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Motivated by multivariate data on epicentres of earthquakes, we suggest nonparametric
methods for analysis of point-process data. Our methods are based partly on nonpara-
metric intensity estimation, and involve techniques for dimension reduction and for map-
ping the trajectory of temporal evolution of high-intensity clusters. They include ways
of improving statistical performance by data sharpening, i.e. data pre-processing before
substitution into a conventional nonparametric estimator. We argue that the ‘true’ inten-
sity function is often best modelled as a surface with infinite poles or pole lines, and so
conventional methods for bandwidth choice can be inappropriate. The relative severity of
a cluster of events may be characterised in terms of the rate of asymptotic approach to a
pole. The rate is directly connected to the correlation dimension of the point process, and
may be estimated nonparametrically or semiparametrically.
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1 Introduction

An earthquake-process dataset may often be interpreted as a realisation
of a 5-dimensional point process, where the first three, spatial components
denote latitude, longitude and depth below the earth’s surface, the fourth
represents time, and the fifth is a measure of ‘magnitude’, for example on the
Richter scale. Goals of analysis can be very wide-ranging. At one level they
may be purely descriptive, perhaps summarising features of the dataset. In
this regard, some form of dimension reduction is often critical, putting the
information on five dimensions into a form that is more readily accessible
and interpretable. At another level the goals may be exploratory, suggesting
directions for future analysis, or they may be more explicit and detailed,
perhaps with the aim of elucidating properties of subterranean features that
played a role in generating the data.
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In this paper we discuss nonparametric methods for summarising earth-
quake data, for exploring the main features of the data, and for addressing
more structural problems such as the location of poles and pole lines, the
way in which those poles migrate with time, and the value of the correla-
tion dimension of clusters of epicentres. (Poles and pole lines are points
and line segments, respectively, at which the intensity of the point process
asymptotes to infinity.) Many of our arguments are based on kernel-type
estimators of intensity, while others employ methods that are parametric in
simple cases but are nevertheless valid in contexts which are quite distant
from the parametric model. The aim is to develop analytical tools that offer
greater diversity, and robustness against departures from structural mod-
els, than more traditional parametric approaches. The latter include the
popular Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 1988),
which is used to describe temporal behaviour of an earthquake series; and
refinements of Hawkes’ (1971) self exciting point process model, which de-
scribe spatial-temporal patterns in a catalogue. The paper by Ogata (1998)
gives detailed discussion of recent extensions of these models.

Disadvantages of parametric models in this setting include their insta-
bility when even small amounts of new data are added, and their relative
insensitivity to anomalous events, arising from the fact that models tend
to be formulated through experience of relatively conventional earthquake
activity. Indeed, anomalies are typically the root cause of the aforemen-
tioned parameter instability. Since anomalous events are often of at least as
much interest as conventional ones (see Ogata, 1989), procedures that tend
to conceal anomalies are not necessarily to be preferred.

Figure 1 depicts spatial components of the type of data that motivate
this paper. They are part of the ‘Kanto earthquake catalogue’, and were
compiled by the Centre for Disaster Prevention at Tsukuba, Japan. The
points are longitude-latitude pairs representing the locations of earthquakes
that occurred in the region of Kanto, Japan, between 1980 and 1993. We
have restricted attention here to events whose location was between 138.6°
and 139.7° longitude and 34.6° and 35.7° latitude, whose depth was less
than 36 km, and whose magnitude was at least 2.0 on the Richter scale.
There are 8187 points in the dataset. The diagonal line on the figure is a
linear approximation to the location of the volcanic front of the Izu-Bonin
Arc (Koyama, 1993), which is a known source of earthquake activity. The
region with a dotted boundary defines a smaller subset, near the island of

O-shima, which will also feature in our analysis.

Section 2 describes methods for intensity estimation based on point pro-
cess data, and outlines applications to which such estimates may be put.
Techniques for enhancing multivariate intensity estimates, and for deducing
structure from them, are outlined in Section 3. Section 4 introduces methods
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Figure 1. Spatial coordinates of Kanto earthquake data. Data in the smaller region,
indicated by the dotted-line boundary, will be used for analysis described in section 2.3.
The dashed line diagonally across the figure represents a linear approximation, A, to the
volcanic front of the Izu-Bonin Arc.

for estimating the locations and strengths of poles in intensity functions.

