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Mason and van Zwet (1987) obtained a refinement to the Komlόs, Major, and Tusnady
(1975) Brownian bridge approximation to the uniform empirical process. From this they
derived a weighted approximation to this process, which has shown itself to have some
important applications in large sample theory. We will show that their refinement, in
fact, leads to a much stronger result, which should be even more useful than their original
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1 Introduction and statements of main results

Let C/, Z7i, t/2,..., be independent uniform (0,1) random variables. For each

integer n > 1 let

(1) G f

n(t)=n-15^1{C/i<t}, - o o < t < o o ,
<=i

denote the empirical distribution function based on C/Ί,..., t/n, and

(2) an(t) = V^{Gn{t) - t}, 0 < t < 1,

be the corresponding uniform empirical process. Mason and van Zwet (1987)

proved the following refinement to the Komlόs, Major, and Tusnady [KMT]

(1975) Brownian bridge approximation to an.

Theorem 1.1 There exists a probability space (Ω,^4,P) with independent

uniform (0,1) random variables Uu U2, , and a sequence of Brownian

bridges BUB2,..., such that for all n> I, \<d<n and x G IR

(3) P \ sup \an(t) - Bn{t)\ > n'^ialogd + x) > < &exp(-cz)

{0<t<d/n
lrΓhis research was partially supported by NSF Grant No. DMS-9803344.
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and

(4) P \ sup |αn(ί) - β n (ί) | > rCll2{a\0gd + x) \ < 6exp(-cx),
[ld/<l J

where α, b and c are suitable positive constants.

Rio (1994) has obtained specific values for the constants α, b and c.
Castelle and Laurent-Bonvalot (1998) have shown that (3) and (4) remain
formally valid for 0 < d < 1. However, in the regions [0, d/n] and [1 - d/n, 1],
where 0 < d < 1, it is more appropriate then to approximate the uniform
empirical process by a Poisson process than by a Brownian bridge.

Mason and van Zwet (1987) pointed out that their inequality leads to
the following useful weighted approximation. For any 0 < u < 1/2, n > 2,
and l<d<n-d<n-l\et

d/n<t<l

and

(7) Δ n | l / ( c 0 : = sup
d/n<t<l-d/n

On the probability space of Theorem 1.1, one has

(8) ΔΠ|I/(1) - Op(l),

with the same holding with Δnjl/(1) replaced by Δλ>(l) and Δ^i(l). Ver-
sions of these approximations were proved by M. Csorgδ, S. Csόrgό, Horvath
and Mason [Cs-Cs-H-M] (1986) for the restricted range of 0 < v < 1/4. The
Mason and van Zwet (1987) versions are the best possible in the sense that
they are unimprovable with respect to the allowable range of 0 < v < \.
These weighted approximations have found numerous and wide ranging ap-
plications in probability theory and statistics, see e.g. Part II of the proceed-
ings volume edited by Hahn, Mason and Weiner (1991) and the monograph
by M. Csόrgό and Horvath (1993), along with the many references therein.
The purpose of this paper is to demonstrate that, in fact, Theorem 1.1 read-
ily yields the following much stronger version of (8) and to provide some
examples of its potential use. Let c > 0 be as in Theorem 1.1.

Theorem 1.2 On the probability space of Theorem LI for every 0 < v <
1/2 there exist positive constants Av and Cv such that for all n > 2, 1 <
d < n — d < n — 1 and 0 < x < oo
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(9) P{ΔW(d) >x}<Av

(10) P [Δ^M >X)<AV

and
(11) P{ΔnjI/(d) > x} <

For each n > 1, let U^n < ... < [/n?7l denote the order statistics of
C/i,..., J7n. Introduce the uniform empirical quantile function on [0,1]

(12) ?7n(ί) = Ukfn, {k - I)In < t < k/n, for k = 1,..., n,

and C/n(0) = t/i in. Define the uniform quantile process

(13) /3n(ί) = ̂ {t - Un(t)}> for 0 < t < 1.

For any n > 2 and 0 < v < 1/4 set

(14) K - sup " y M * ) - & ( * ) !

and

ίl5) Γ -

Cs-Cs-H-M (1986) (see also Mason (1991)) proved that for any 0 < v < 1/4

(16) Kn,v = Op(l),

Combining this with (7) we see that on the probability space of Theorem
1.1 one also has
(17) I V = Op(l).

