX +b, justifying conditioning upon the X’s (or sufficient statis-
tics for the distribution of the X’s) whether the X’s are random or assigned
by experimental design (see, for example, Cox and Hinkley, 1974, pp. 32-33).
There is interesting historical precedent for this. In 1893 Francis Edgeworth
considered the estimation of the correlation p of n bivariate normal pairs
(X;,Y;), assumed centered at expectations and measured in standard units,
effectively marginally N(0,1) (Edgeworth, 1893; Stigler, 1986a, pp. 321-
322). Of course in this case E(Y | X) = pX. Edgeworth considered the
pairs with the X’s “assigned”, that is he conditioned upon the X’s, so that
for X not equal to zero the conditional expected value of Y/X would be p,
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and the conditional variance of Y/X would be proportional to 1/X2. He
then found the optimal weighted average of the Y/X’s to be weighted by the
X?’s, and he gave that as the “best” value for p:

(X2 Y/X) XY
NCCIC O

Three years later, Karl Pearson attacked the problem of estimating the
parameters of a bivariate normal distribution directly as a bivariate estima-
tion problem. Approaching the problem from the standpoint of inverse prob-
ability (but in a manner mathematically equivalent to maximum likelihood
estimation), he was led to the estimate of the correlation Y (XY')/noio9,
where he had 02 = ¥ (X?)/n and 03 = ¥ (Y?)/n, in the process blurring
the distinction between these as statistics and as parameters (Pearson, 1896;
Stigler, 1986a, pp. 342-343). Had Edgeworth similarly blurred this distinc-
tion (and to a degree he did, see Stigler, 1986a, p. 322), these estimates
would seem to agree. But while Edgeworth noted this identity on several
occasions, he stopped short of claiming priority. I have a reprint of Edge-
worth’s 1893 paper to which Edgeworth added a manuscript note after he
had seen Pearson’s work. He wrote,

The value of p which I give at p. 101 is the most accurate on the as-
sumption that the best value is a weighted mean of y;/z1,y2/z2,.. ;
Prof. Karl Pearson obtains the same result without that arbitrary as-
sumption. I have proceeded like one who having to determine the most
probable value of the modulus [i.e. standard deviation], for given ob-
servations, ranging under an ordinary Probability-curve [i.e. a normal
density], assumes that the quaesitum [what is desired] is a function of
some mean power of errors and then proves that the most accurate re-
sult is afforded by the second power; Prof. Karl Pearson has proceeded
without any such assumption. F. Y. E. 1896.

Edgeworth made a similar, briefer and less specific, comment in print
that same year (Edgeworth, 1896, p. 534).

Edgeworth had approached the estimation of p conditionally, condition-
ing upon the ancillary X’s, but his method of inference was not Fisherian in-
ference: he estimated p by a weighted average (effectively using least squares
conditionally given the X’s) rather than conditionally employing maximum
likelihood. And there is a good reason why he would not have used maxi-
mum likelihood: For his specification of the problem, with marginal means
equal to zero and marginal variances equal to one, the maximum likelihood
approach leads to algebraic problems; neither the Pearsonian product mo-
ment estimator nor Edgeworth’s version is maximum likelihood. For that
restricted setting, the maximum likelihood estimator of p is the solution of a
cubic equation that resists closed form expression (Johnson and Kotz, 1972,
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p. 105). The same is true whether one proceeds conditionally given the X’s
(as may be sanctioned by appeal to Cox and Hinkley, 1974, pp. 34-35) or
unconditionally. The difficulty stems from the fact that conditionally given
the X’s, not only is E(Y | X) = pX, but the conditional variance 1 — 0
depends upon p as well. Edgeworth had avoided this problem (as he noted)
by restricting the form of his estimator to a weighted average; Pearson (per-
haps inadvertently) had avoided it by allowing the marginal variances to vary
freely in his calculation. In any case, Edgeworth seemingly took conditional
inference here for granted.