Some discussion of use of the term ‘magnitude’, and of the ‘Richter
scale’, is in order. The many different measures of magnitude include those
based respectively on energy and on different measures of the amplitudes of
shock waves produced by an earthquake. Local Magnitude, more popularly
referred to as Richter Magnitude, is of the latter type and is representable
in terms of the logarithm of the maximum trace amplitude, measured in
micrometers on a standardised seismometer. The magnitude to which we
refer in this paper is Local Magnitude, although we shall henceforth call it,
and the scale on which it is measured, by its popular name.

2 Data summarisation and exploration

2.1 Dimension reduction

Information about depth in a seismic data vector is often not particularly
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accurate, and for example is typically represented in bins up to 10 kilome-
tres wide. Reflecting this difficulty, we suggest pooling bins. The longitude
and latitude components too are recorded with varying degrees of error,
which depend on, among other matters, the spatial distribution of recording
stations around the location of the event, and event depth. We shall not
attempt to employ such information in our analysis — it is sometimes ex-
plicitly available (see e.g. Jones and Stewart, 1997), or deducible from other
measurements — but it can be incorporated.

Even after removing the depth dimension, data vectors can have as
many as four components. We suggest looking at the two remaining spa-
tial components separately, by projecting longitude-latitude pairs onto first
one axis and then another. An appropriate axis is often clear from physi-
cal considerations; see Figure 1. Neglecting the magnitude component for
the time being, we now have two bivariate datasets where in each case one
component represents time and the other is a spatial coordinate. Each may
be used to produce nonparametric estimates of point-process intensity, en-
abling perspective plots (where the third dimension represents intensity) to
be produced.

Of course, contemporary dimension-reduction methods, such as projec-
tion pursuit, might also be used to determine projections in the continuum
that maximise the ‘interestingness’ of the associated bivariate scatterplots.
In their full generality, such approaches can be hard to justify in the present
setting, since rotations of axes that are as distinct as time and space are
difficult to interpret. Even if dimension reduction is contemplated only for
the spatial coordinates, physical interpretation can sometimes be facilitated
by using information from outside the dataset (for example, in the case of
the Kanto data, the physically-meaningful Izu-Bonin Arc) to determine an
appropriate axis.

Magnitude may be depicted by adding colour or a grey shade to graphs
of estimated intensity. Therefore, magnitude can be included on the plots
described above, without increasing the complexity of the set of projections.
It can be shown separately, however, in plots broadly similar to those for
intensity. Since magnitude is recorded with error, and only at scattered
points in space and time, it is generally necessary to smooth magnitude
measurements.

2.2 Kernel estimation of intensity

If space-time data pairs (X;,7;) are available after projection of spatial co-
ordinates onto an axis, then the space-time intensity per unit area at (z,t)
is estimated by

(2.1) Az, t) = ﬁ; > Kl(m ;lxi) K1(t ;f‘) :
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where K is a univariate kernel, usually taken to be a symmetric probability
density function, and hj, ho are bandwidths for spatial and temporal com-
ponents, respectively. A local method for bandwidth choice is critical when
estimating the intensity of point processes related to earthquakes, since in
many cases there is evidence that the intensity function is neither bounded
nor square-integrable. Estimators of the type at (2.1) have been discussed
by, for example, Wand and Jones (1995, p. 167f). They were introduced by
Ramlau-Hansen (1983) and Diggle (1985). Related methods in a geophysical
context have been discussed by Davis and Frohlich (1991).

The panels in Figure 2 are intensity estimates computed using (2.1).
We employed the biweight kernel. Bandwidth was chosen using the following
‘coupled’ near-neighbour method. We chose h; and hg to minimise h; +ahs,
subject to the rectangle (z — hy,x + h1) X (t — ha,t + hg) containing at least
k space-time pairs (X;,T;). The value of k controls the overall level of
smoothing, with larger k’s providing a greater amount of smoothing. The
relative emphasis placed on spatial and temporal coordinates is governed
by a. In particular, if o is chosen small then the resulting rectangle is
elongated along the time axis, and so the intensity estimator is localised
more in space than in time.

