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1 Introduction

Let X1, X, ... be a sequence of independent and identically distributed ran-
dom variables, and for each natural number n € N consider the order statis-
tics X1, < -+ < Xy pertaining to the sample X, ..., X,. Trimmed sums
it Xjn for[,m €N, [+m < n, are the initial basic objects in statistical
theories of robust estimation, so it is not surprising that there has been con-
siderable interest in the investigation of their asymptotic distribution. The
large literature on a number of versions of the problem may be traced back
from our references; see in particular the collection edited by Hahn, Mason
and Weiner (1991). Here we deal only with trimming according to natural
order, as in the sums E;‘;[Zl jn, and not with the case when trimming is

done with respect to ordering the moduli |X1|,...,|Xp| of the observations.
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Subsequent to specific results on asymptotic normality, Stigler’s (1973)
theorem completely solves the problem of the asymptotic distribution for
the classical trimmed mean

n—(n—|ng|) [nB]
Y. Xin/(nBl =lnal)= Y Xjn/(Inf] - nal),
j=|naj+1 j=|nal+1

where 0 < a < 3 < 1 and, with Z standing for the set of integers, |z| =
max{r € Z: r < z} is the integer part of a real number z € R: In this case of
heavy trimming enough extreme values are discarded so that, with suitable
centering and norming, the remaining mean has an asymptotic distribution
as n — oo for every underlying distribution function F(z) = P{X; < z},
z € R, where the basic probability space is denoted by (2,.4,P). Introducing
the associated quantile function

Q(s) =inf{z €R: F(z)>s}, 0<s<1,

this asymptotic distribution is normal if and only if @ is continuous at both
a and 3. A proof of the general result, different from Stigler’s, and one
that shows his theorem to be a boundary case of asymptotic distributions
for moderately trimmed sums discussed below, is given by Csorg6, Haeusler
and Mason (1988b); see also Cheng (1992) for further elaborations.

At the other trimming extreme, it is conceivable that for fixed pairs of
positive integers [ and m the existence and nature of asymptotic distribu-
tions of the lightly trimmed sums Sy, (I,m) = 374, \"] Xjn,, generally along
subsequences {ni}3>; C N, are closely connected with those of the limit-
ing distributions of the whole untrimmed sums S,, = Sn,(0,0) = 7%, X;.
(Asymptotic distributions for any of the sums here and in the sequel are
always meant with suitable centering and norming and all infinite subse-
quences of N are assumed unbounded throughout.) Indeed, it was shown in
their Corollary 6 by Csorg6, Haeusler and Mason (1988a) that Sy, converges
in distribution along some {n} to a nondegenerate random variable, in other
words, F' is in the domain of partial attraction of some infinitely divisible
distribution, if and only if Sy, (I, m) converges in distribution to nondegener-
ate random variables for every pair (I, m), along the same {n;}. The limiting
distributions of the latter are some “trimmed” forms of a special represen-
tation of an infinitely divisible random variable, the distribution of which is
the limiting distribution of the former; the representation is given in the next
section. One may conjecture that it is sufficient to require the distributional
convergence of Sy, (I,m) for a single pair (I,m) € N? to achieve the same
conclusion for Sp,, and hence also for all (I,m) € N2, along the same {n;}.
For the whole sequence {n} = N this was proved by Kesten (1993), in which
case the conclusion is that F' is in the domain of attraction of a stable law.
The general subsequential version is still open.
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Perhaps the most interesting case, the topic of the present note, is that

of moderately trimmed sums Sy, (l,, m,) = Y ictnt1 Xjn, where

l
(1.1) ln = o0, ;"—)0 and m, — 00, %-)0 as n — oo.

