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Very brief surveys axe presented of three topics of importance for interacting random
systems, namely conformal invariance, droplets, and entanglement. For ease of description,
the emphasis throughout is upon progress and open problems for the percolation model,
rather than for the more general random-cluster model. Substantial recent progress has
been made on each of these topics, as summarised here. Detailed bibliographies of recent
work are included.
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1 Introduction

Rather than attempt to summarise the 'state of the art' in percolation and
disordered systems, a task for many volumes, we concentrate in this short ar-
ticle on three areas of recent progress, namely conformal invariance, droplets,
and entanglement. In each case, the target is to stimulate via a brief survey,
rather than to present the details.

Much of the contents of this article may be expressed in terms of the
random-cluster model, but for simplicity we consider here only the special
case of percolation, defined as follows. Let £ be a lattice in Rd; that is, C is
an infinite, connected, locally finite graph embedded in Rd which is invariant
under translation by any basic unit vector. We write C = (V,£), and we
choose a vertex of C which we call the origin, denoted 0. The cubic lattice,
denoted Zd, is the lattice in Rd with integer vertices and with edges joining
pairs of vertices which are Euclidean distance 1 apart.

Let 0 < p < 1. In bond percolation on £, each edge is designated open
with probability p, and closed otherwise, different edges receiving indepen-
dent designations. In site percolation, it is the vertices of C rather than its
edges which are designated open or closed. In either case, for A,B CV, we
write A <-> B if there exists an open path joining some a G A to some b E B,

1 This work was aided by partial financial support from the Engineering and Physical
Sciences Research Council under grant GR/L15425.
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and we write A «•> oo if there exists an infinite open self-avoiding path from
some vertex in A.

Let Pp denote the appropriate product measure, and let

θ(p) = Pp(0 <+ oo)

be the probability that the origin lies in some infinite open self-avoiding
path. The critical probability of the process is defined by

pc = sup{p : θ{p) = 0}.

Note that the values of θ{p) and pc depend on the choice of C and on the type
(bond or site) of the process; we shall suppress this information whenever it
is clear from the context.

For more information about the mathematics of percolation, see Grim-
mett (1997, 1999). Periodic reference will be made to a more general model
called the random-cluster model. There is a sense in which the latter model
includes percolation, Ising, and Potts models as special cases; the reader is
referred to Grimmett (1995) for a recent account of random-cluster processes.

The next three sections contain summaries of recent progress on con-
formal invariance, the droplet problem, and the question of entanglement,
respectively.

2 Conformal invariance

Consider a random spatial process in R2, perhaps a percolation process on
some two-dimensional lattice. Let us assume the existence, in an appropriate
sense, of the limit process obtained by a spatial re-scaling of the original
process by an increasing sequence of factors. Under certain assumptions,
the law of the limit process is expected to be invariant under conformal
maps of the underlying space R2.

This remarkable speculation has emerged from conformal field theory,
and is relevant to a variety of random processes including the percolation
and Ising models. For simplicity, we consider here the case of percolation
only.

Let £ be a lattice in two dimensions, and let pc be its critical probability
(we shall not at this stage be specific whether it is bond or site percolation
under consideration). Consider a percolation process on £, with p = pc. The
hypothesis of universality suggests that the chances of long-range connections
should, to some degree, be independent of certain 'local fluctuations' in C.
In particular, local deformations of space, within limits, are not expected to
affect such probabilities. One family of local changes arises by local rotations
and dilations, and such mappings of R2 constitute the set of conformal maps.
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We make this specific in the manner surveyed and pursued by Langlands
et al. (1992, 1994). Take a simple closed curve 7 in the plane, and disjoint
arcs α, β of 7. For a dilation factor r > 1, define

7iγ(7; α, β) = P(ra <-» rβ in rη)

where P = PPc and the event in question is the event that there exists an
open path of C whose intersection with the inside of 7 contains an open
connection between ra and rβ, (See Figure 2.1.)
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Figure 2.1. An illustration of the event that ra is joined to rβ within r7, in the case of
bond percolation on Z2.