We should point out here that on the probability space of Cs-Cs-H-M (1986)
(17) holds for all 0 < v < 1/2, with (8) being valid only for 0 < υ < 1/4.
For completeness, we will provide an exponential inequality for the tail of
the random variable ΓnjI/. This will be an easy consequence of the following
exponential inequality for Kn^.

Theorem 1.3 For every 0 < v < 1/4 there exist positive constants Όv and
dv such that for all n>2 and 0 < x < oo

(18) P {Kn^ >x}<Dv exp{-dvx).

Combining Theorems 1.2 and 1.3 we immediately conclude the following
result.
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Theorem 1.4 On the probability space of Theorem 1.1 for every 0 < v <
1/4 there exist positive constants Ev and eυ such that for all n > 2 and
0 < x < oo
(19) P {Γn?I/ > x} < E

Remark 1.1 A dual to Theorem 1.2 exists for the uniform quantile process
βn. Inequalities (9), (10) and (11) hold on the probability space of Cs-Cs-
H-M (1986), when an is replaced by /?n, with possibly different constants.
The proof goes exactly like that of Theorem 1.2. However, at the step when
one previously applied Theorem 1.1 in the proof of Theorem 1.2, one now
makes use of Theorem 3.2.3 of M. Csόrgό and Horvath (1993). The author
is thankful to Sandor Csόrgό for pointing this out to him.

2 Examples of how the inequality can be used

2.1 An exponential inequality for winsorized sums

Let X,X[,X2? 5 be a sequence of i.i.d. nondegenerate random variables
with common distribution function F with left continous inverse function
Q. Choose 0 < α < l — 6 < 1 and n > 1, and consider the Winsorized sum

Wn(a,b):=

- b)}].

Now due to the fact that

one sees after integrating by parts that

i-b

Set

σ2

, Γi-b

n (α, b) - EWn(a, b)} = - an(s)dQ(s).
Ja

(a,b)= ί ί {a At- st)dQ(s)dQ{t) = Var Wι (a, b).
J a J a

It is known (cf. S. Csόrgό, Haeusler and Mason (1988)) that for any two

sequences an and bn of positive constants such that 0 < an < 1/2 < 1—bn < 1

for n > 1, and

(20) an —>• 0, nan —» oo, bn ->- 0 and nbn —> oo,
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as n —> oo, that the sequence of random variables

(21) Zn(αn, 6n) := / αn{s)dQ(s)/σ(αn, bn) A Z,
•/On

as n —> oo, where Z is a standard normal random variable. To see how this

goes, note that on the probability space of Theorem 1.1

Zn := ί n Bn(s)dQ(s)/σ(αn, bn) = Z,

and

\Zn(αn,bn) - Zn\

l/2

\αn{s) - Bn{s)\dQ(s)/σ{αn, 1/2)

+ f U \αn(s) - Bn(8)\dQ(a)/σ{l/2,bn),

Jl/2

which for any 0 < v < 1/2 is
< n - " { Δ n , l / (nα n )/ β

1 / 2 (β(l- β )) 1 / 2 -'(ίQ( β )/σ(α n , l/2)

(22)

Using the fact (e.g. Inequality 2.1 of Shorack (1997)) that for any 0 < c <

l - d < 1

(23) Γ (8(1 - s)γl2-vdQ(s)lσ(c, d) < (3/^)(c Λ d)~\
Jc

we see that the bound in (22) is

(24) < (3/Vϊ)(nαn)-"An<ι,(

Clearly from (24) and (11) we readily obtain that for any δ > 0

(25) P{\Zn(αn,bn)-Zn\>δ}

< 2AV

+2AU

=: Pn(αn,bn,δ).

This immediately yields the following uniform bounds on the distribution

function of Zn(αn, bn).
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Proposition 2.1. Let αn and bn be sequences of positive constants such that
forn>2, 0 < an < 1/2 < 1 - bn < 1, 1 < nan < n and 1 < nbn < n. Then
for any δ > 0, n > 2 and z e ΊR

P{Z<z-δ}- Pn{an,bn,δ) < P{Zn{an,bn) < z}
(26)

z + δ} + Pn{an,bn,δ).