The first deeper result is due to Csorgd, Horvath and Mason (1986), who
proved that if the full sums S, have a nondegenerate asymptotic distribu-
tion along the whole {n} = N, i.e. if F is in the domain of attraction of a
(normal or nonnormal) stable law, then with I, = m,, and suitable centering
and norming sequences S,(my, m,) is asymptotically normal as n — oo.
Csorg6, Haeusler and Mason (1988b) then determined the class of all possi-
ble asymptotic distributions for Sy(l,,m,) along all possible subsequences
{n}, together with necessary and sufficient conditions for the convergence in
distribution of Sy, (In,,mMn,) as kK = co. To formulate at least the condition
for asymptotic normality, define for 0 < s <1 -t < 1,

o(s,1—t) = /sl_t /sl_t [ min(u,v) — uv] dQ(u) dQ(v)
1-t

(1.2) =sQ%(s) +tQ%*(1 —t) + Q*(u) du
_ 2
- [sQ(s)+tQ(1—t)+ 31 tQ(u)du] ,

a basic function in Csérgd, Haeusler and Mason (1988a,b). For given se-
quences {l,} and {m,} set

l
(1.3) an(ln, mp) = \/ﬁa(l 11— ﬂ)
n n
and introduce the two sequences of functions
orn(—5), o<z< L,
ln n ln ln ln In
o1n@) =4 sl {Qn +av) —Qh)}, - <e<p
In
o1 (%) Vb < 1 < o0,
and
r902,71.("_ ;nn)a —0o<r<— 72717.,
\/7_"': — % \/mn
(pz’n(m) = { an lnymn {Q 1 n +‘T n ) \/,,n— \/,"n_‘
=) s
[ an(52). Y < < o0
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Also, let 2, denote convergence in distribution and let Z be a standard
normal random variable. According to Theorem 4 of Csorgd, Haeusler
and Mason (1988b), for sequences {l,} and {m,} satisfying (1.1), there
exist centering and normalizing constants C, € R and A, > 0 such that
A [Sn(ln,my) — Cy) 2, Z asn — o if and only if

(1.4) lim @;n(z) =0 foreveryz €R, j=1,2,

n—o0
1-mntl
in which case Cp = cp(ln,mn) :=n[1,1, " Qu)du and A, = an(ln,mn)
work. "

The subsequential version of this result is also true. If at least one of the
functions ¢; »(-), or one of the renormalized functions an(ln,mn)@jn(-)/An
for some A, > 0 for which an(ln,m,)/An — 0, j = 1,2, converges to a
nonzero function either along the whole {n} or along a subsequence, then
extra terms appear in the limiting random variable so that the asymptotic
distribution, typically obtained along a further subsequence, is no longer
normal; it does not even have a normal component in the renormalized case.
The conditions appearing are optimal; for the precise statements the reader
is referred to Csorg6, Haeusler and Mason (1988b, 1991b). Griffin and Pruitt
(1989) rederived this theory by a different method, obtaining the conditions
and the description of limiting random variables in alternative forms, with
numerous additional observations.

While the “asymptotic continuity” condition (1.4) solves the problem of
asymptotic normality of moderately trimmed sums completely from a gen-
eral mathematical point of view, its probabilistic meaning is not so clear until
it is tied to better understood conditions that govern the asymptotic distri-
bution of the entire untrimmed sums. Indeed, it was pointed out by Csorgo,
Haeusler and Mason (1988b) and then by Griffin and Pruitt (1989) that if F
is stochastically compact, meaning that the full sums are stochastically com-
pact in the sense that there exist sequences of constants b, € R and d, > 0
such that every subsequence of N contains a further subsequence along which
[Sn — bn]/dn converges in distribution to a nondegenerate random variable,
then the sequences of functions {¢;»(-)}52; are uniformly bounded, j = 1,2,
and hence the sequence S} (ln,mp) := [Sn(ln,Mn) — cn(ln, mn)]/an(ln, mn)
of centered and normed trimmed sums is also stochastically compact for any
pair (l,,my) of sequences satisfying (1.1). However, nonnormal subsequen-
tial limiting distributions do arise in this case.

