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Consider the problem of estimating a parametric function when the loss is quadratic.
Given an improper prior distribution, there is a formal Bayes estimator for the parametric
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1 Introduction

In this paper we consider a classical parametric estimation problem when
the loss is quadratic. Here attention is restricted to the so-called formal
Bayes estimators - that is, estimators obtained as minimizers of the pos-
terior risk calculated via a formal posterior distribution. Because the loss
is quadratic, admissibility questions regarding such estimators are typically
attacked using the explicit representation of the estimator as the posterior
mean of the function to be estimated. Examples can be found in KARLIN

(1958), STEIN (1959), ZIDEK (1970), PORTNOY (1971), BERGERand SRINI-

VASAN (1978), BROWN and HWANG (1982), EATON (1992), and HOBERT

and ROBERT (1999).
To describe the problem of interest here, let P(dx\θ) be a statistical

model on a sample space X where the parameter θ E Θ is unknown. That
is, for each 0, P( \θ) is a probability measure on the Borel sets of X. Both X
and Θ are assumed to be Polish spaces with the natural σ-algebra. Given a
real valued function φ(θ) that is to be estimated, consider the loss function

(1.1) L{α,θ) = (α
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In order to define a formal Bayes estimator of φ(θ), let v be a σ-finite im-
proper prior distribution defined on the Borel sets of Θ, so i/(θ) = +00. The
marginal measure on X is defined by

(1.2) M(B)= (P{B\θ)v(dθ)

Θ

for Borel subsets of X. When M is σ-finite (assumed throughout this paper),
then a formal posterior Q{dθ\x) exists and is characterized by

(1.3) P(dx\θ)v{dθ) = Q{dθ\x)M{dx).

The equality in (1.3) means that the measures o n ί x θ defined by the left
and right side of (1.3) are equal. The formal posterior Q(-\x) is a proba-
bility measure for each x £ X, For a discussion of the existence of Q and
uniqueness (up to sets of M-measure zero), see JOHNSON (1991).

When the loss is (1.1) and the improper prior is z/, the formal Bayes
estimator of φ(θ) is defined to be the point α(x) which miminizes (over α's)

(1.4) J(α-φ(θ))2Q(dθ\x).

Of course, the minimizer is

(1.5) φ(x) = Iφ(θ)Q(dθ\x).

For the present, questions concerning the existence of integrals will be ig-

nored. The risk function of this estimator is

(1.6) R(φ,θ) = Eθ(φ(X)-φ(θ))2

where EQ denotes expectation under P{ \θ). The main focus of this paper

concerns the admissibility of φ and the relationship of this admissibility to

a Markov chain associated with the estimation problem.

For our purposes, the relevant notion of admissibility is the following

(STEIN (1965)).

Definition 1.1 For any estimator t(X) of φ(θ), let R{t,θ) = Eθ(t(X) -
φ(θ))2 be the risk function of t. The estimator φ is almost-v-admissible
(α — v — a) if for every estimator t which satisfies

(1.7) i?(ί,0) <R(φ,θ) for allθ,

the set
(1.8) B = {θ\R(t,θ)<R(φ,θ)}

has v-measure zero.
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In other words, φ is α — v — α if there is no estimator t which is at least
as good as φ everywhere (i.e., (1.7) holds) and which beats φ on a set of
positive z/-measure.

An important technical tool for establishing α — v — α is the so-called
Blyth-Stein condition (BLYTH (1951), STEIN (1955)). To describe this con-
dition, let C be a measureable subset of Θ with 0 < i/(C) < +oo. Consider
the following class of real valued functions defined on Θ:

U(C) = {g\g > 0, g is bounded ,

(1.9) r
g(θ) > 1 for θ e C, / g(θ)u(dθ) < +oo}.

For g £ U(C), think of g{θ)v(dθ) as defining a proper prior distribution
(it has not been normalized to integrate to one) and consider the marginal
measure on X given by

(1.10) Mg(B) = J P(B\θ)g(θ)u(dθ).

Because the measure Mg is finite, we can write (as in (1.3)),

(1.11) P{dx\θ)g(θ)u{dθ) = Qg{dθ\x)Mg{dx)

where Qg(dθ\x) now is a proper posterior distribution corresponding to the
proper prior cg{θ)v(dθ) where c is the normalizing constant. Thus, the Bayes
solution to the estimation problem is the Bayes estimator

(1.12) φg(x) = Jφ(θ)Qg(dθ\x)

which is the posterior mean of φ(θ). Next, consider the integrated risk dif-

ference

(1.13) IRD(g) = J[R(φ,θ) - R(φg,θ)]g(θ)v(dθ).