Notice that by choosing δ = δn = C[max(nan,nbn)]~ϊ+ε for a suitable
constant C > 0 and any small ε > 0, to make Pn{an, bn, δn) « δn in (26), one
easily obtains a bound on the Levy distance between the distribution func-
tions of [Wn(αn, bn) — E(Wn(an, 6n))]/σ(αn, bn) and the standard normal dis-
tribution function. This yields a rate of convergence O([max(nαn, nbn)]~ 2+ε)
for Winsorized sums under no distributional assumptions. (The author
thanks an anonymous referee for this observation.)

Let l < f c n < n , n > 3 , be a sequence of integers such that kn ~ nan for
some sequence 0 < α n < l — αn < 1, n > 1, of positive constants satisfying
as n —> 00,
(27) an \ 0, nan/* and nanj log log n —>• 00.

Haeusler and Mason (1987) showed that if F is in the domain of attraction
of a stable law of index 0 < a < 2 then with probability 1

(28) limsup
σ(αn, αn)>/2nloglogn

where X\,n < ... < Xn,τι denote the order statistics of Xi, ...,Xn. The crux
of their proof of (28) was to establish that

(29) limsup±Zn(αn,αn)/\/21oglog7i = 1.
n—>oo

An essential step in the argument leading to (29) was to obtain inequalities
like the following: For all 0 < ε < \/2,

P{zn(an,an)

(30) < P[Z > (V2+

and
P|Z n (α n ,α n ) > (72-ε)0oglognj

(31) > P [Z > (\/2 - |)Vloglogn} (1 + o(l)).

Proposition 2.1 gives these inequalities immediately after taking into account
the assumption that nan/ log log n -ϊ 00.



An Exponential Inequality 483

2.2 A moment bound for the weighted approximation

Clearly Theorem 1.2 yields immediately the following exponential moment
result.

Proposition 2.2. On the probability space of Theorem 1.1 for all 0 < v <
1/2 there exists a 7 > 0 such that

(32) supEexp(7Δn,I/(l)) < 00,
n>2

with the same statement holding with Δn?ί/(1) replaced by ΔnJ,(l) or Δ^],(l).

Now for each integer n > 2 let TZn denote a class of nondecreasing left
continuous functions r on [1/n, 1 — 1/ra]. Assume there exists a sequence of
positive constants Cn such that for some 0 < 1/ < 1/2

/Ί-l/n

(33) sup sup c" 1 / (s(l - 5))1/2~I/dr(s) =: M < 00.
/Ί-l/n

/
l/n

Prom Proposition 2.2 we obtain

Proposition 2.3. Let {TZn,n > 2}, denote a sequence of classes of nonde-
creasing left continuous functions on [1/n, 1 — 1/n] satisfying (33) for some
0 < v < 1/2. On the probability space of Theorem 1.1 there exists a 7 > 0
such that

(34) sup£lexp(7nI//rι) < 00,
n>2

where
rl-l/n

(35) In := sup c" 1 / \an{s) - Bn(s)\dr(s).
renn Jl/n

/
l/n

Proposition 2.3 follows trivially from Proposition 2.2 by observing that

In < Δn,,(l)M.

Moment bound results like (34) are useful in the study of central limit the-
orems for the Wasserstein distance between the empirical and the true dis-
tribution. Consult Barrio, Gine and Matran (1999) for details, where they
point out that they could have used our results in their analysis instead of a
difficult inequality of Talagrand. We will soon see that they come in handy
to obtain bounds on the deficiency distance between an experiment and its
Gaussian approximation.
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2.3 The local asymptotic equivalence of experiments

This example is motivated by the work of Nussbaum (1996) and we will use
much of his basic setup.

Let T denote a class of densities on IR with a common support. Fix an
/ o E f and for any / £ T write the log ratio

(36) φOJ = \og(f(FQ-ι)/f0(F0-
1)),

where FJ"1 is the left continuous inverse of the distribution function Fo of

/o defined on (0,1) and 0/0 := 1. Introduce for each n > 1 the likelihood

processes

(37) Λo|fl(/,/o) = expt-n1/2 / αn(s)dφ0J(s) + nEφOJ(U)),
Jo

and

(38) Alin(/, fo) = eM~nl/2 Γ Bn(s)dφ0J(s) - w V a r ^ / ^ ) .
Jo ι

We call Ao?n(/?/o) a likelihood process since after integrating by parts we
have

(39) Ao,n(fJQ)

1=1

where Xi, ...,Xn are i.i.d. with density /o Integrating by parts we also see

that,

(40) A l i n(/, Λ) = eMn1/2 f Φo,f(s)dBn(s) -
Jo

is the likelihood process corresponding to n independent observations of the
process