4 Galton and Contingency Tables

As I noted earlier, Fisher had in his 1935 paper enlarged upon his broadened
descriptive definition of ancillary statistics with a quite different example,
one that involved testing, not estimation: the application of the concept of
ancillary statistics to 2 x 2 tables. He presented a cross-classification based
upon 30 sets of twins (Table 1), where in each pair one twin was a known
criminal and the remaining twin was then classified as convicted or not. He
supposed for the purposes of the example that the data were “unselected”
and asked if there was evidence here that the “causes leading to conviction”
had been the same for the monozygotic as for the dizygotic twins.

Convicted Not Convicted Total

Monozygotic 10 3 13
Dizygotic 2 15 17
Total 12 18 30

Table 1. Convictions of Like-sex Twins of Criminals. Lange’s data, from Fisher (1935).

Fisher wrote,

To the many methods of treatment hitherto suggested for the 2 x 2 table
the concept of ancillary information suggests this new one. Let us blot
out the contents of the table, leaving only the marginal frequencies. If
it be admitted that these marginal frequencies by themselves supply no
information on the point at issue, namely as to the proportionality of
the frequencies in the body of the table, we may recognize the informa-
tion they supply as wholly ancillary; and therefore recognize that we are
concerned only with the relative probabilities of occurrence of the dif-
ferent ways in which the table can be filled in, subject to these marginal
frequencies. (Fisher, 1935)

He went on to develop his conditional test, showing that the distribution of
the table entries given the marginal totals was a hypergeometric distribution,
independent of the probability of conviction under the hypothesis this is the
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same for both types of twin.

Over four decades earlier, Francis Galton had faced a similar table, and
his analysis sheds interesting light upon Fisher’s. In his study of finger-
prints, Galton had inquired as to the propensity for related individuals to
have similar patterns. As part of this study he presented the data in Table 2
on relationships between the patterns on the right fore-fingers of 105 sibling
pairs (Galton, 1892, p. 172-176; Stigler, 1995; 1999, Chapter 6). To inves-
tigate the degree to which sibling pairs shared the same general pattern of
fingerprint, Galton needed to test these data for evidence of association, to
measure the degree to which the diagonal entries of this table exceed what
they would be, absent any heritable link.

A children
B children Arches  Loops Whorls Totals in B children
Arches 5 12 2 19
Loops 4 42 15 61
Whorls 1 14 10 25
Totals in A children 10 68 27 105

Table 2. Observed fraternal couplets (Galton, 1892, p. 175). The A sibling was distin-
guished from the B sibling in being the first “that happened to come to hand” (Galton,
1892, p. 172; presumably no pun was intended).

Recall that this was eight years before Karl Pearson introduced the Chi-
square test, and 12 years before he applied it to testing independence in cross-
classifications. Focussing entirely upon the diagonal, Galton constructed his
own measure by first determining what the counts would be if the prints were
paired at random. Thus for the first diagonal entry he found the number
19 x 10/105 = 1.7, for the second, 61 x 68/105 = 37.6, and for the third,
27 x 25/105 = 6.2. He labeled these “Random”, and considered them as
the baseline for comparison with the “Observed”; see Table 3. All of the
“Observed” exceeded the “Random”, but was the difference to be judged
large enough to reject the “Random” hypothesis? Galton constructed a scale
using “Random” as the baseline and measuring how large the “Observed”
were in degrees on a centesimal scale, essentially as a percent of the distance
to the “Utmost feasible” as determined from the marginal totals (this being
the minimum of the two corresponding marginal totals). For these data the
degrees are 40°, 19°, and 20°. He made no attempt to assign a probability
to such discrepancies.