Roughly (subject to some regularity described precisely in later sections),

one version of the Blyth-Stein condition is:

(1.14)

For sufficiently many sets C,

inf IRD{g)=0.
geu(C)

When (1.14) holds, then φ is a α - v - a (for example, see STEIN (1965)).

In typical examples, a direct verification of (1.14) is not routine.

A main result in this paper provides an upper bound for IRD(g) which

allows us to use results from Markov chain theory to establish a sufficient



226 Morris L. Eaton

condition for (1.14). This result, established in Section 3 under regularity

conditions, is the following:

For g E U{C), IRD(g) < Δ(y/g) where

Δ(Λ) =

I " Φ(v))2Q(dθ\x)Q(dη\x)M(dx)

θ θ X
is defined for real valued functions h.

Although the function Δ(h) looks rather complicated, there is a Markov
chain associated with Δ lurking in the background. To see this, recall (1.3)
and let

(1.16) R{dθ\η) = ίQ(dθ\x)P(dx\η).

x

Then R{-\η) is the expected value of the formal posterior Q(-\x) when the
model is P( \η). Obviously, R( \η) is a transition function (see EATON (1992,
1997) for further discussion; see HOBERT and ROBERT (1999) for some re-
lated material) and we can write

(1.17) Δ(Λ) = J J(h(θ) - h(η))2(φ(θ) - φ(η))2R(dθ\η)v(dη).
Θ e

Then, with

' Φ(jl) = J(Φ(θ)-φ(η))2R(dθ\η)

(1.18) < T(dθ\η) = %-\η){φ{θ)-φ{η))2R{dθ\η)

ξ(dη) = φ(η)u(dη)

it follows that

(1.19) Δ(Λ) = I J(h(θ) - h(η))2T{dθ\η)ξ(dη).
θ θ

By definition, T(dθ\η) is a transition function and hence defines a discrete
time Markov chain, W = (WQ = 77, W\, W2,...) whose state space is Θ
and whose path space is Θ°°. That is, under T( |77), the chain starts at
Wo — η and the successive states of the chain Wi+i have distribution Γ( |Wi),
i = 0,1,2, Under some regularity conditions to be specified later, when
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the chain W is "recurrent", it follows from results in EATON (1992, Appendix
2) that

{ for each set C with 0 < i/(C) < +oo,

geu(C)

Therefore, the recurrence of the chain W implies that (1.14) holds and hence
α — v — α for φ obtains.

In summary, the above argument runs as follows:

(i) The Blyth-Stein condition (1.14) is sufficient for α — v — α.

(ii) The integrated risk difference is bounded above by Δ(y/g) as in (1.15).

(iii) When the Markov chain associated with Δ is recurrent, then (1.20)

implies (1.14) holds and we have α — v — α.

Step (i) is a well known technique in decision theory and has appeared in
many application such as those listed at the beginning of this section. Step
(iii) was used in EATON (1992) and is a direct consequence of general results
concerning symmetric Markov chains. What is new in this paper is step (ii)
as expressed in (1.15). Inequalities like (1.15) were used in EATON (1992) but
only for bounded functions φ. Thus the advance here is the extension of the
Markov chain arguments to cover cases of estimating unbounded functions
such as mean values.

The following is a simple, but not so trivial, example which shows how

the results described above can be applied.

Example 1.1 Let / be a symmetric density with an absolute third moment
on JR1 and assume one observation X is made from f(x — θ)dx where θ is an
unknown translation parameter, θ £ R1. The loss function is (α — θ)2 so the
parameter θ is to be estimated. Consider the improper prior distribution
dθ so the formal posterior is Q(dθ\x) — f(x — θ)dθ. Thus the formal Bayes
estimator is

f ΘQ{dθ\x) = x

and the risk function is just the constant E^X2 where EQ denotes expectation

when 0 = 0. The Markov chain associated with this problem has transition

function T given in (1.18). A routine calculation shows that the transition

function R(dθ\η) of (1.16) is

R(dθ\η) = r(θ-η)dθ

where

(u) = r(-u) = / f(x-u)f(x)dx
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is a density on R1. Thus

ψ(η) = f(θ-η)2R(dθ\η) = ίθ2r{θ)dθ = c2

is constant. From (1.18) we have

T(dθ\η) = (fl"7?) r^~^de = t{θ-η)dθ
C2

and

ξ{dη) = c2dη.