(41) y(t) = [ {φQj(s) - EφQJ{U)}ds + n-l'2Bn{t), 0 < t < 1.
Jo

In fact, if one lets Q^l and PQ denote, respectively, the distribution induced
by the process

f { ( ) () ιl2

n{t\ 0 < t < 1,(42) Zn(t) =n f {φOj(s) - EφOJ(U)}ds
Jo
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and by the Brownian bridge Bn, on C[0,1], then by applying the results of
Hajek (1960), one obtains that

(43)

We introduce the following conditions and notation. Let K be a nonde-
creasing left continuous function on (0,1) such that for some p > 2 and
K < oo

(44) / (s(l - s))ι/pdK(s) =: K < oo.
Jo

For each n > 1 let Hn be a class of functions on (0,1) such that each h £ Hn

can be decomposed into the difference

(45) h = hι- h2,

where hi and h2 are nondecreasing left continuous functions on (0,1) satis-

fying for all 0 < a < 1/2

(46) sup / {s(l-s))ι/pd[hι{s) + h2(s)}< / ( s ( l -
heHn Jo Jo

and

(47) sup / (s(l — s)) 'pd[hι(s) + h2(s)] < / (s(l —
heHn Jl-a Jl-a

For each n > 1, let ^o,τι denote the subclass of T such that /o G ̂ b,n and

for each / G JF0?τι

(48) Φoj = 7nΛ,

where h e Hn and
(49) 7n = o(l)

Further assume that as n -> oo

(50) sup n\EφOJ{U) + Vaiφotf{U)/2\ -> 0

and for all large n for some η > 0

(51) sup Varφoj(^) < ΉΊn'

Define the following two sequences of local experiments around

(52)
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where Pf is the measure induced on [0,1] by the density /(Fo~
1)//o(iΓ

o~
1)

and Pfn = Pf x • x Pf is the corresponding product measure on [0, l] n ;
and

(53) (£l,n(/θ

For any two experiments £?o and JSi let Δ(JSo,-Ei) denote the deficiency
distance between these two experiments. Refer to Le Cam and Yang (1990)
for the definition of this distance.

Proposition 2.4. Let ηn = n" 1/ 2 . Then, with the above assumptions and
notation, the two sequences of experiments (£Ό,n(/o))n>i and (^i,n(/o))n>i
are asymptotically equivalent, meaning that as n —>- oc

(54) Δ(£;0,n(/o),^i,n(/o))^0.

Now assume that there exists a sequence of classes Ή n ,n > 1, of functions
on (0,1) such that each h E Ή n can be written h = h\ — /12, where h\ and h<ι
are nondecreasing left continuous functions satisfying for some finite positive
constant K

(55) sup
heΉn

and for each / E ̂ Ό,n the representation (48) holds with a ηn satisfying

(56) Ίn =

Furthermore, assume (50) and (51) hold. We will see that a small modifi-
cation of the proof of Proposition 2.4 leads to the following result closely
related to the work of Nussbaum (1996).

Proposition 2.5. Under the modified assumptions and notations just de-
scribed (54) holds.

If one assumes that ^Ό.nj ra > 1, is a sequence of classes of densities with
/o E ^o,n for each n > 1, such that for some sequence of positive constants
7n,n > 1, converging to 0

(57) sup sup <7n,

then by using the fact that as \u\ \ 0,

ψ(u) = log(l + u)-u + (log(l + u))2/2 = O(u3)

and
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one readily shows that

sup Eφ(U
JJo

(58) = sup

and
(59) sup

Now (58) and (59) imply that

sup

Thus we see that condition (50) holds for any j n satisfying ηn— o(n~ιlz).
Furthermore, we have for all large n

(60) sup Varφoj(U) < 2Ί

2

n.

Moreover, if for some ε > 0

(61) /o > ε

and some A > 0, uniformly for s, t E (0,1), / G T^n and n > 1,

(62) |/(*)

then it is easily verified that (48) and (55) are satisfied. Therefore by Propo-
sition 2.5 conclusion (54) holds. This is in correspondence with the remarks
in the paragraph following Proposition 2.3 of Nussbaum (1996).