Thus, to date, the only explicitly determined family of underlying distri-
butions for which S} (my,, m,) is known to be asymptotically normal along
the whole N for every sequence {m,} satisfying (1.1) is the family of those
F that are in the domain of attraction of a stable law [Csorgé, Horvath and
Mason (1986)], and the only explicit family for which S} (In,my) is known
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to be asymptotically normal for every sequence {(l,,my,)} of pairs satisfying
(1.1) is the subfamily attracted by not completely asymmetric stable laws
[Griffin and Pruitt (1989)]. The question arises whether there is a probabilis-
tically meaningful larger class of distributions, necessarily within the class of
stochastically compact distributions, which would respectively contain the
families above and for which the same conclusions for the asymptotic nor-
mality of trimmed sums would still hold true. A feature of the phenomenon
would of course be that the full sums, S, —by]/d,, would no longer converge
in distribution themselves along the whole {n} = N. The aim of this paper is
to show that a larger class of distributions within the class of stochastically
compact distributions does indeed exist with these properties: it is a proper
subfamily of the family of distributions in the domain of geometric partial
attraction of semistable laws. In the next section we describe this family of
distributions, while Section 3 contains the new results and their proofs.

2 Semistable distributions and their domains of geometric partial
attraction

Let ¥ be the class of all non-positive, non-decreasing, right-continuous func-
tions 1(-) defined on the positive half-line (0, co) such that [*°?%(s) ds < co
for all e > 0. Let E(] ) Eé ), ., J = 1,2, be two independent sequences of
independent exponentlally distributed random variables with mean 1. With
their partial sums Y,£ D = E(J) + -+ E,S) as jump points, n € N, con-
sider the standard left-continuous mdependent Poisson processes Nj(u) :=
Yoo, I (Y,Sj ) < u), 0 <u < 00, j = 1,2, where I(-) is the indicator function.
For a function i € ¥, consider the random variables

Wiw) == [ IN(6) — slav) + [ Nilo)au(s) — (1), G =1,2,

where the first integrals are almost surely well defined, by the condition that
¥ € ¥, as improper Riemann integrals. For ¢; € ¥ and v € ¥, consider
the constant

R IO NP bl (O
0(¢1,¢2) = 0 m% dS /1 1 +’Q[}%(S) dS 3
L aha(s) ©  h3(s)
’AI+@@“+A1+@@“’

let Z be a standard normal random variable such that Ny(-), Z, and No(:)
are independent, and for a finite constant o > 0 finally introduce the random

variables

(2.1) V(41,92,0) = —Wi(¢1) + 0Z + Wa(2)
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and W (1,19, 0) := V(¢1,12,0) —0(1, 12), the latter of which by Theorem
3 in Cso6rgd, Haeusler and Mason (1988a) has characteristic function

E( th('(,bl,"/’Z,O’)) — exp{-—o—tz +/ (e 'Lt.’L‘z )dL(.’I})

(e ztz ) dR(a:)}

for all t € R, where L(z) = inf{s > 0: ¢1(s) > z} for £ < 0 and R(z) =
—inf{s > 0: 92(s) > —z} for £ > 0. Here L(-) is left-continuous and non-
decreasing on (—o0,0) with L(—oc) = 0 and R(-) is right-continuous and
non-decreasing on (0, c0) with R(co) = 0, and f_oe z?dL(z)+ [; z2dR(z) < 00
for every € > 0 since 1,19 € ¥. Thus V (11,19, 0) is infinitely divisible by
Lévy’s formula [see e.g. in Gnedenko and Kolmogorov (1954)]. Conversely,
given the right side of (2.2) with L(-) and R(-) having the properties just
listed, the variable W (11,9, ) has this characteristic function again if we
choose ¢1(s) = inf{z <0: L(z)> s} and 92(s) = inf{x <0: —R(—z) > s},
s > 0, for then 1,1, € .