Therefore T is a translation kernel with density t, so the Markov chain
associated with T is a random walk on R1. Thus the existence of a first
moment for t implies this random walk is recurrent (CHUNG-FUCHS (1951)).
Using the definition of t and the third moment assumption for / yields

/

I ί
\u\t{u)du = — / \uΓr(u)du =

C2 J

- ί ί \u\3f{x - u)f{x)dudx < -E0\X\* < +oo.
02 J J C2

Hence the random walk is recurrent and the estimator x is almost admissible
(relative to Lebesque measure). Of course, this example is just a very special
case of the admissibility of Pitman's estimator on R1 when third moments
exist. This was first established by STEIN (1959) using the Blyth-Stein
method directly.

Here is a brief summary of this paper. Section 2 contains the formal
problem statement, basic assumptions, and a statement of the Blyth-Stein
condition. The basic inequality is proved in Section 3 while Section 4 con-
tains some background material on symmetric Markov chains. The main
theorem connecting recurrence and admissibility is proved in Section 5, while
some useful extensions are described in Section 6.

The results are then applied in Section 7 to provide an alternative proof
of the admissibility of the Pitman estimator of a location parameter in one
and two dimensions.

BROWN (1971) considered the problem of estimating the mean vector of a
multivariate normal distribution when the loss is quadratic. Under regularity
conditions, he established a close connection between admissibility and the
recurrence of an associated diffusion process defined on the sample space.
The relationship between Brown's work and the results here remains quite
obscure. For further discussion, see EATON (1992, 1997).
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2 Notation and Assumptions

Certain integrability assumptions are needed to justify the arguments that
are sketched in Section 1. Some of these assumption are stated here.

The two spaces X and Θ are assumed to be Polish spaces with the natural
σ-algebras. The model P(dx\θ) is a Markov kernel and the improper prior
distribution v is σ-finite. The marginal measure M(dx) defined in (1.2) is
assumed to be σ-finite so that equation (1.3) holds for the formal posterior
Q{dθ\x).

Let φ be a real valued function defined on Θ such that

(A.I) I φ2(θ)Q(dθ\x) < +oo for all x..

Then the formal Bayers estimator φ(x) given in (1.5) is well defined. The risk
function defined by (1.6) is assumed to satisfy the following local integrability
condition:

There exists an increasing sequence of

sets {Ki} such that ( J K{ = Θ, 0 < u(Ki) < oo,
(A.2) > w

/ R(φ, θ)u(dθ) < oo, for each i.

Observe that if g E U(Ki) (as defined in (1.9)) and g vanishes outside some
Kj with j > ΐ, then the integrated risk

(2.1) j R{φ,θ)g{θ)v{dθ).

is finite.

Now, recalling (1.9), let g E U(C) and consider

(2.2) g{x) = jg(θ)Q(dθ\x).

Recall that the marginal measure Mg is

(2.3) Mg(B) = J J IB(x)P(dx\θ)g(θ)v(dθ).
Θ X

Using (1.3), we see
(2.4) Mg(dx) = g(x)M(dx)

so that g is the Radon-Nikodym derivative of Mg with respect to M. Hence

the set Ao = {x\g(x) = 0} has Mg measure zero. Now, define Qg(dθ\x) as

follows:

Q(dθ\x)
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It is then easy to verify that

(2.6) P(dx\θ)g{θ)v(dθ) = Qg(dθ\x)Mg(dx).

Therefore the Bayes estimator

(2.7) φg(x) = I φ(θ)Qg(dθ\x)

is well defined because (A.I) and the boundedness of g imply

(2.8) ί φ2(θ)Qg{dθ\x) < +oo for all x.

A rigorous statement of the Blyth-Stein Lemma follows. Given a K% in
(A.2), let

(2.9) Ό\Ki) = {g\g E U(Ki), jR(φ,θ)g(θ)v(dθ) < +oo}.

Theorem 2.1 (Blyth-Stein Lemma). For each i, assume that

(2.10) inf IRD{g) = 0.

geU*(Ki)

Then φ is a — v — a.