3 Proof of Theorems 1.2 and 1.3

3.1 Proof of Theorem 1.2

First consider (9). For any 1 <i < i + 1 <n write

δ P{ ^\αn(t) - Bn(t)\ ]
k p * η •

Set x = 2αv + z, where αu satisfies

αui
1/2-" > αlog(ί + 1) for all i > 1
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and the constant α is as in (3). We get then that

δi,n <P\ sup |α n ( ί) - Bn(jt)\ >

[0<t<(i+l)/n

< P { SUp o < t < ( i + 1 ) / n \ctn{t) - Bn(t)\

which by (3) is

We see then that for any 1 < d < n

n - l

i=[d\ i=[d\

vczl2) = Av i ^

where

Av = b V^exp(—i ι'2~J/a ι/c) and Cv — avc.

This proves inequality (9). Inequality (10) follows in the same way and
inequality (11) is an immediate consequence of (9) and (10).•

3.2 Proof of Theorem 1.3

For any n > 2 and 0 < v < 1/4 set

and
nv\an{t) - βn{t)\

We shall first show

Proposition 3.1. For every 0 < v < 1/4 there exist positive constants dv

and kυ such that for all n>2 and 0 < x < oo

(63) P {#W >x}<d

(2)

with the same inequality holding for K\,v.
Before we can establish this we need to gather some facts.



An Exponential Inequality 489

For any α > 0 , 0 < 6 < c < l and integer n > 1 set

ωn(α,b,c) =sup{\αn(s + h)-αn(s)\ :0<s + h< 1,0 < \h\ < α, 6 < s < c}.

The following inequality is stated in Mason (1991). Its proof is essentially
contained in that of Inequality 1 of Mason, Shorack and Wellner (1983).
Refer also to Inequality 1 of Einmahl and Mason (1988) where the bα~ι

should be replaced by {bα~λ) V 1.

Fact 3.1. For universal positive constants A and B for all 0 < a < 1/2,
0<b<c<l,n>landλ>0

(64) P{ωn(a,b,c) > \y/Ξ} < {(c - b)a

where for x > 0

(65) φ(x) = 2x~2{(x + 1) log(z + 1) - x}.

For future reference we record the fact that for x > 0

(66) Ψ(x)l a s x t

For any integer n > 1 and 0 < p < 1 let B(n,p) denote a binomial random

variable with parameters n and p. We will need the following special case of

Bernstein's inequality (eg. Pollard (1984) or Shorack and Wellner (1986)).

F a c t 3 . 2 . For any integer n > 1, 0 < p < l and x > p

(67) P{B{n,p) >nx}

ί -n(x-p)2/2 \

- e x p U i - P ) + (p v (i -P)){X -P)β) '

We will also need the Dvorestzky, Kiefer and Wolfowitz (1956) inequality.

See also Massart (1990) for the best possible constant.

F a c t 3 . 3 . For any integer n>2 and x > 0

(68) P { | | α n | | > x } < 4 e x p ( - 2 r c 2 ) ,

where
\\an\\ = sup |α n (ί) | .

0<t<l

Choose 1/4 > δ > v > 0 and τ > 0. For any n > 1 and 1 < i < n - 1, define

T i^~2^ i 2 + 1
(69) An(i,r)=ωn(-^-,-,-Ίr).
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Lemma 3.1. For universal positive constants A\ and c\ for all τ > 0

(70) W ^ ™ * l ^Δ n (i,τ)/(i/τi) 1 / 2 - ι / >τ\<

Proof. First choose r > 1. We shall consider two cases.

Case 1. First assume r iι~2δ jn < 1/2. In this case, by Fact 3.1 we have

(71) P{Δn(i,τ) > m-1/2*1/2-"} < A e x p ( - β ΐ 2 ( ^ ) τ ^ ( l ) ) .

Case 2. Now assume r ix~2δ jn > 1/2. In this situation, by noting that

Δ n (i,r) < 2 | | α n | | ,

we get

P/Λ (i π-\ ^ τn~ll2ill2~v\ < PSWn, II ̂ > e)~lr<n~1/2>i1/2~1/\•Γ\L^n\ί )r) ^ τ n L ί 2i -^lll^nll ^ L τ n ι f

T2 T
^^ A e x p i Ttt % ) "̂̂  ~r e x p i *~~ z j .- r\ 2 ' ~ ^ v 4 y

Clearly then with p = 2δ — 2v,A\ — max{A, 4} and c\ = min{J5^)(l),4"1}

we have for n > 2, 1 < i < n — 1 and all r > 1

(72) P{Δn(z, r)