Thus the class 7 of all nondegenerate infinitely divisible distributions
can be identified with the class {(¢1,%2,0) # (0,0,0): 1,92 € ¥,0 > 0}
of triplets. Then F being in the domain of partial attraction of a G =
Gy, a0 € I, written F € D;(G), means that there exists a subsequence
{kn}22; C N and centering and norming constants Ci, € R and Ag, > 0
such that

kn
(2.3) ﬁ{zxj—ckn}&vwl,wz,a),
n ]=1

(2.2)

where a convergence relation is meant to hold as n — oo unless otherwise
specified and Gy, 4, is the distribution function of the random variable
V(¢1, 19, 0) from (2.1); the characteristic function of V (11,2, 0)—0(%1, ¥2)
is in (2.2). By classical theory [Gnedenko and Kolmogorov (1954) or Corol-
lary 5* in Csorgé (1990)] this happens for {k,} = {n} = N if and only
if either (¢1,%2,0) = (0,0,0) for some ¢ > 0, in which case F is in the
domain of attraction of the normal distribution, written F' € I)(2), or
(Y1,v%2,0) = (MY, morp®,0) for some constants a € (0,2), mi,mg > 0,
my + mg > 0, where ¢%(s) = —s~1/%, s > 0, in which case F is in the do-
main of attraction of a stable distribution of exponent a, written F' € D(c).
(The superscript « in ¢®, and in ¥ and ¢ beginning with (2.4) below, is
meant as a label, not as a power exponent.) The normal being the stable
law of exponent 2, let S denote the class of all stable laws.

Lévy (1937) introduced the class S, C Z of semistable laws by extending
a defining property of stable characteristic functions and, as translated into
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the framework of the present description of infinitely divisible laws, showed
that Gy, y,,0c € S« if and only if either (¢1,9,0) = (0,0,0) for some o > 0,
giving the normal distribution as a semistable distribution of exponent 2, or

(¢1,%2,0) = (¥§,9%,0), where
(2.4) Y7 (s) = M;(s)yp*(s) = —Mj(S)S_l/a, s>0, j=1,2,

for some a € (0,2), defining a semistable distribution of exponent a € (0, 2),
where M; and Mj are nonnegative, right-continuous functions on (0, c0),
either identically zero or bounded away from both zero and infinity, such that
M + M, is not identically zero, the functions M;(-)1)*(-) are nondecreasing,
Jj = 1,2, and Mj(cs) = M;(s) for all s > 0, j = 1,2, for some constant
¢ > 1; the latter property will be referred to as multiplicative periodicity
with period c. For a € (0,2), Lévy’s original description of the property in
(2.4) in terms of L and R in (2.2) is that there exist nonnegative bounded
functions ML, (-) on (—o00,0) and Mg(:) on (0,00), one of which has a strictly
positive infimum and the other one either has a strictly positive infimum or
is identically zero, such that L(z) = ML(z)/|z|*, = < 0, is left-continuous
and nondecreasing on (—00,0) and R(z) = —Mpg(z)/z*, = > 0, is right-
continuous and nondecreasing on (0, 00), while Mz (c'/® z) = M (z) for all
z < 0 and Mg(c'/®z) = Mg(z) for all z > 0, for the same period ¢ > 1.
Because of the inversions given above, the two descriptions are equivalent.

The realization of a tangible significance of S, O & starts with a remark
of Doeblin (1940), without any elaboration or, for that matter, even a pre-
cise statement, to the effect that semistable laws arise in the limit in (2.3) if
the normalizing constants Ay satisfy a geometric growth condition. Thirty
years later, Shimizu (1970) and Pillai (1971) came close while Kruglov (1972)
and Mejzler (1973) fully achieved that realization, all four of them acting
independently of one another. It turned out that the following Character-
ization Theorem is true: If (2.3) holds along a subsequence {k,} C N for
which