Proof The proof of this well known condition is by contradiction. The
details are left to the reader. •

Theorem 2.2 For g eU*(Ki),

(2.11) IRD(g) = J(φ(x) - φg(x))2g(x)M(dx).

Proof The proof of (2.11) is routine algebra coupled with the earlier ob-

servation that AQ has Mg measure zero. •

3 The Basic Inequality

In this section, the inequality described in (1.15) is established for g G
U*(K{),i = 1,2, Here is a basic lemma which may be of independent

interest.

Lemma 3.1 Let W and Y be real valued random variables such that EW2 <
+oo,y > 0, and μ = EY < +oo. Also let (W,Ϋ) be an independent and
identically distributed copy of (W,Y). Then

(3.1) [Cov(Wi Y)]2 < μE(W - W)2(VΫ -
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Proof A direct calculation shows that

Cov{W,Y) = \E(W -W)(Y -Ϋ).

Writing

(Y-Ϋ) = (y/Ϋ - y/γ)(y/Ϋ + y/Ϋ)

and using the Cauchy-Schwarz inequality yields

[Cσv(W,Y)}2 < ].E(VΫ + VΫ)2E{W - W)2(VΫ-

But (VΫ+ y/Ϋ)2 < 2(Y + Ϋ) so that \E{VΫ + VY)2 < μ. This completes
the proof. •

Theorem 3.1 For g E U*{Ki),

(3.2) IRD(g) < A(y/g)

where Δ is defined in (1.15).

Proof For each x E Ag = {x\g(x) > 0},

φ{x) - φg(x) = I φ(θ)Q(dθ\x) - I φ(θ)Qg(dθ\x)

(3.3) = ^Jφ(θ)(g(χ)-g(θ))Q(dθ\x)

= -TΠΛCOVΛΦ,9)

where Covx denotes covariance under the probability measure Q( \x). The
last equality follows since g(x) is the mean of g(θ) under Q( \x). Applying
inequality (3.1) with W = φ and Y = g, we have

(φ(χ)-φg(χ)f = -

(3.4) 1

θ θ

Subsituting this inequality into the rightside of (2.11) clearly yields (3.2).

This completes the proof. •

The upper bound A(y/g) in (3.2) depends only on the three essential
components of the original problem - namely the model, the improper prior
and the function φ to be estimated. Of course this statement assumes that
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the loss is quadratic. When the function φ is bounded, say \φ(θ\ < c, then
obviously

(3.5)

where

The function Δi appeared first in EATON (1992) and was used to relate

Markov chain recurrence to admissibility questions regarding the estimation

of bounded functions. Not only is the argument here more general, it is far

more transparent than the original in the case when φ is bounded.

4 Symmetric Markov chains

Some basic theory concerning symmetric Markov chains with values in a
Polish space is described here. Of course, the emphasis is on those aspects
of the theory which are most directly related to the admissibility questions
under consideration here. The discussion follows EATON (1992, Appendix
2) quite closely.

Let (y, B) be a measurable space where y is Polish and B is the usual
Borel σ-algebra. Consider a Markov kernel S(du\υ) defined on B x y so that
S( \v) is a probability measure for each v £ y and S(B\ ) is #-measureable
for each B E B. Let ξ be a σ-finite measure defined on B with ζ(y) > 0.

Definition 4.1 The Markov kernel S(du\v) is ξ-symmetric if the measure

(4.1) m{du,dv) = S{du\v)ξ{dv)

defined on B x B is a symmetric measure.

In all that follows, S(du\v) is assumed to be ξ-symmetric. The assump-

tion that ξ is σ-finite is important (see the development in Appendix 2 in

EATON (1992)). The symmetry of m implies that m has marginal measures

ξ-that is,

(4.2) m(y x B) = m(B x y) = ξ(B).

Of course, (4.2) implies that ξ is a stationary measure for S(du\υ) since

(4.3) Js(B\v)ξ(dv) = ζ(B).

y

Now, each Markov kernel defines a Markov chain, and conversely, to spec-
ify a Markov chain one needs, at least implicity, a Markov kernel. A Markov
chain is called symmetric if this Markov kernel is symmetric with respect
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to some σ-finite measure. For finite and countable state spaces, symmeteric
Markov chains are also called reversible chains, but that terminology is not
used here (see KELLY (1979) or LAWLER (1995)).