We took a to equal the ratio of the ranges of the spatial and temporal
data sets, although substantial changes to the values of k and « (e.g. doubling
or halving their values) do not alter the man features of Figure 2. Longitude
and latitude components of the original dataset are depicted in Figure 1.
The straight line there (denoted here by .A4) was the axis onto which spatial
components were projected for the first panel. For the second panel, spatial
projection was in the perpendicular direction.

Even by itself, without reference to data on magnitude, Figure 2 is
revealing. For example, patterns of spatial variation of events that occur
close together in time are clearly evident. Similar plots may be derived
when event magnitude, rather than intensity, is featured on the vertical scale.
A comparison of intensity and magnitude plots can provide a particularly
informative description of the way in which a cluster of earthquakes develops
in time and space. The relationship between intensity, and magnitude, space-
time surfaces is complex, and far from being proportionate. It tends more
towards being inversely proportionate, with a high frequency of relatively
low-magnitude events being similar in some respects to a low frequency of
high-magnitude ones. However, even this is a significant oversimplification.
Further details are available from figures in Choi and Hall (1998).

A reader familiar with parametric analysis of earthquake data might
query our use of a symmetric kernel in at least the temporal component
at (2.1). In particular, it is known that earthquake processes are quite
asymmetric in time, with few foreshocks and many aftershocks; see for ex-
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Figure 2. Perspective plots of intensity estimates. Panels (a) and (b) show plots of
space-time intensity when spatial components are projected onto and perpendicularly to,
respectively, the diagonal line A in Figure 1.

ample Kagan (1994). A virtue of nonparametric analysis is that it usually
adapts well to asymmetries of this type, however. In a related setting, one
would seldom have qualms about using a symmetric kernel to estimate an
asymmetric probability density, and similar arguments apply here.

2.3 Spatial migration of peak intensity

As Figure 2 suggests, intensity increases rapidly, in both temporal and spatial
terms, to a peak that could be interpreted as a pole. The temporal trajectory
of the spatial location of the pole is of particular interest. To estimate the
trajectory we first estimate spatial intensity as a function of time, in the
continuum. To this end we choose a time window of width 2hy, and utilise
those data with occurrence times in the interval T (t) = [t — h2,t + ha).
As before, we bin the depth component of data vectors, but we no longer
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project data onto the axis .A. Therefore, the data (Y, T;)T that we employ
are vectors of length 3, with Y;, a column vector of length d = 2, representing
the spatial coordinates of the datum observed at time T;.

The spatial intensity, u(y|t), of events that occur at time ¢ is defined to
equal the expected number of events that occur per unit area at point y in
the plane, when the process is observed at time ¢. It is estimated by

- T;
-t T () k(0.

(2.2) iyl t)

where K5 is a bivariate kernel and h3 is a new bandwidth. Here, y is a
column vector of length 2, and we have in effect employed a bandwidth
matrix hzls for Ko, where Iy denotes the 2 x 2 identity matrix. When
used in the present context, near-neighbour methods tend to produce closely
neighbouring, multiple peaks in places where intensity is high, and so we do
recommend them. We employ instead a global bandwidth.

Once ji(-|t) has been computed we may readily calculate the spatial
location of its maximum, being a bivariate function of ¢; and thence we may
estimate the trajectory of the maximum, again as a function of ¢. Since
earthquake activity is typically low between relatively short periods of high
intensity, it is usually necessary to threshold the maximum intensity at some
value 7, say, in order to obtain a trajectory that is representative of the more
interesting episodes.

Panel (a) of Figure 3 depicts spatial migration of peak intensity within
the smaller region shown in Figure 1, indicated by the dotted-line boundary
there. The great majority of events in that smaller region are the result
of high-magnitude but low-intensity volcanic activity near the island of O-
shima, in the lower right of Figure 1. We make this specialisation so as
to restrict attention to a region where earthquake activity has a relatively
homogeneous cause. Without it, a plot of peak migration is an interwoven
mixture of movements representing quite different subterranean activities
in different regions; over time, the trajectory jumps from one region to an-
other, often without there being any plausible relationship between adjacent
locations.