(2.5a) lim inf kzzl = ¢ for some c € (1,00),
then the distribution Gy, y, s of V(1,%2,0) is in S, such that, in the case
when the exponent of Gy, 4,0 = Gye g0 18 a < 2, the multiplicative period
of the functions M; and Mj in (2.4) is the ¢ from (2.5a). Conversely, for
every Gy, v,,0 € S« there exists an F such that if X;, X», ... are independent
random variables with the common distribution function F’, then there exists
a subsequence {k,} C N such that

.k
lim —mtl
nooo kL,

(2.5b) = ¢ for some c € [1,00)




180 Sédndor Csorgé and Zoltan Megyesi

and (2.3) holds along {k,}. An equivalent version of this theorem, in terms
of the Lévy type description of S, was proved by Kruglov (1972) and Mejzler
(1973), while the present version was obtained by Megyesi (2000) with an
independent proof within the framework of the ‘probabilistic’ or ‘quantile-
transform’ approach of Csorgd, Haeusler and Mason (1988a,b; 1991a,b) and
Csorgb (1990) to domains of attraction and partial attraction.

For G = Gy, 4,0 € Sk, we say that F is in the domain of geometric
partial attraction of G with rank ¢ > 1, in short F € Dgf,) (G), if (2.3) holds
along a subsequence {k,} C N satisfying (2.5b). Of course, the geometric
subsequence k, = |c"], the integer part of c", is unbounded and satis-
fies the (quasi)geometric growth condition (2.5b) if ¢ > 1. Recalling that
(¥1,2,0) # (0,0,0) for G = Gy, 4,0 € Sx, define ¢ = ¢(Go,0) = 1 for any
oc>0and c= C(G,pclx,,/,g,o) = inf{c >1: Mj(cs) = Mj(s), §>0, j= 1,2},
the minimal common period c of the factor functions M; and M3 in 9§ and
s in (2.4) for a € (0,2). Thus ¢ = ¢(G) is defined for all G € S,. It
turns out for the whole domain Dy, (G) := Ug>q ]D)g;,) (G) of geometric partial
attraction of G € S, that Dgy(G) = Nmen D (@) = DY (G). Also, if
c(G) = 1for G € S, then G € S and Dy, (G) = I(G), the domain of attrac-
tion of the stable G. In other words, if D(S) := Uges D(G) = Upca<z D(@)
is the classical domain of attraction and Dygp (G) := Ugeg Dgp (G) is the do-
main of geometric partial attraction of a class G C Sk, then Dgp (S) = IX(S).
Some of these results were first proved by Mejzler (1973), all of them and
related other observations are obtained by Megyesi (2000).

The first characterization of an F' € D,p(S,) was obtained by Grinevich
and Khokhlov (1995). However, besides the fact that it contained an error,
this characterization is in terms of the norming factors A, in (2.3) and the
tails of F', and so it is not useful when trying to apply the criterion (1.4) to
trimmed sums. The following alternative characterization is due to Megyesi
(2000).

Consider a subsequence {k,}52; C N satisfying (2.5b). If ¢ = 1in (2.5b),
then put y(s) = 1 for every s € (0,1). If ¢ > 1, then the sequence {k,} is
eventually strictly increasing to co. Hence, for all s € (0,1) small enough
there exists a uniquely determined ky«) such that k;,l 5) <s< k;}( 9)-1°
For any such s we define (s) = skyu(), so that for any fixed € > 0 and all
s € (0,1) small enough we have 1 < v(s) < ¢+ ¢ for the limiting ¢ > 1 from
(2.5b). In particular, for any sequence s,, > 0 for which lim,;—c0 8m = 0,
the limit points of the sequence {y(sm)}5_; are in the interval [1,c]. Let
Q+(-) denote the right-continuous version of the quantile function Q(-) of the
underlying distribution function F(-). Since Dgp(G) = D(G) for a normal
G € 8., we only have to describe the domain of geometric partial attraction
of nonnormal semistable laws, for which the Domain Theorem is this: If
Gyz g0 € Sk is semistable with exponent a € (0,2), so that ¥§ and 9§