Galton’s procedure had one element in common with Fisher’s, and it
was an important one. His measure was, like Fisher’s, conditional upon
the marginal totals. The baseline values were, in common with all analyses
since Karl Pearson, computed as the expected counts under the hypothesis
of random assignment — independence between each of the pair of sibling’s
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A and B both being

Arches Loops Whorls
Random 1.7 37.6 6.2
Observed 5.0 42.0 10.0
Utmost feasible 10.0 61.0 25.0

Table 3. Galton’s test of independence for the fingerprint patterns of fraternal couplets.
On Galton’s centesimal scale, these observed counts are 40°, 19°, and 20° degrees above

the random, higher than in other examples that were based upon a finer classification
(Galton, 1892, p. 176).

patterns. Indeed, I do not know of an earlier example of this calculation
of expected values, at least for tables larger than 2 x 2, although I have
not made an extensive search. But there was one point where Galton de-
parted from Fisher’s program: he expressed a principled reservation about
the appropriateness of one aspect this conditioning on the margins.

When Galton introduced this approach earlier in his book he had quali-
fied it as follows: “Now consider the opposite extreme of the closest possible
relationship, subject however, and this is the weak point, to the paramount
condition that the average frequencies of the A. L. W. classes may be taken
as pre-established.” (Galton’s italics, Galton, 1892, p. 126). To Galton
there was a “self-contradiction” in the assumption that the analysis proceed
conditionally on the observed marginal frequencies, a contradiction that con-
stituted a “grave objection” to his procedure. The problem was that if the
relationship were perfect and all the counts fell on the diagonal, the marginal
totals should agree, but they did not. The problem was particularly apparent
in Galton’s example, where the row and column categories were the same;
indeed, they were based upon the same population and — absent sampling
variation — should have agreed. But the problem holds more generally.
Even in Fisher’s 2 x 2 table the fact that the row totals do not equal the
column totals is prima facie evidence that the relationship is not a perfect
one: The margins do contain information about the degree of association!
Plackett (1977) has noted this with specific reference to Fisher’s data, but
there is a suggestion in Fisher’s wording that he realized it as well. His
statement was conditional is a way that is technically correct even though
misleading: “If it be admitted that these marginal frequencies by themselves
supply no information ..., we may recognize the information they supply as
wholly ancillary” (emphasis added). An unsuspecting reader would read this
as suggesting the supposition clearly held, and would be lured into granting
the premise and so accepting the conclusion of ancillarity. For was that not
the point of the example? As Plackett has shown, however, the amount
of information in the margins is slight, so this conclusion is not seriously
misleading in practice. On this point see Plackett (1977), and particularly
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Barnard (1984) and Cox (1984). It is an extremely subtle point, and the
fact that Galton picked up on it in 1892 is remarkable.

5 Conclusion

Fisher seems to have initially, in 1925, conceived of the ancillary statistics of
a parametric inference problem as being that part of the likelihood function
that varied from sample to sample but was not captured by the location
of the maximum, more specifically as the second and higher derivatives of
the likelihood at the maximum. By 1934 and 1935, with two quite different
and vivid examples in hand that did not fit so easily (if at all) with his
earlier conception, he broadened the definition and made it less specific —
almost qualitative. Fisher had a powerful statistical intuition that worked
best from exceedingly well chosen examples, and in this case his intuition
led him to postulate a concept that indubitably worked well in his exam-
ples but resisted rigorous codification, just as fiducial probability has, and
even as some aspects of maximum likelihood have. Laplace preceded Fisher
down one of his lines, but in a different time and with a different statistical
intuition he did not attempt to abstract from the location problem to more
general considerations. Edgeworth may have had the best appreciation of
the subtleties of statistical theory of anyone between Laplace and Fisher, but
while he found it natural to use conditional inference given the ancillary X’s,
the problem he faced did not in his formulation yield a manageable answer
without the expedient step of restricting the form of the estimator. If he
had treated the more general problem it is tempting to think he might have
reasoned to the Pearsonian estimator without restriction and been inspired
to investigate how far the idea might be generalized. But he did not. Galton
too had a statistical mind of the very first order, and he clearly noted a
problem that Fisher barely hinted at, if that.