The total number of data points within the smaller region in Figure 1
is 5654. Intensity was computed using the estimator at (2.2), taking K to be
the biweight kernel and K> to be its multivariate version, with hy = 50 and
hs = 0.1. Time was discretised on 301 points. Panels (b) and (c) of Figure 3
depict the longitude and latitude components, respectively, of the trajec-
tory shown in panel (a). The crosses in both panels represent those among
the 301 values of ¢ where estimated peak intensity exceeded the threshold
T = 50, and the general locations are numbered 1-10 in respective order.
The points corresponding to greatest intensity in each of the 10 clusters of
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crosses are respectively 30 June 1980, 20 January 1983, 5 September 1984,
13 October 1986, 11 May 1987, 20 February 1988, 2 August 1988, 9 July

1989, 10 January 1993 and 31 May 1983.
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Figure 3. Spatial migration of peak intensity. Panel (a) depicts spatial movement of
peak intensity, in the direction indicated by increasing numbers from 1 to 10. Panels (b)
and (c) give plots, against time, of longitude and latitude components, respectively, of
peak intensity estimates. Attention is confined to data in the region represented by the
dotted-line boundary in Figure 1.

3 Data sharpening for intensity estimation

3.1 General principles

The term ‘data sharpening’ refers to methods for pre-processing data so
that, when they are substituted into a conventional estimator, performance
is improved relative to what would it be if the raw data were employed. The
idea is to enhance performance without degrading the attractive properties
that relatively simple estimators enjoy.

For example, in the context of kernel density estimation one can achieve
high orders of accuracy by replacing a nonnegative kernel by one with a
large number of vanishing moments. But this typically destroys positivity
of the estimator, and the high-order advantages are often only available
for relatively large sample sizes. By appropriately preprocessing the data
before substitution into an estimator with a conventional, positive kernel, it
is possible to improve accuracy yet retain the property of positivity (and the
property that the estimator integrates to 1).

The methods of intensity estimation discussed in Section 2.2 have much
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in common with those for nonparametric density estimation, and in partic-
ular share bias properties with that approach. They tend to underestimate
intensity at peaks, and overestimate it at troughs. This is a major source of
bias — it means that intensity estimators are generally biased downwards at
local maxima, and upwards at local minima. If we could move data values
closer together near peaks and further apart near troughs, then in large part
these problems would vanish, and bias would be reduced, without us hav-
ing to modify the estimator itself. Possibilities along these lines have been
discussed by, for example, M.C. Jones and Signorini (1997) and R.H. Jones
and Stewart (1997).

In the context of the method described in Section 2.2, this argument
might be made in the following form. Consider the surface S defined by the
true bivariate intensity A, of which ) is an estimator. Then S is the locus of
triples (z,t,y) defined by y = A(z,t). If we are at a point P; = (X;,T;) in the
plane then, to a good approximation, we shall move across the plane in the
direction of the projection of the line of steepest ascent up S, if we map P;
to the value of the average of all data values in some small neighbourhood of
X;. Such a mapping will tend to move data in precisely the direction needed
to overcome biasing problems associated with standard intensity estimators.

Performance of the algorithm is of course influenced by the definition
taken for ‘neighbourhood’. This may be given very simply in terms of the
neighbourhood used for the intensity estimator itself. For example, suppose
we are using a standard kernel estimator such as that at (2.1), with band-
width b = hy = hg (after rescaling) and a nonnegative, symmetric kernel
K, to estimate intensity; and that we wish to sharpen our data in this
context. Then a canonical version of our data-sharpening transformation
amounts to mapping (X;,7T;) to the value taken by the standard multivariate
Nadaraya-Watson density estimator evaluated at (X;,T;), when bandwidth
equals 271/2h and the data are used as both exogenous and endogenous
variables in the regression problem. It may be shown that this procedure
reduces bias by two orders of magnitude, from O(h?), expressed relative to
true intensity, to O(h*).

The key to validity of this assertion is use of the factor 2~/ to adjust
bandwidth. Without the factor, bias may be reduced but not by an order
of magnitude. The method suggested by Jones and Stewart (1997) does not
employ such a factor, although the context of Jones and Stewart’s work is
different from that discussed above. These authors are interested in identi-
fying ridges in intensity estimates computed from geophysical datasets, not
in intensity estimation per se. See Section 3.3 for further discussion.