Semistable Trimmed Sums 181

satisfy (2.4), and F € Dgp(Gye g 0) such that (2.3) holds for V(¢¢,4g,0)
and a subsequence {k,}52; C N satisfying (2.5b), then for all s € (0,1),

Q+(s) = —s7/%U(s)[Mi(¥(s)) + h1(s)]  and
Q(L = 5) = s7/¢(s) [Ma((s)) + ha(s)]

for some a € (0,2), where £(-) is a right-continuous function, slowly varying
at zero, and the errors h; and hg are right-continuous functions such that if
M; is continuous, then lim,yg h;(s) = 0 for the corresponding h;, while if M;
has discontinuities, then the corresponding h;(s) may not go to zero as s | 0
but limy, e h;(t/kn) = 0 for every continuity point ¢ > 0 of Mj, j = 1,2.
Conversely, if for the quantile function pertaining to F the equations in
(2.6) hold with the properties of £ and of h; and hy just described, for some
a € (0,2) and functions M; and M, satisfying the properties described at
(2.4), and for (-) determined by a given subsequence {k,}32; C N satisfying
(2.5b), then F € Dgp(Gye yg,0) for the ¢f and 9§ given by (2.4), and, in
particular, the relation (2.3) can be specified as

@D zl/kn) { X;—k /1—— }&V(wi‘,%",o).

Finally we note that if F' € Dgp (Gyg yg,0) for some a € (0,2), so that
(2.6) holds with all the properties of the ingredients described above, then
it is easy to see that

(2.6)

Crs~Y%0(s) < |Q4(s)| < Dys™Y%¢(s)  and

Cas™1/24(s) < |Q(1 — 8)| < Das™24(s)

for all s > 0 sufficiently small, where 0 < C; < D; < oo and 0 < Cs < Dg <
oo are constants such that C; + C > 0 and C; = 0 if and only if D; > 0

can be chosen as small as we wish, which happens if and only if M;(-) =0,
j=1,2

(2.8)

3 Asymptotic normality of moderately trimmed sums from D, (Sy)
Our main result is

Theorem 3.1 Suppose that F' € Dy, (G) for some nondegenerate semista-
ble law G = Gy, y, - such that both v and 1, are continuous on (0, 00).

(i) If neither of v, and 1y is identically zero, then for any two sequences
{1,}32, and {m,}32, of positive integers satisfying (1.1),

(3.1) an(ln,mn) {"—z':"" Xjn — /_ - Q(u) du} 2,7z,

Jl+1 n
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where a(ln,my,) is as in (1.3) and Z is a standard normal random variable.

(ii) If at least one of 11 and v is identically zero, then (3.1) holds true
for any two sequences {l,}52; and {m,}32, of positive integers satisfying
(1.1) such that

[
(3.2) 0 < liminf L3 < limsup — < 0.

In this theorem, the distribution G is either normal, i.e. G = Gy
for some o > 0, or G = Gye,yg,0, @ semistable law of exponent o € (0,2)
with continuous 9§ and 9§ satisfying (2.4). In the first case, the continuity
condition is trivially satisfied and part (ii) for this case is just a restatement
of part of Theorem 1 in Csorgé, Horvith and Mason (1986) when I, = m,,.
In the second case, the two parts (i) and (ii) here extend results of Csorgd,
Haeusler and Mason (1988) and Griffin and Pruitt (1989) mentioned in the
introduction. By (2.4), the theorem’s continuity condition is nothing but the
requirement of continuity of the corresponding functions M; and M. This
condition cannot be dropped in general as the example of the St. Petersburg
game shows, where the underlying distribution is in the domain of geometric
partial attraction of a semistable law with exponent 1 and Theorem 3.2
of Csorgé and Dodunekova (1991) shows that nonnormal limits do arise
for moderately trimmed sums along subsequences of N. The generalized
St. Petersburg games considered by Csorg6 and Simons (1996) in a different
context and their symmetrized versions may serve to show the same for all
exponents a € (0,2). In terms of the Lévy functions L and R in (2.2), we see
that a nonzero 9§ (or ¥§) is continuous, or equivalently the corresponding
M; (or M3) is continuous if and only if L (or R) does not have flat stretches
in the sense that it is not constant on intervals with positive length.