Therefore for all r > 1

P{ max n"Δn(i,
I Kz<n-1

> T j <

< A\ exp(—c\τ) \^exp(—c\(ip — 1)) =: A\ exp(—c\τ).
%-\

Now, by setting A\ — max{Ai,exp(ci)}, we see that (70) holds for all r > 0.
D

Set

n2δ\Un{t) - t\ n2δ\Un(l/n) - 1/nl
73 Mn{δ) = max sup „, ' "\\, ' V ' , , / M 9Λ

Lemma 3.2. For a universal positive constant A2 for all r > 0

(74) P{Mn{δ) >τ}<A2 exp(-12-1r).

Proof. To begin, notice that for any 2 < i < n

n2S\Un{t)-t\ n2S\Ui,n-j\ ,

(i-i)7«<t<i/» ((< - I ) / " ) 1 " 2 5 - ((< - I ) / " ) 1 * -
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n2δ\U - M

Using this string of inequalities we get that for any 2 < i < n and z > 1

( 7 5 )P{ sup ^u;)frΛ>4<r{n7τJ]>>)-
Now for any 2 < i < n

(76)
} m , n

We will first show that for all z > 1

(77) }

First assume 0 < 1 - £ - ^ ^ < 1. Clearly,

= P{B(n, 1 - - - ) > n - x}.
n n

Applying Fact 3.2 we obtain after a little analysis the bound

PίB(n, 1 - - - ) > n - i) < exp(-z2i2-4δ/(2i + Azi1'28))

< expi-6-1 z2iι~4δ)Thus (77) holds in this case. Since (77) is trivial when 1 - £ - ^^- < 0,
we conclude its validity for all z > 1. Thus we conclude (77).

Next observe that

(78)

.1 QΛ

which by an application of Fact 3.2, for all z > 1 such that £ - " n > 0, is

(79) < 2 2 4 S l 2 S ( 1 1 4 ί )
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Note that this inequality holds trivially whenever ^ — zι ~ < 0 and z > 1.
Combining (76), (77), (78) and (79) we get

Π2S\

This bound in conjunction with (75) yields for all z > 1 and i > 2

P < max sup ,,.. Γ / M . ^ > 3z t < 3

Notice that (80) also holds when i = 1. Thus

P{Mn{δ) > 3z} <

V-4 5 - 1)) =:

Now by changing variables to r = 3z and setting A<ι — max{Λ,exp(6)} we
obtain (74). D

We are almost ready to finish the proof of (63). First observe that for
any 2 < i < n

n»\gn(Un(t)) - βn(t)\ 1
(i ^

a n d an(Un(l/n)) - βn(l/ή) = 0. T h u s for a n y z>\

— - — - > 1

sup
l/n<t<l

= p ( s u p W , ,
\l/n<t<l ί1/2"" ~ J

which in turn is (recall (69) and (73))

< P < max n"Δn(i, z)l{ilnγl2-v > z 1 + P{Mn(5) > z}.
^l<z<n—1 J

Applying Lemmas 3.1 and 3.2 we see that this last bound is

< A\ exp(—c\z) + A2 exp(—I2~ιz).

The rest of the proof of Theorem 1.3 is now straightforward. •
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4 Proofs of Proposi t ions 2.4 and 2.5

4.1 Proof of Proposi t ion 2.4

Inequality 4.1. Let f and g be densities with respect to a σ—finite measure

μ on a measure space (Ω,.F). Assuming f and g have common support, set

D = log(//#)/2, where 0/0 := 1. For all ε > 0

(81) 0 < 1 - / y/Jgdμ < 1 - e~ε + / gl{D < -ε}dμ.
Jn Jn

Proof. Notice that

1 - / vTffdμ = / (g ~ y/Iϊftdμ
Jn Jn

< {1-e-η [ g 1{D > -ε}dμ- f y/Jg \{D < ~ε}dμ+ f g 1{D < -ε}dμ
Jn Jςi Jn

< 1 - e'ε + ί gl{D< -ε}dμ.
Jn

π

Consider the two sequences of experiments

(^0,τι)n>i = (Ωo,n, ̂ 0,Π5 (Pθ,n,θ,θ G ®n))

and

L e m m a 4.1. Suppose that for each n > 1 and θ G Θ n , Pi,n,θ is dominated

by Pί,nβo, i = 0,1, where ΘQ G Θ n and consider the likelihood processes for

i = 0, ί
(82) Ai,n(β) = dPi^β/dPi^, θ G θ n .