Derivation of the bandwidth-multiplication factor will be summarised
in section 3.2. Further details are available from Choi and Hall (1999b).
Suffice it to say here that the factor is unrelated to the bivariate nature of
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the problem, but instead depends on the order of the smoothing technique.
In particular, if we were estimating an intensity in p > 1 dimensions, and
employing an estimator based on nonnegative, symmetric kernels, then we
would use the data-sharpening method suggested two paragraphs above,
employing bandwidth 2-1/2h in the sharpening step based on the Nadaraya-
Watson estimator, regardless of the value of p. Bias would be reduced from
O(h?) to O(h*). More generally, however, if we were using kernels of order
r then we would replace 271/2 by r~1/7. The method has simple analogues
for other linear estimators, for example those based on orthogonal series or
singular integrals.

3.2 Implementation

Rather than reanalyse the data addressed in Section 1 we shall introduce
a new data set, this time wholly spatial rather than involving both space
and time. It has the advantage of requiring relatively little variation of
bandwidth. Panel (a) of Figure 4 depicts epicentres of earthquakes with
magnitude at least 2 on the Richter scale, occurring between 100° and 160°
longitude and —30° and 30° latitude during the years 1984 to 1995. The
number of events which satisfy these criteria is 24471. Data were compiled
by NOAA and USGS (1996); see also the printed account in the PDE cat-
alogue (1997). A kernel estimator of intensity at z = (z(!),z(?), based on
data such as these, is

(3.1) b(z) = % > K(* _hX’)

(compare (2.1)), where now X; = (Xi(l), Xi(2)) represents a spatial data pair,
K is a bivariate kernel and h a bandwidth. The sharpened data are

o T X K{2V2hN (X, - Xa))
(3.2) Xj = ) K{21/2h_1(Xj]—Xi)} ’

where K and h are as at (3.1). The ‘diagonal’ terms may be dropped from the
numerator and denominator at (3.2), without affecting first-order asymptotic
properties. We suggest substituting X; for X; at (3.1), to compute the
sharpened form of i:

Dy(z) = hl—2 > K(Z _hX') .

Panels (a) and (b) of Figure 5 show # and #,, respectively, computed
from the data in panel (a) of Figure 4, using bandwidth # = 2.0 (chosen
subjectively) and taking K to be the product of two univariate biweight
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(a): Raw data (b): One-fold sharpened data
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Figure 4: Scatterplots of sharpened data with decreasing bandwidth. Panel (a) shows the
raw data, and panels (b)-(d) show the effects of applying the sharpening algorithm m = 1,
2 or 3 times, respectively. The bandwidth used to compute the sharpened scatterplots
decreases in proportion to the inverse of the square root of m.

kernels. Visibly, the intensity peaks are depicted more sharply after sharp-
ening. In particular, the estimated peak intensity at (146.33°,—6.50°) of
the data-sharpening intensity estimate exceeds that of the standard kernel
estimate by 23%.

Finally we give a short technical argument to demonstrate the appropri-
ateness of the bandwidth-multiplication factor, 271/2. Of course, we assume
K is a symmetric bivariate probability density. Suppose the data X; are
p-variate and come from a distribution with density f, and consider the
empirical transformation

i (Xi — ) K{h{'(z — Xi)}
i K{ri'(z — Xi)} ’

where, for the present, h; denotes an arbitrary constant multiple of h. If we

P(z) =z +
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Figure 5: Intensity estimates computed from sharpened data with decreasing bandwidth.
Estimates in panels (a)-(d) were computed from the scatterplots in panels (a)—(d), re-
spectively, of Figure 4. The bandwidth used to compute each intensity estimate from

the sharpened data was kept fixed at h = 2.0, although the bandwidths used to produce
successive sharpened scatterplots were decreasing.

take that constant to be 271/2 then X; = ¢)(X;). More generally, by Taylor
expansion,

@)} = o+ 5 [ wK@ f(o+hi) dut o)

=1+ h? EVJAT) jé()m) + o(h?),

where k = [(uM)2 K (u) du, VS = (fO,.. .,f(”))T, and fU)(z) denotes the
partial derivative of f(z) with respect to z(¥). Put V2f = (f(1)2 +...+