The first conjecture is the existence of the limit

(2.1) τr(7;α,/?) = lim πr(η\a,β)

for all triples (75 a,/3). Some convention is needed in order to make sense
of (2.1), arising from the fact that rη lives in the plane R2 rather than on
the lattice £; this poses no major problem. Only in very special cases is
(2.1) known to hold. For example, in the case of bond percolation on Z2,
self-duality enables a proof of the existence of the limit when 7 is a square
and α, β are opposite sides thereof; for this special case, the limit equals 1/2.

Let φ : R2 —> R2 be conformal on the inside of 7 and bijective on the
curve 7 itself. The hypothesis of conformal invariance states that

π(7; α, β) = π(<^γ; φot, φβ)(2.2)

for all such φ. This conjecture concerns only percolation of a specific type
(bond or site) on a specific lattice. More general forms of the conjecture come
readily to hand; see Langlands, Pouliot, and Saint-Aubin (1994). First, it is
natural to extend the conjecture to include the existence (or not) of crossings
between more than one pair of arcs of the curve 7. Secondly, the conjecture
may be extended to include a hypothesis of universality.
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Lengthy computer simulations, reported by Langlands, Pouliot, and
Saint-Aubin (1994), support these conjectures. Particularly stimulating ev-
idence is provided by a formula known as Cardy's formula. By following a
sequence of transformations of models, and applying ideas of conformal field
theory, Cardy (1992) was led to the following explicit formula for crossing
probabilities between two arcs of a simple closed curve 7.

Let 7 be a simple closed curve, and let ^1,^2,^3,^4 be four points on
7 in clockwise order. There is a conformal map φ on the inside of 7 which
maps to the unit disc, taking 7 to its circumference, and the points Z{ to the
points W{. There are many such maps, but the cross-ratio of such maps,

(2 3) u =

is a constant satisfying 0 < u < 1 (we think of z% and W{ as points in the
complex plane). We may parametrise the W{ as follows: we may assume that

w\ = eιδ, W2 = e~ιδ, W3 = —eιδ, W4 = —e~ιδ

for some δ satisfying 0 < δ < \Έ. Note that u = sin2 θ. We take α to be
the segment of 7 from z\ to ^2, and β the segment from z3 to z±. Using the
hypothesis (2.2) of conformal invariance, we deduce that π(7; α, β) may be
expressed as some function /(u), where u is given in (2.3). Cardy (1992) has
derived (non-rigorously) a differential equation for /, namely

subject to the boundary conditions /(0) = 0, /(I) = 1. The solution is

(2-4) /(«)

where 2^1 is a hypergeometric function. The derivation is somewhat spec-
ulative, but the predictions of the formula may be verified by Monte Carlo
simulation (see Figure 3.2 of Langlands, Pouliot, and Saint-Aubin (1994)).

The function in (2.4) appears complicated, and calls for an intuitive
motivation. It turns out that there is a special choice for the triple (7; α, β)
for which the formula in (2.4) takes an extremely simple form, as follows.
Consider site percolation on the triangular lattice, illustrated in Figure 2.2;
the critical probability of the process is pc = \ (see Grimmett (1999), Section
11.9). Let x satisfy 0 < x < 1. Take 7 to be an equilateral triangle of unit
side-length; let α be one side of 7, and β be a sub-interval of another side,
with length x and having the vertex opposite to α as an endpoint. (See
Figure 2.3.) It may be conjectured that

(2.5) π{r,<*,β)=x
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Subject to a suitable generalised form of the hypothesis of conformal invari-

ance, (2.5) is equivalent to Cardy's formula. Conjecture (2.5) appears to be

due to L. Carleson. It is supported by numerical simulations of Bain (1999)

and probably others. Formula (2.5) may be justified by the self-matching

property when x—\-

Note that (2.5) should be valid for other processes also, such as bond

percolation on the triangular lattice when p equals its critical value.

Figure 2.2. Part of the triangular lattice.

4 4- - • —» •--••--•

Figure 2.3. An illustration of the triple (7; α, β) and of the event relevant to the probability
τrr(7;α,/3).