According to the above terminology, a symmetric Markov chain on y
gives rise to a symmetric measure (as in (4.1)) on B x B and this symmetric
measure has a σ-finite marginal measure as defined in (4.2). Conversely,
suppose n(du, dv) is a symmetric measure on B x B and suppose its marginal
measure

(4.4) μ{B) = n{B x y)

is σ-finite. This implies that there is a unique (up to sets of n-measure zero)
Markov kernel T(du\v) such that

(4.5) n(du,dυ) = T(du\υ)μ(dυ).

This result seems to be well known but I do not know a reference with an
explicit statement. A slightly more general result can be found in JOHNSON
(1991). The above discussion shows there is a one to one correspondence
between symmetric Markov chains and symmetric measures with σ-finite
marginals. This observation is what allows us to associate a Markov chain
with the function Δ appearing in (1.15). More about this in the next section.

Now, let S(du\v) be ^-symmetric and let Y = (YQ = v, Yί, I2? •) be the
corresponding Markov chain with values in y. The notation means the chain
starts at v and the succesive Y +i have distribution S(-\Yi) for i = 0,1, —
The joint measure of the chain on y°° is denoted by Prob( |?;) where YQ = v
is the initial state of the chain.

Next, we turn to a discussion of recurrence when S(du\v) is ^-symmetric.

Definition 4.2 Let B E B satisfy 0 < ξ(B) < +00. The set B is locally-ξ-

recurrent (l — ξ — r) if the set

(4.6) {υ\v e £,Prob(lj G B for some j > l\v) < 1}

has ξ measure zero.

In other words, B is I — ξ — r if except for a set of starting values of ξ-

measure zero, the chain returns to B with probability one when it starts in B.

A characterization of local-ξ-recurrence can be given in terms of a quadratic

form. For h G L2(ξ), the linear space of ξ square integrable functions, define

D(h) by

(4.7) D(h) = ί f(h(u)-h(v))2m(du,dv).

where m is the symmetric measure given by (4.1). For B such that 0 <

ξ(B) < +00, let

(4.8) V(B) = {h\h > 0, h € L2{ξ), h{u) > 1 for u G B}.
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Theorem 4.1 The following are equivalent:

(i) B isl-ξ-r

(ii) inf Dlh) = 0
hev(B) v J

Proof This is a direct consequence of Theorem A.2 in EATON (1992). •

For our applications, a slight strengthening of Theorem 4.1 is needed.
Let C G B satisfy C D B and ξ{C) < +oo. Then set

(4.9) V{B, C) = {h\h e V{B), h is bounded , h{u) = 0 for u e Cc}.

Theorem 4.2 Consider Cγ C C2 C «Λίή B C C i αnrf limC< = y. The
following are equivalent

(i) B isl-ξ-r

(ii) lim inf Dlh) = 0.
i^ooheV{Bd)

Proof This is a consequence of results in EATON (1992, Appendix 2). •

It is Theorem 4.2 which will be used to establish a connection between
the Blyth-Stein condition and recurrence.

Definition 4.3 The chain Y is locally-ξ-recurrent if for each set B with
0 < ξ(B) < +oo, B isl-ξ-r.

It is not too hard to show that Y is locally-ξ-recurrent iff there exists
an increasing sequence of sets C\ C C2 C with 0 < ξ(Ci) < +oo and
lim d = y such that each d is / — ξ — r. In applications one can often
choose a convenient sequence of sets d m order to check I — ξ — r.

The quadratic form D(h) in (4.7) is well known in the theory and appli-
cations of symmetric Markov chains. In the probability literature \D{h) is
known as the Dirichlet form associated with the symmetric measure m, or
the symmetric transition S in (4.1). It is typical to write \D(h) in terms of
the linear transformation S* defined on L2(ξ) as follows:

(4.10) (S*h){v) = ίh{u)S{du\v).

Let (Λi,/i2) denote the standard inner product on L2(ξ) given by

(4.11) (huh2) = j hλ{u)h2{u)ξ(du).
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A routine calculation shows that

(4.12) l-D{h) = (h,(I-S*)h)

where / is the identity. The operator / — S* is commonly called the LaPla-
cian. Further discussion and some applications can be found in DlACONlS
and STROOK (1991) and LAWLER (1995).