(f®)2. Then, using the above expansion of E(1}), and the fact that 1 has
variance of smaller order than the variance of a kernel estimator of f using
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bandwidth h, we see that
- X;
B{K(*, )}
/ (2= )f(y) dy + o(h?)
T — Viy) Vi)
=[R2 o ntn Sy —re T o)
_/K(

— kh2V2f(y)} dy + o(h?)
=h {f(w) + 3 kB2 V2f(z)n — kB V2 f(z) + O(hz)} = h{f(z) +o(h?)},

R{Vf )} fly)~

T —

where the last identity requires h; = 271/2h. This confirms that using the
bandwidth-multiplication factor 2~1/2 reduces bias from O(h?) to o(h?). The
symmetry of K may be used to prove that bias is actually reduced to O(h*).

3.3 Iteration

There is no difficulty 1terat1ng the sharpening step. To describe the method,
let X J[O] = X; denote a ‘raw’ data value, and consider using bandwidth hq

rather than 271/2h at (3.2). We may generalise the notion of sharpened data
by defining the k-fold sharpened form of X; by

k1] —1 3lk-1] _ k-1
(3.3) g o Zi X K_{lh‘l [i)_(f] A[k)_({] J
>i Kby (X " - X7 )}

7 )

for k > 1. In order to preserve the order of bias reduction, from O(h?) to
O(h*), it is necessary to change bandwidth from 271/2h to hy = (2m)~1/2h
if a total of m iterations is contemplated (i.e. if we employ (3.3) for 1 <
k < m, and then compute our final estimator using formula (3.1) with Xz[m]
replacing X;). Note that the order of bias reduction does not change with
increasing m. More generally, we could employ hy = hg, say, in (3.3), where
hi,...,hy satisfy h? + ... + h2, = h?/2.

Panels (b)—(d) of Figure 4 are scatterplots of the points Xz[m], for m =
1,2, 3 respectively. They were computed using bandwidth hy = (2m)“1/ 2,
with h = 2.0, in formula (3.3). The increasing amount of structure observed
as m increases is the result of points X; moving to positions closer to the
projections, into the x plane, of ridge lines on the surface S described by the
equation y = &(x). As m increases the ridge projections become sharper,
and the structure becomes more complex and ‘crinkly’, partly because of the
movement of points and partly because bandwidth is decreasing.

However, the structure starts to degenerate as we increase m further.
This is starting to become apparent in panel (d) of Figure 4, representing
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m = 3. By the time m = 5 the ridge structure that is clearly visible for
m = 2 has almost entirely disappeared. It is replaced by a new scatterplot
of highly isolated clusters of points. On the scale of Figure 4 it looks similar
to panel (a), except that only a few percent of the original data appear to
remain. These ‘points’ are actually high-intensity data clusters around sev-
eral hundred modes, or local maxima, the latter arising because the effective
bandwidth has been substantially reduced. This tendency reverses for large
m, and in fact the limit, as m — oo, of the sharpened scatterplot is the
original scatterplot in panel (a) of Figure 4.

Panels (a)—(d) of Figure 5 show versions of the intensity estimate s
that correspond to the scatterplots in panels (a)-(d), respectively, of Fig-
ure 4. Note that we use the same bandwidth, h = 2.0, for all the functions
in Figure 5, although the scatterplots in Figure 4 are calculated using suc-
cessively smaller bandwidths. A key feature of Figure 5 is that intensity
estimates are virtually identical in each of panels (b)—(d). While the num-
ber of iterations of data sharpening (with steadily reducing bandwidth) has
a substantial impact on the point process pattern (see Figure 4), it has little
effect on the intensity estimates produced from the patterns, at least for the
numbers of iterations employed to generate the last three panels of Figure 5.

In particular, the ratio of the height of the largest peak for a given value
of m, to that when m = 0 (i.e. for the standard kernel estimator), increases
to 1.25 when m = 2, and decreases only slightly for m = 3 and 4, always
remaining above 1.20. There is some evidence of increased variability of
intensity estimates for larger values of m, but the increase is substantially
less than the changes in the point-process maps (see Figure 4) produced by
increasing m. Simulation studies for simpler target intensities show that
for fixed sample size, bias also tends to increase if m is increased beyond a
certain point. Therefore, employing a high order of iteration to compute the
‘final’ estimate is not recommended.