The above 'calculations' are striking. As suggested by Aizenman (1995),
similar calculations may well be possible for more complicated crossing prob-
abilities than the cases discussed above. For example, Watts (1996) has
performed numerical simulations which give support to a conjecture for the
limiting probability that a large rectangle is crossed from left to right and
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simultaneously from top to bottom.

In the above formulation, the principle of conformal invariance is ex-
pressed in terms of a collection {π(7;α,/?)} of limiting 'crossing probabili-
ties'. It would be useful to have a representation of these π(j\ α, β) as prob-
abilities associated with a specific random variable on a specific probability
space. Aizenman (1995) has made certain proposals about how this might
be possible. In his formulation, we observe a bounded region DR = [0, i?]2,
and we shrink the lattice spacing α of bond percolation restricted to this
domain. Let p = pc, and let Gα be the graph of open connections of bond
percolation with lattice spacing α on DR. By describing Gα through the
set of Jordan curves describing the realised paths, he has apparently ob-
tained sufficient compactness to imply the existence of weak limits as α -> 0.
Possibly there is a unique weak limit, and Aizenman has termed an object
sampled according to this limit as the 'web'. The fundamental conjectures
are therefore that there is a unique weak limit, and that this limit is confor-
mally invariant. Further work in this direction may be found in Aizenman
and Burchard (1999).

The quantities π(7;α, β) should then arise as crossing probabilities in

'web-measure'. This geometrical vision may be useful to physicists and

mathematicians in understanding conformal invariance.

Mathematicians have long been interested in the existence of long open
connections in critical percolation models in Md (see, for example, Kesten
(1982), Kesten and Zhang (1993)). An overall description of such connec-
tions will depend greatly on whether d is small or large. When d = 2, a
complex picture is expected, involving long but finite paths on all scales
whose geometry may be described as 'fractal'. See Aizenman (1997, 1998)
for accounts of the current state of knowledge. A particular question of
interest is to ascertain the fractal dimension of the exterior boundary of a
large droplet (see Section 3 of the current paper). Such questions are linked
to similar problems for Brownian Motion in two dimensions. The (rigorous)
conformal invariance of Brownian Motion has been used to derive certain
exact calculations, some of which are rigorous, of various associated critical
exponents (see Lawler and Werner (1998) and Duplantier (1999), for exam-
ple). Such results support the belief that similar calculations are valid for
percolation.

The picture for large d is expected to be quite different. Indeed, Hara
and Slade (1999a, 1999b) have recently proved that, for large d, the two-
and three-point connectivity functions of critical percolation converge to
appropriate correlation functions of the process known as Integrated Super-
Brownian Excursion.

In one interesting 'continuum' percolation model, conformal invariance

may actually be proved rigorously. We drop points {Xi,X2,. } in the
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plane R2 in the manner of a Poisson process with intensity λ. Now divide
R2 into tiles {T(X1),T(X2),...}, where T(X) is defined as the set of points
in R2 which are no further from X than they are from any other point
of the Poisson process (this is the 'Dirichlet' or 'Voronoi' tesselation). We
designate each tile to be open with probability ^ and closed otherwise. This
continuum percolation model has a property of self-duality, and, using the
conformal invariance and other properties of the Poisson point process, one
may show in addition that it satisfies conformal invariance. See Aizenman
(1998) and Benjamini and Schramm (1998).

We note that Langlands et al. (1999) have reported a largely numerical
study of conformal invariance for the two-dimensional Ising model.

3 Droplets and large deviations

Consider the Ising model on a finite box B of the square lattice Z 2 with +
boundary conditions, and suppose that the temperature T is low. (We omit
a formal definition of the Ising model, which is known to many, and which is
not central to this short review.) The origin may lie within some region whose
interior spins behave as in the — phase, but it is unlikely that such a region,
or 'droplet', is large. What is the probability that this droplet is indeed
large? Conditional on its being large, what is its approximate shape? For
low T, such questions were answered by Dobrushin, Kotecky, and Shlosman
(1992), who proved amongst other things that droplets have approximately
the shape of what is termed a Wulff crystal (after Wulff (1901)). In later
work, such results were placed in the context of the associated random-
cluster model, and were proved for all subcritical T; see Ioffe (1994, 1995),
Ioffe and Schonmann (1998), and the references therein.