Assume that for each n > 1 and θ G Θ n the processes AiiTl(θ), i — 0,1, can 6e

defined on the same probability space ((Ωo,n x ΩijTl,>lo,n x Aι,n),Pn), where

each Λi?n(θ), i = 1,2, is a density with respect to Pn such that as n —> oo

(83) mί Jj
Ωo,»xni,n

ΓΛen as n —> oo

(84) Δ(£b,n A n ) - > 0.

Proo/. According to the remark on page 16 of Le Cam and Yang (1990) to

establish (84), it suffices to show that (83) implies that as n -> oo

(85) sup ||P0,n,β - -Pi.Ti.ell = ό S U P ̂ Pn|Λo,n(^) - Λi>n(0)| -> 0,
θθ ι θe@
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But this follows from the inequality

2 y [J J Ωo,nXΩi,nγ
 rf/V,0o V α^l,n^0 J

D

We are now ready to complete the proof of Proposition 2.4. Assume we

are on the probability space of Theorem 1.1. First we will show that as

n —» oo

(86) sup E|logA0fn(/,/o) -logAi,n(/,/ 0) | ~> 0.

Clearly for each / G T§,n

| logΛ0,n(/,/o)-logΛ1 > n(/,/o)|<

n1/2! ί\αn(s) - Bn(s)}dφoj(s)\+n\Eφoj(U)) +
Jo

By assumption (50) to finish the proof of (86) it is enough to show that as
n —>• oo

sup nι/2E\ I {an(s) -Bn(

Now, in view of (45)-(48),
rl-l/n

sup nι'2E\ / {an(s) - Bn(

rl-l/n

7 n sup / (5(1 —
ll/n

which by (7), Proposition 2.2, (44) through (48) and ηn = n~ιl2 is o(

Next observe that, with ηn = n" 1 / 2 ,

rl/n

sup nι'2E\ / {an(s) - Bn(s)}dφ0J(s)\
fefo,n Jo

< 2 sup nλ'2ηn I sι'2d[hi{8) + h2(8)]
/o
1-1/n

<2nι'lp

Ίn I
Jo
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Similarly

sup nι'2E\ / {αn(s) - Bn(s)}dφ0J(s)\ = o(l).
fe^n Ji-i/n

Thus we have established (86).
Set for any / E T^n

(87) Dn(f) = {logΛoin(/,/o) -logAlffl(/,/o)}/2.

Choose any 0 < ε < 1. Prom Inequality 4.1 we get

1-/7 J*oMfo)\/A*Mfo)dPn
J J [0,l]ΛxC[0,l] V V

(88) < 1 - e~ε + ί [ Ai |n(/,/o)l{Dn(/) < -ε}dPn,
J J [0,l]nxC[0,l]

where Pn is the probability measure of Theorem 1.1. Applying the Cauchy-
Schwarz inequality we get that

ί ί Aι,n(fJo)l{Dn(f)<-ε}dPn

J J [0,l]"xC[0,l]

<[EAln{f,fo)]1/2[Pn{\Dn{f)\>e}]1'2.

Notice that by (51)

2 = exp ( n V a r ^ ( t 7 ) ) < exp(,/2)

Using (86) we get as n —> oo

sup

which implies that as n —» oo

SUp

f

[0,l]nxC[0,l]

Thus by (88) and the arbitrary choice of ε we infer that n —> oo

inf if JλoAfJo)JHn(fJo)dPn -> 1,
feTo,nJ J [o,i]»xc[o,i] v v

which by Lemma 4.1 implies (54). D



496 David M. Mason

4.2 Proof of Proposition 2.5

From now on, ηn = o(n~1/3) is as in (56), and Dn(f) is as in (87). First
notice that by (55) and (50) for any choice of ε > 0 and all large n

sup \Dn(f)\ < κjn sup y/n\αn(s) - Bn(s)\ +ε/2.
F o<s<ι

Thus

P \ sup |£>n(/)| > e \ < P { sup V ^ M * ) " Bn{s)\ > 7 -
[f J l

\ < P {
J l

which by Theorem 1.1 applied with d = n is for all large n

< 6exp(—c7~1κΓ1ε/4) =: 6exp(—εdη~ι).