Results are quite different if we keep bandwidth fixed while iterating
the data-sharpening step. Now complexity and ‘crinkliness’ are actually
reduced for relatively large numbers of iterations. See Figure 6. However,
successively less information is available in parts of the plane where the ‘true’
intensity is not high. As a result, if we compute the intensity estimator &
from datasets that have been successively sharpened in this way, its shape
alters rapidly as the number of iterations increases, and overall performance
deteriorates.

This is clear from Figure 7. There, the local maxima of the intensity
estimate become progressively more pronounced as the number of iterations
is increased. Indeed, the growth is so rapid that we have had to truncate
height at 300 in order to present panels (c) and (d) of Figure 7; the heights of
the largest peaks for those datasets are actually 360 and 430, respectively. In
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this setting, where bandwidth is kept fixed in the data-sharpening step, the
ratio of the height of the largest peak for a given value of m, to that when
m = 0 (i.e. the standard kernel estimator), increases monotonically with
m, being 1.3, 1.6, 1.9 and 2.0 when m = 1,2, 3,4 respectively. By way of
comparison, when bandwidth is reduced as m increases, the corresponding
ratio at first increases and then, for the last two panels, decreases only
slightly (and monotonically); see Figure 5.

(a): Raw Data (b): One-fold sharpened data
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Figure 6: Scatterplots of sharpened data with constant bandwidth. Panel (a) shows the
raw data, and panels (b)—(d) show the effects of applying the sharpening algorithm m = 1,
2 and 3 times, respectively, this time keeping bandwidth fixed at A = ho = 2.0 in all data
sharpening steps.

An algorithm similar to that illustrated by Figure 6 was first suggested
by Jones and Stewart (1997). It was designed to elucidate structure in geo-
physical data of the type depicted in panel (a), not as an aid to intensity
estimation. It may be thought of as a device for forcing points to ‘walk’ up
empirical approximations to lines of steepest ascent on the surface 3‘, rep-
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Figure 7: Intensity estimates computed from sharpened data with constant bandwidth.

Estimates in panels (a)-(d) were computed from the scatterplots in panels (a)-(d), respec-
tively, of Figure 6.

resenting a plot of the intensity estimator against spatial location. Initially,
in the first few steps, those lines are approximately perpendicular to ridge
lines, but after a point has attained a reasonable height on S its path starts

to turn and, as the number of iterations increases, it moves in a direction
that is increasingly parallel to a ridge line.

Increasing the number of iterations beyond this stage tends to reduce
performance of the algorithm as a means for elucidating structure. In partic-
ular, detail about structure is lost at places where intensity is relatively low;
this is already apparent in panel (d) of Figure 6. Jones and Stewart (1997)
suggested a stopping rule to help overcome this problem. An alternative
approach is to modify the algorithm by forcing the projection in the z-plane
of the vector of motion up S to be similar to that in early steps. Constraints
such as this can substantially improve performance of Jones and Stewart’s
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algorithm.

4 Estimating the locations and strengths of poles

We have seen in Sections 2 and 3 that the intensity function associated with a
point process of earthquake epicentres can rise very steeply from the plane,
and give every appearance of having poles or pole lines in places of high
intensity. Nonparametric methods may be employed to estimate both the
location of a pole or pole line, and the rate at which intensity diverges in its
vicinity. For the sake of simplicity we shall confine attention here to poles.

We begin with an idealised model for both the location and ‘strength’ of
a pole. Estimators suggested by the model are appropriate very generally,
and so the model amounts only to a device for pointing the way to method-
ology, not to a specific structural assumption. To this end, we assume that
in the vicinity of a point v in the plane, the intensity v(z) is asymptotic
to a constant multiple of ||z — v||™®, where a > 0 represents pole strength.
In order for the expected number of points in each bounded, nondegenerate
region to be finite, we need a < 2. Of course, if the point process were
Poisson then the actual number of data in a region would be infinite, with
probability 1, if the expected number there were infinite. The value of « is
related to the correlation dimension, D, of the point process by the formula
D = 2(2 — a). See Grassberger and Procaccia (1983).