5 Recurrence implies admissibility

It is argued here that, under an additional assumption, recurrence of the
Markov chain associated with the quadratic form

(5.1) Δ(Λ) = JJ J(h(θ) - h(η))2(φ(θ) - φ(η))2Q(dθ\x)Q(dη\x)M(dx)
Θ Θ X

will imply that the Blyth-Stein condition of Theorem 2.1 holds, so that φ is
α — v — α.

To carry out this argument, first observe that the measure on Θ x Θ
given by

(5.2) α(dθ,dη) = ί(φ(θ) - φ(η))2Q(dθ\x)Q(dη\x)M(dx)

x

is, by inspection, symmetric. Using (1.3) and (1.16), the measure α can be
written

(5.3) α(dθ,dη) = (φ(θ) - φ{η))2R{dθ\η)v{dη)

where R(dθ\η) is a transition function and v is the improper prior used to

defined the estimator φ[x) in (1.5). Next, for r E θ , let

(5.4) φ(η) = j{φ(θ)-φ{η))2R{dθ\η).

The following assumption controls the behavior of φ and is expressed in

terms of the sets K{ appearing in assumption (A.2) of Section 2.

0 < φ(η) < +oo for all η E θ , and

(A.3) / ψ(η)v(dη) < +oo for all i.

Theorem 5.1 Assume (A.3) holds. Then the symmetric measure a has a

σ-finite marginal measure

(5.5) ξ(dη) =
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Further, with

(5.6) T(dθ\η) = φ-\η)(φ(θ) - φ(η))2R(dθ\η),

The measure a is given by

(5.7) a(dθ,dη) = T(dθ\η)ξ(dη).

Proof That (5.7) holds is immediate from (5.3) and the definition of ξ and
T. Since T(dθ\η) is a transition function by definition, integration of (5.7)
over Θ shows that a has ξ as a marginal measure. The σ-finiteness of ξ is
immediate from assumption (A.3). This completes the proof. •

Now, let W = (Wo = r?, Wi, W2,...) be the Markov chain on Θ with
transition function T. The above discussion shows that T is ^-symmetric
(i.e. W is a symmetric Markov chain). Observe that the quadratic form
associated with this chain as defined in (4.7) is exactly Δ given in (5.1). In
other words, for h G L2(ξ),

(5.8) Δ(Λ) = I J(h(θ) - h(η))2a(dθ, dη)

so that the results described in Section 4 are directly applicable.

Here is the main result of this paper.

Theorem 5.2 Assume (A.I), (A.2) and (A.3) hold. If the Markov chain W
associated with the quadratic form Δ is locally-ξ-recurrent, then the formal
Bayes estimator φ(x) is almost-v-admissible.

Proof It suffices to show that condition (2.10) holds for each ΐ, ί = 1,2, —
Fix an index j > i and consider the set V(K^ Kj) defined in (4.9). Assump-
tions (A.2) and (A.3) show that if y/g <Ξ V{KuKj) then g E U*(Ki). This
observation together with the basic inequality (3.2) yields

(5.9) inf IRD(g)< inf Δ{y/g).
eu*{K) K /ev(κK)

By assumption the chain W is / - ξ - r so the limit of the right side of (5.9)

as j ; -» oo is zero. Thus for each i, (2.10) holds and the proof is complete. •

6 An Extension

In this section, we extend the results of the previous sections to cover the
case of estimating a vector valued function φ(θ, #), θ G Θ, x G X. The model
P(dx\θ) and the improper prior are as in Section 2. For vectors w G i2fc, \\w\\
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denotes the usual Euclidean norm. The loss function for the estimation prob-
lem is

(6.1) L{α,θ,x) = \\α-φ(θ,x)\\2,αeRk

so φ(θ, x) is a fc-dimensional vector and the loss function now depends on
x £ X. The following assumption is the appropriate analogue of (A.I) given
in Section 2. Assume

(B.I) ί\\φ(θ,x)\\2Q(dθ\x) < +oo for all x

where Q(dθ\x) is the formal posterior. Thus, the formal Bayes estimator is
now the vector function

(6.2) φ(x) = J φ(θ,x)Q(dθ\x).

Of course, the risk function is

(6.3) R(φ,θ) = J\\φ(x)-φ(θ,x)\\2P(dx\θ).

Assumption (B.2) is that the risk function satisfies the local integrability
condition (A.2) given in Section 2.