In a parallel development for percolation on Z2, Alexander, Chayes, and
Chayes (1990) explored the likely shape of a large finite open cluster when
p > Pc They established a Wulίf shape, and proved in addition the existence
of η(p) € (0, oo) such that

(3.1) —\= logPp(|C| = n) -> η(p) as n -> oo

where C denotes the set of vertices which are connected to the origin by
open paths.

The geometrical framework for such results begins with a definition of
'surface tension'. The details of this are beyond this article, but the very
rough idea is as follows. Let k be a unit vector, and let σ(k,p) denote 'surface
tension in direction k'. For the Ising model, σ(k,p) is defined in terms of the
probability of the existence of a certain type of interface orthogonal to k;
for percolation, one considers the probability of a certain type of dual path
of closed edges which is, in a sense to be defined, orthogonal to k. When
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suitably defined, these probabilities decay exponentially, and the relevant
exponents allow a definition of 'surface tension' in each case. Given a closed
curve 7, one may define its energy 7/(7) as the integral along 7 of σ(k,p),
where k denotes the normal vector to 7. We say that 7 encloses a 'Wulff
crystal' if 7/(7) < 7/(7') for all closed curves 7' enclosing the same area as 7.

We make this discussion of surface tension more concrete in the case of
two dimensions, following Alexander, Chayes, and Chayes (1990). For a unit
vector k and an integer n, let [nk] be a vertex of Z 2 lying closest to nk. The
existence of the limit

σ(k,p) = Jim^ | - 1 logPi_p(0 ** [nk]) J

follows by subadditivity, and this may be used as a definition of surface
tension.

Consider now the percolation model on Ί? with p > pc. If \C\ < 00,
the origin lies within some closed dual circuit 7. For a wide variety of
possible 7, the circuit 7 contains with large probability a large open cluster
of size approximately θ(p)\ ins(7)|, where ins(7) denotes the inside of 7. It
turns out that, amongst all 7 with 0(p)|ins(7)| = n, say, the 7 having
largest probability may be approximated by the Wulff crystal enclosing area
n/θ(p). The length of such 7 has order >/n, and one is led towards (3.1). A
substantial amount of work is required to make this argument rigorous.

It is a great advantage to work in two dimensions, and until recently
there has been only little progress towards understanding how to prove such
results in three dimensions. Topological and probabilistic problems inter-
vened. However, a recent paper of Cerf (1998) has answered such problems,
and has shown the way to a Wulff construction in three dimensions. Cerf
has proved a large deviation principle from which the Wulff construction
emerges. A key probabilistic tool is the 'coarse graining' of Pisztora (1996),
which is itself based on the results of Grimmett and Marstrand (1990); see
also Grimmett (1999, Section 7.4).

Cerf's paper has provoked a further look at the Ising model, this time in
three dimensions. Bodineau (1999) has achieved a Wulff construction for low
temperatures, and Cerf and Pisztora (1999) have proved such a result for all
T smaller than a certain value Tsiab believed equal to the critical temperature
Tc. The latter paper used methods of Pisztora (1996) concerning 'coarse
graining' for random-cluster models.

4 Entanglement

The theory of long-chain polymers has led to the study of entanglements in

systems of random arcs of M3. Suppose that a set of arcs is chosen within

R3 according to some given probability measure μ. Under what conditions
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on μ does there exist with strictly positive probability one or more infinite
entanglements? Such a question was posed implicitly by Kantor and Hassold
(1988), and has been studied further for bond percolation on the cubic lattice
Z 3 by Aizenman and Grimmett (1991), Holroyd (1998), and Grimmett and
Holroyd (1999).