Moveover as before

which by (51) is for all large n

Thus as in the proof of Proposition 2.4

J J
i,n(/,

[0,l]nxC[0,l]

This last bound converges to 0 as n —> 0 since we assume that ηn = o(n~1/3).
Hence we conclude as in the proof of Proposition 2.4 that (54) holds. •

Acknowledgements. The author is grateful to Paul Deheuvels for carefully
reading the manuscript and making a number of important suggestions. He
also thanks Sandor Csδrgδ, John Einmahl and Chris Klaassen for useful
comments.

REFERENCES

Barrio, del, E., Gine, E. and Matran, C. (1999). Central limit theorems for
the Wasserstein distance between the empirical and true distribution.
Ann. Probαb. 27 1009-1071.



An Exponential Inequality 497

Castelle, N. and Laurent-Bonvalot, F (1998). Strong approximations of bi-
variate uniform empirical processes. Ann. Inst. Henri Poincαre 34
425-480.

Csόrgδ, M. and Horvath, L. (1993). Weighted Approximations in Probability
and Statistics, John Wiley & Sons, Chichester etc.

Csόrgδ, M., Csδrgό, S., Horvath, L. and Mason, D.M. (1986). Weighted
empirical and quantile processes. Ann. Probab. 14 31-85.

Csόrgδ, S., Haeusler, E. and Mason, D. M. (1988). A probabilistic approach
to the asymptotic distribution of sums of independent, identically
distributed random variable. Adv. in Appl. Math. 9 259-333.

Dvoretzky, A., Kiefer, J. and Wolfowitz, J. (1956). Asymptotic minimax
character of the sample distribution functions and of the classical
multinomial estimator. Ann. Math. Statist. 27 642-669.

Einmahl, J. H. J. and Mason, D. M. (1988). Strong limit theorems for
weighted quantile processes. Ann. Probab. 16 1623-1643.

Haeusler, E. and Mason, D. M. (1987). Laws of the iterated logarithm for
sums of the middle portion of the sample. Math. Proc. Cambridge
Phil. Soc. 101 301-312.

Hahn, M., Mason, D. M. and Weiner, D. (1991). Eds. Sums, Trimmed Sums
and Extremes. Birkhauser, Boston

Hajek, J. (1961) On a simple linear model in Gaussian processes. Trans.
2nd. Prague Conf. Information Theory pp. 185-197 Publ.House
Czechoslovak Acad. Sci., Prague, Academic Press, New York

Komlόs, J., Major, P. and Tusnady, G. (1975). An approximation of partial
sums of independent rv's and the sample df I. Z. Wahrsch. verw.
Gebiete. 32 111-131.

Le Cam, L. and Yang, G. (1990). Asymptotics in Statistics: Some Basic

Concepts. Springer-Verlag, New York
Mason, D. M. (1991). A note on weighted approximations to the uniform em-

pirical and quantile processes. Sums, Trimmed Sums and Extremes.
pp. 269-284 Birkhauser, Boston

Mason, D. M., Shorack, G. and Wellner, J. A. (1983). Strong limit theorems
for oscillation moduli of the uniform empirical process. Z. Wahrsch.
verw. Gebiete. 65 83-97.

Mason, D. M. and Van Zwet, W.R. (1987). A refinement of the KMT in-

equality for the uniform empirical process. Ann. Probab. 15 871-
884.

Massart, P. (1990). The tight constant in the Dvoretzky-Kiefer-Wolfowitz

inequality. Ann. Probab. 18 1269-1283.
Nussbaum, M. (1996). Asymptotic equivalence of density estimation and

Gaussian white noise. Ann. Statist. 24 2399-2430.
Pollard, D. (1984). Convergence of Stochastic Processes. Springer-Verlag,

New York-Berlin.
Rio, E. (1994). Local invariance principles and their application to density

estimation. Probab. Theory. Related Fields 98 21-45.



498 David M. Mason

Shorack, G. (1997). Inequalities for quantile functions with a uniform stu-
dent ized CLT that includes trimming. Nonpar. Statist. 8 307-335.

Shorack, G. and Wellner, J. (1986). Empirical Processes with Applications
to Statistics, Wiley, New York.

DEPARTMENT OF MATHEMATICAL SCIENCES

501 EWING HALL

UNIVERSITY OF DELAWARE

NEWARK, DELAWARE

USA
davidm @math. udel. edu