Now, the Blyth-Stein Lemma given in Theorem 2.1 remains valid and
the analogue of Theorem 2.2 is

Theorem 6.1 For g E U*(Ki),

(6.4) IRD(g) = J \\φ(x) - φg(x)\\2g(x)M(dx).

Proof Apply Theorem 2.2 one coordinate at a time to the problem of
estimating φj(θ, x) where φj(θ, x) is the j th coordinate of 0(0,x). Then sum
on j to obtain (6.4). This completes the proof. •

The next step is to extend Theorem 3.1 to the case at hand. To this end,

define Δ 2 for real valued functions h(θ) by

Δ2(Λ) -

(6'5) ///w f l)- f cM) 2 iw^^
Θ Θ X

Theorem 6.2 For g E U*(Ki),

(6.6) IRD{g) < Δ2(y/g)

where Δ 2 is defined by (6.5).
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Proof The argument used to prove Theorem 3.1 shows that for each
x € AC

Q = {x\g(x) > 0},

(6.7) i f f 9 , t 9
77-7 / / {φj{θ,x) - Φj{η,x)) Wg{θ) - y/g(η))2Q(dθ\x)Q(dη\x).
9\x) J J

Summing this on j , integrating with respect to g{x)M{dx), and using (6.4)
shows that (6.6) holds. This completes the proof. •

The final step in the argument here is to associate a symmetric Markov
chain with Δ2. To this end, define the measure a2 on Θ x Θ by

(6.8) a2{dθ,dη) = J \\φ{θ,x) - φ(η,x)\\2Q(dθ\x)Q(dη\x)M(dx).

x
Obviously, OLΊ is symmetric. To formulate the analogue of assumption (A.3)
of Section 5, define ^(rj) by

(6.9) φ2(η) = J J\\φ(θ,x)-φ(η,x)\\2Q(dθ\x)P(dx\η).
x θ

Now, make the following assumption:

0 < 2̂(77) < +00 for all η G θ and

(B.3)
/ < +00 for all i.

Setting

(6.10) T2(dθ\η) = ψϊι(η)J\\φ(θ,x)-φ(η,x)\\2Q(dθ\x)P(dx\η),

x

and

(6.11) ζ2{dη) = φ2{η)ιy(dη)^

it is clear that T2 is a transition function, the measure ξ2 is cr-finite since
(B.3) holds, and

(6.12) a2(dθ,dη) = T2{dθ\η)ξ2{dη).

Thus, a2 has a σ-finite marginal measure ζ2 and the results described in
Section 5 apply directly to the Markov chain with transition function T2.
The extension of Theorem 5.2 is now immediate.
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Theorem 6.3 Assume (B.I), (B.2) and (B.3) hold. If the Markov chain
associated with the quadratic form Δ2 is locally-ξ-recurrent, then the formal
Bayes estimator φ(x) is almost-v-admissble.

Proof The proof of Theorem 5.2 applies directly. •

7 Admissibility of the Pitman Estimator

Here we provide an alternative proof of the almost admissibility of the Pit-
man estimator of a location parameter in one and two dimensions. The orig-
inal proofs (STEIN (1959) for one dimension and JAMES and STEIN (1961)
for two dimensions) are based on a direct verification of the Blyth-Stein
condition. The proof given here uses Markov chain arguments via Theorem
6.3.

For notational convenience, we consider a model in the so-called invariant
Pitman form. A random quantity X = (Y, Z) is to be observed where Y is
a k-vector and Z takes value in a Polish space Z. The parametric model for
X is assumed to have the form

(7.1) P{dx\θ) = f(y-θ,z)dyλ(dz)

where dy is Lebesque measure onfl fe, λ is a σ-finite measure on the Borel
sets of Z, θ is an unknown vector in Rk and / is a density with respect to
the product measure dyλ(dz). The function to be estimated is the vector
function φ(θ) = θ, the loss is quadratic and the improper prior distribution
is Lebesque measure dθ on Rk. It is clear that

(7.2) m(z) = j f(y-θ,z)dy = J f(y,z)dy

is the marginal density of Z with respect to λ. It is easy to see that the

marginal measure on Rk x Z is given by

(7.3) M{dy,dz) = m(z)dyλ{dz)

and is σ-finite. Define q(θ\y,z) by

if 0 < m(z) < oof fJ^r
I Qo(y-(

(7.4) q(θ\y,z) = .
I Qo{y ~ θ) otherwise

where go is a density on Rk with finite second moments. A routine argument

shows that
(7.5) Q{dθ\y,z) = q(θ\y,z)dθ
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serves as a formal posterior so (1.3) holds. The Pitman estimator for θ is

(7.6) φ(y,z) = JθQ(dθ\y,z),

which is the formal Bayes estimator for θ.