Ancillary statistics were an unusual product of an extraordinary statis-
tical mind. The breadth of the conception exceeded (or has so far exceeded)
what is mathematically possible. No single, crisply rigorous mathematical
definition delivers all that Fisher promised. But if his reach exceeded his
(or anyone’s) grasp in this case, it was still very far from a failure. Savage
has called the idea “of more lasting importance than fiducial probability”
(Savage, 1967, p. 467), and while that smacks of faint praise, it need not
have been. Ancillarity has led to a broad collection of procedures that travel
together under the banner of conditional inference; it is an idea that has
been with profit invoked to simplify, to sharpen, to improve inferences in
an even broader list of applications than Fisher envisioned, and can, despite
misgivings about how and when to apply it, be expected to continue to serve
these roles for an indefinite future.



Ancillary History 565

REFERENCES

[1] Aldrich, J., (1997). R. A. Fisher and the making of maximum likeli-
hood 1912-1922. Statistical Science 12, 162-176.

[2] Barnard, G., (1984). Contribution to discussion of Yates (1984).

[3] Barndorff-Nielsen, O.E. and Cox, D.R., (1994). Inference and Asymp-
totics. Chapman and Hall, London.

[4] Basu, D., (1964). Recovery of ancillary information. Sankhya (A) 26,
3-16.

[5] Brown, L.D., (1990). An ancillarity paradox which appears in multiple
regression (with discussion). Annals of Statistics 18, 471-538.

[6] Buehler, R.J., (1982). Some ancillary statistics and their properties
(with discussion). Journal of the American Statistical Association
77, 581-594.

[7] Cox, D.R., (1958). Some problems connected with statistical inference.
Annals of Mathematical Statistics 29, 357-372.

[8] Cox, D.R., (1982). Contribution to discussion of Buehler (1982).
[9] Cox, D.R., (1984). Contribution to discussion of Yates (1984)..

[10] Cox, D.R. and Hinkley, D., (1974). Theoretical Statistics. Chapman
and Hall, London.

[11] Edgeworth, F.Y., (1893). Exercises in the Calculation of Errors.
Philosophical Magazine (Fifth Series) 36, 98-111.

[12] Edgeworth, F.Y., (1896). Supplementary notes on statistics. Journal
of the Royal Statistical Society 59, 529-539.

[13] Edwards, A.W.F., (1997a). Three early papers on efficient parametric
estimation. Statistical Science 12, 35-47.

[14] Edwards, A.W.F., (1997b). What did Fisher mean by “inverse proba-
bility” in 1912-19227?. Statistical Science 12, 177-184.

[15] Fienberg, S.E. and Hinkley, D.V., (1980). R. A. Fisher: An Apprecia-
tion. Lecture Notes in Statistics 1. Springer-Verlag, New York.

[16] Fisher, R.A., (1912). On an absolute criterion for fitting frequency
curves. Messenger of Mathematics 41, 155-160. (Reprinted in:
Fisher (1974) as Paper 1; reprinted in Edwards (1997a).)

[17] Fisher, R.A., (1925). Theory of statistical estimation. Proceedings of
the Cambridge Philosophical Society 22, 700-725. (Reprinted in:
Fisher (1950) as Paper 11; reprinted as Paper 42 in Fisher (1974).)



566 Stephen M. Stigler

[18] Fisher, R.A., (1934). Two new properties of mathematical likelihood.
Proceedings of the Royal Society of London (A) 144, 285-307.
(Reprinted in: Fisher (1950)as Paper 24; reprinted as Paper 108
in Fisher (1974).)

[19] Fisher, R.A., (1935). The logic of inductive inference. Journal of the
Royal Statistical Society 98, 39-54. (Reprinted in: reprinted as Pa-
per 26 in Fisher (1950); reprinted as Paper 124 in Fisher (1974).)