It may be shown that, even if the data are from a Poisson process with
this intensity, maximum likelihood estimation of v is not feasible. Neverthe-
less, given an estimator ¥ of v, a form of maximum likelihood estimation of
o is possible. Estimators of v may be based on maximising the number of
points within a small region, and have at least two forms, as follows. Let
D = D(w,r) denote the closed disc of radius r centred at w. Define 9 to be
either that value of w which minimises the area of D(w,r) subject to this
disc containing at least a given number, N say, of points; or a value of w
which maximises the number of points contained in D(w, r) for a given value
of r. If the points X; are distributed in the continuum then the former % is
uniquely defined with probability 1, while the latter is not unique, with the
same probability. For this reason we favour the former estimator.

Given ¥ we may define an estimator & of a to be the minimiser of

o) = a Y log |X: ol + M(D\Dy) log [ oo da),

2 1

where D; C D, are concentric discs centred at 9, ' denotes summation
over those points X; that lie in Dp\D;, and M (D2\D;) equals the number
of such points. The equation (8/8a) £(a) = 0 has a unique solution &. The
radii of D, D; and D, play the roles of smoothing parameters.
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It may be proved that & and © are consistent for @ and v, under con-
ditions that are much more general than those asserted by the motivating
model v(z) = yy(z) = ||z — v||~*. A theory describing rates of convergence
may be developed (Choi and Hall, 1997), having points of contact with that
for semiparametric estimation of parameters in distributions with regularly
varying tails; see e.g. Embrechts, Kliippelberg and Mikosch (1997, Chapter
6). It is straightforward to incorporate effects of noise into the intensity
model, for example by assuming that an independent bivariate Gaussian
vector with zero mean is added to each point in the plane. Provided the
covariance matrices of these vectors are known they do not materially com-
plicate estimation of a.

However, it may be shown that there is negligible information in the
data for estimating noise covariance, under intensity models such as v =
vy. Fortunately, information about noise properties is often available from
knowledge of the placement of recording stations around the epicentre of an
event, and of the nature of the rocks through which shock waves passed on
their way to those stations. Indeed, each measurement of longitude, latitude
and depth is sometimes accompanied by its own error covariance matrix; see
for example Jones and Stewart (1997).

We may estimate v and « for data from temporal clusters, and thereby
compute estimators of the spatial trajectory, as a function of time, that are
alternative to those considered in Section 2.3. Table 1 provides information
about location and pole strength of nine of the ten shallow (i.e. no deeper
than 36 km) Kanto event clusters that were the subject of Figure 3. (The
cluster numbered 6 in Figure 3, occurring during February 1988 and having
relatively low intensity, has been omitted from the present analysis.) Fig-
ure 8 depicts the corresponding trajectory, and should be compared with
Figure 3. Smoothing parameters were chosen by performing a simulation
study involving models that produced realisations approximating the data
clusters. Details of the analysis are given by Choi and Hall (1999a). Methods
for estimating « in related problems have been discussed by Theiler (1990),
Smith (1992), Grassberger and Procaccia (1993), Mikosch and Wang (1995),
Harte (1996) and Vere-Jones (1999).

Acknowledgements We are grateful to Dr. D. Harte and Professor D.
Vere-Jones for providing the earthquake data analysed in this paper, and
to Professor B.L.N. Kennett for helpful comments during the course of our
work. The constructive comments of two referees have also been particularly
helpful.



342 Edwin Choi and Peter Hall

Year | Longitude | Latitude | N | Vg | Oy |
1980 139.0,139.3 34.8,35.1 222 139.186 34.966
1983 139.0,139.3 34.8,35.1 238 139.200 34.938
1984 139.1,139.4 34.8,35.1 383 139.217 34.928
1986 139.0,139.3 34.8,35.1 207 139.175 34.948
1987 139.1,139.4 34.8,35.1 489 139.258 34.913
1988 139.05,139.35 34.8,35.1 237 139.195 34.951
1989 138.95,139.25 34.8,35.1 175 139.108 34.986
19931 139.0,139.3 34.8,35.1 337 139.177 34.937
19937 139.0,139.3 34.8,35.1 614 139.130 34.976

: includes only events in January
2; includes only events in May and June

1

Table 1: Locations and pole strengths for 9 shallow Kanto event clusters.
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Figure 8. Spatial migration of pole. Data are clusters within the dataset used to compute
Figure 3, and represent shallow Kanto events.
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