The formal statement regarding the almost admissibility of φ is the fol-
lowing.

Theorem 7.1 For k = 1 or k — 2 assume that

(7.7) J J\\y\\'2+kf(y,z)dyX(dz) < +00.

Then φ in (7.6) is an almost admissible estimator for θ £ Rk, k = 1,2.

Proof The arguments for k = 1 and k = 2 are essentially the same. The
details are given for the case of k = 1. Assumption (7.7) implies that the set

(7.8) N = {z\J\yff(y,z)dy = +00}

has λ-measure zero. Thus the density / can be set equal to zero on this
set without changing the problem,. In what follows, assume this has been
done. Now, assumption (A.I) follows immediately. Since the estimator φ is
translation invariant, i.e.

(7.9) Φ(y-c,z) = c

and the model is invariant under translation, it follows that the risk function

R(φ, θ) is a constant given by

(7.10) co = I J(φ(y,z))2f(y,z)dyλ(dz).

That co < +00 follows from (7.7). Therefore assumption (A.2) holds with

Ki = [ - M ] C Λ \ i = l,2,....

For the verification of (A.3), first observe that the transitition function

defined in (1.16) is, in the present context, given by

(7.11) R{dθ\η) = r(θ-η)dθ

where

(7.12) r(u) = r(-ti) = j Jq(u\y,z)f(y,z)dyλ(dz)

is a density on R1. Therefore the function φ(η) defined in (5.4) is

(7.13) ψ{η) = ί(θ - ηfr{θ - η)dθ = ί u2r{u)du
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which is a constant, say c\. Again (7.7) implies that c\ < +00 so (A.3)
holds.

The final step in the proof requires us to show that the Markov chain
with the transition function

(7.14) T(dθ\η) = c^(θ-η)2r(θ-η)dθ

is almost-ξ-recurrent. Since the transition function T has the form

(7.15) T{dθ\η) = t{θ-η)dθ

where t is a symmetric density on i?1, a sufficient condition for recurrence is

(7.16) ί \u\t(u)du < +00.

(see CHUNG-FUCHS (1951)). Substituting the expressions for t and r into
(7.16) shows that

/ \u\t{u)du = c[ι / \u\3r(u)du

= cϊλ J j J \u\3q(u\y, z)f(y, z)dyλ{dz)du

= cϊι j J J \u\3f(y - u, z)f{y, z)~-dy\{dz)du

(7 17) =c-ι 11 J\y_ wff{w^ z)f{y^ z)-l^dydwλ(dz)

< 4CΓ1 I I I \y\3f(w, z)f(y, z)4CΓ1 I I I \y\3f(w, z)f(y,

w\3f{w,z)f(y,z)—Γ^dydw\{dz)/ / I
J J J rn{z)

= 8cϊ1f\y\3f(y,z)dyλ(dz).

The final expression is finite by assumption (7.7) so the random walk associ-
ated with T in (7.14) is recurrent. By Theorem 5.2, φ is almost admissible.
This completes the proof for dimension k = 1.

When k = 2, the argument proceeds as above until the final step. On

i?2, the existence of a first moment for the transition density t in (7.15) is

not sufficient for recurrence. However the existence of second moments is

sufficient (see REVUZ (1984, Chapter 3) for example). This is the reason

condition (7.7) depends on the dimension parameter k. The details of the

argument are left to the reader. This completes the proof. •

Of course the above argument fails completely for k > 3 since Rk(k >
3) does not support any non-trivial recurrent random walks (see Guiv-
ARCH'H, KEANE and ROYNETTE (1977)). Appropriate shrinkage estimators



242 Morris L. Eaton

on Rk,k > 3, provide explicit dominators of Pitman estimators in many
translation problems.

The results in PERNG (1970) show that in the case of k = 1, failure
of the third moment assumption can lead to inadmissibility of the Pitman
estimator. It is encouraging that the Markov chain arguments used here
reproduce results which are known to be fairly sharp. At present, very little
more is known concerning the sharpness of the Markov chain argument in
Theorem 6.3. Work in this direction is underway.
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