It is first necessary to decide on a definition of an 'entanglement'. Let
E be the edge set of Z3. We think of an edge e as being the closed line
segment of M3 joining its endpoints. For E C E, we let [E] be the union
of the edges in E. The term 'sphere' is used to mean a subset of M3 which
is homeomorphic to the unit sphere. The complement of a sphere S has
two connected components, an unbounded outside denoted out(5), and a
bounded inside denoted ins(5). For E CE and a sphere 5, we say that S
separates E if S Π [E] = 0 but [E] has non-empty intersection with both
inside and outside of S.

Let E be a non-empty finite subset of E. We call E entangled if it is
separated by no sphere. See Figure 4.1.

Figure 4.1. The left graph is not entangled; the right graph is entangled.

There appears to be no unique way of defining an infinite entanglement,
and the 'correct' way is likely to depend on the application in question. Two
specific ways propose themselves, and it turns out that the corresponding
definitions are 'extreme' in a manner to be explained soon.

Let E be a (non-empty) finite or infinite subset of E.
(a) We call E strongly entangled if, for every finite subset F of £7, there

exists a finite entangled subset F' of E satisfying F CFf.

(b) We call E weakly entangled if it is separated by no sphere.
Note that all connected graphs are entangled in both manners, and that a
finite subset of E is strongly entangled if and only if it is weakly entangled.

Let £, (respectively E^) be the collection of all strongly entangled sets
of edges (respectively weakly entangled sets). It is proved in Grimmett and
Holroyd (1999) that 8, C E^, and that these sets are extreme in the sense
that ί , C ί C EQQ for any collection E of non-empty subsets of E having the
following three properties:



Conformed Invariance, Droplets, and Entanglement 319

(i) the intersection of £ with the set of finite graphs is exactly the set
of finite entangled graphs;

(ii) if E G E, then E is separated by no sphere;

(iii) let JE?i, E<ι,... E S be a sequence such that, for every pair i and j ,
E{ and Ej have a common vertex; then \J{ E{ G £.

Furthermore, £/ and ^ satisfy conditions (i)-(iii).
The reason for the notation ε, and £<» is that the notions of weak and

strong entanglement arise naturally through a consideration of finite entan-
glements within the box [—n, n]3 in the limit of large n, with 'free' and
'wired' boundary conditions respectively.

Let Jo (respectively J\) be the event that the origin of Z 3 lies in an
infinite, open, strongly (respectively weakly) entangled set E\ note that Jo
and J\ are increasing events. We define the strong and weak entanglement
probabilities by

θO{p) = Pp(Jo), 0i (p) = Pp{Jl),

and the associated entanglement critical points

° =p°c = sup{p : ft(p) = 0},

Since it is immediate that 0Q(P) < #i(p)? whence p[? > p\.

Figure 4.2. The left graph is weakly but not strongly entangled; the right graph is both
strongly and weakly entangled.

It is proved in Grimmett and Holroyd (1999) that 0o(p) = θ\{p) for all
values of p sufficiently close to 1, and it may be conjectured that

p°c=pι

c= pln\ for some p* n t E (0,1),

θι(p) = θo(p) i
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Such mathematical questions were not treated in the initial paper of
Kantor and Hassold (1988). Numerical work reported there suggested the
existence of an 'entanglement critical point' plnt satisfying plnt ~ pc — 1-8 x
10~7. No formal definition of this critical point was presented, and indeed
the discussion of this initial paper concerned only finite entanglements. The
strict inequality p® < pc follows by the argument presented in Aizenman and
Grimmett (1991). The complementary inequality pi > 0 has been proved
by Holroyd (1998).

The list of open problems concerning entanglement in percolation in-
cludes: proving the almost sure equivalence of the notions of strong and
weak entanglement, establishing an exponential tail for the size of the max-
imal finite entanglement containing the origin when p < plnt, and deciding
whether or not there exists an infinite entanglement of a given type when p
equals the appropriate critical value. Uniqueness of the infinite entanglement
when p exceeds the corresponding critical value has been proved recently by
Haggstrόm (1999), but the critical process (whenp equals the critical value)
is still not understood.

The following combinatorial question may prove interesting. Let ηn be
the number of finite entangled subsets of E which contain the origin and
have exactly n edges. Does there exist a constant A such that ηn < An for
alln?
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