[20] Fisher, R.A., (1950). Contributions to Mathematical Statistics. Wiley,
New York.

[21] Fisher 1974, R.A.. The Collected Papers of R. A. Fisher (eds: J. H.
Bennett). U. of Adelaide Press, Adelaide.

[22] Fraser, D.A.S., (1979). Inference and Linear Models. McGraw-Hill,
New York.

[23] Galton, F., (1892). Finger Prints. Macmillan, London.

[24] Gillispie, C.C., (1979). Mémoires inédits ou anonymes de Laplace sur
la théorie des erreurs, les polynomes de Legendre, et la philosophie
des probabilités. Revue d’histoire des sciences 32, 223-279.

[25] Hald, A., (1998). A History of Mathematical Statistics from 1750 to
1930. Wiley, New York.

[26] Hinkley, D.V., (1980). Fisher’s development of conditional inference.
In Fienberg and Hinkley (1980), 101-108.

[27] Johnson, N.L. and Kotz, S., (1972). Distributions in Statistics: Con-
tinuous Multivariate Distributions. Wiley, New York.

(28] Laplace, P.S., (1774). Mémoire sur la probabilité des causes par les
événements. Mémoires de mathématique et de physique, presentés
a ’Académie Royale des Sciences, par divers savans, & lu dans ses
assemblées 6, 621-656. (Translation: Stigler (1986b).)

[29] Laplace, P.S., (1777). Recherches sur le milieu qu’il faut choisir entre
les résultats de plusieurs observations. In Gillispie (1979), 228-256.

[30] Lehmann, E.L. and Scholz, F.W., (1992). Ancillarity. Current Issues
in Statistical Inference: Essays in Honor of D. Basu (eds: Malay
Ghosh and P. K. Pathak). IMS Lecture Notes Monograph Series
17, 32-51. Institute of Mathematical Statistics, California.

[31] Lloyd, C., (1992). Effective conditioning. Australian Journal of
Statistics 34, 241-260.



Ancillary History 567

[32] Pearson, K., (1896). Mathematical contributions to the theory of
evolution, ITI: regression, heredity and panmixia. Philosophical
Transactions of the Royal Society of London (A) 187, 253-318.
(Reprinted in: Karl Pearson’s Early Statistical Papers, Cambridge:
Cambridge University Press, 1956, pp. 113-178.)

[33] Plackett, R.L., (1977). The marginal totals of a 2 X 2 table.
Biometrika 64, 37-42.

[34] Savage, L.J., (1976). On rereading R. A. Fisher. Annals of Statistics
4, 441-500.

[35] Stigler, S.M., (1986a). The History of Statistics: The Measurement
of Uncertainty Before 1900. Harvard University Press, Cambridge,
Mass..

[36] Stigler, S.M., (1986b). Laplace’s 1774 memoir on inverse probability.
Statistical Science 1, 359-378.

[37] Stigler, S.M., (1995). Galton and Identification by Fingerprints. Ge-
netics 140, 857-860.

[38] Stigler, S.M., (1999). Statistics on the Table. Harvard University
Press, Cambridge, Mass.

[39] Welsh, A.H., (1996). Aspects of Statistical Inference. Wiley, New
York.

[40] Yates, F., (1984). Tests of significance for 2 x 2 tables (with dis-
cussion. Journal of the Royal Statistical Society (Series A) 147,
426-463.

[41] Zabell, S.L., (1989). R. A. Fisher on the history of inverse probabil-
ity. Statistical Science 4, 247-256.

[42] Zabell, S.L., (1992). R. A. Fisher and the fiducial argument. Statisti-
cal Sciencevol 7, 369-387.

DEPARTMENT OF STATISTICS
UNIVERSITY OF CHICAGO
5734 UNIVERSITY AVENUE
CHICAGO, IL 60637

USA
stigler@galton.uchicago.edu