We emphasize that even though (2.7) holds for the full sums only along
a subsequence satisfying (2.5b), the convergence in (3.1) takes place along
the whole N. If the continuity condition is violated, we still have an existence
result along the whole N.

Theorem 3.2 If F € Iy, (G) for a nondegenerate semistable law G, then
there exist two sequences {l,}52, and {m,}5>, of integers satisfying (1.1)
such that (3.1) holds.

With some extra work the proof can be modified to allow the choice
ln = myp. Also, if G = Gyg yg 0 for some exponent a € (0,2), neither of ¥
and 1§ is identically zero and ¥ is continuous, then there is an {m,}32;
satisfying (1.1) such that (3.1) holds for every {l,}32, satisfying (1.1); an
analogous statement is true when 1§ is continuous.

Our last result extends Theorem 3 of Csérgd, Horvath and Mason (1986)
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and demonstrates that asymptotic semistability in (2.7) is determined only
by arbitrarily small moderate portions of upper and lower order statistics in
the sample.

Theorem 3.3 IfF € Dy (G) for a nonnormal semistable law G' = Gye ys o
of exponent o € (0,2), so that (2.7) holds along a subsequence {k,}3; C N
satisfying (2.5b), then, for the slowly varying function £(-) from (2.6) and
(2.7),

lkn ben,
(3.3) ﬁk_) {Z dkn — kn/ﬁn Q(u) du} 2y —wi(4)),

(3.4) nl/ae W) { Z" Xjn— /1-T"Q(u) du,} Z50,

j=ln+1 n
P . .ye
where — denotes convergence in probability, and

(3.5) -—1—{ Z X — k/

w01/ k) | ok S, 41

1_’11

mm}ﬂwwx

where the independent random variables W;(y) and Wy (y§) are given at
(2.1), and so

1 len kn L
{Z Xk, + Z Xk — {/1 Q(u) du
j=1

k0(1/kn) j=kn—mp, +1

+/1_—,;Q(U) du]} LV, 2, 0) = —Wy (%) + Wa(9h2)

for any two sequences {l,}32; and {m,}3, of positive integers satisfying

(1.1).

The general theory in Csorgd, Haeusler and Mason (1988a, 1991b) and
Csorgd (1990) ensures the ezistence of sequences {l,} and {m,} satisfying
(1.1) for which these statements hold, the point of Theorem 3.3 is that they
hold for all such sequences. If M; = 43 = 0, which is allowed in (2.7) and
in Theorem 3.3 above for one of the j, then of course W;(0) = 0. A more
general version of Theorem 3.3, in which a fixed number of the smallest and
the largest extremes may be discarded from the sums in (3.3) and (3.5) is
also true; the way in which the centering sequences and the limiting random
variables should be changed in (3.3) and (3.5) for this version is clear from
the general scheme in Csérgs, Haeusler and Mason (1988a), Csorgé (1990),
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or Megyesi (2000). The formulation of Theorem 3.3 above suits well the
genuinely two-sided case. In the completely asymmetric case when one of
Y§ and 9§ is identically zero, a somewhat stronger statement can be made,
even in the more general version with possible light trimming: see the end
of the proof of Theorem 3.3 for this in the present case of full extreme sums.

Turning now to the proofs and recalling the notation in (1.2) and the
statement in (2.8), Theorem 3.1 requires the following

Lemma 3.4 If F € Dy (Gyg yg,0) for a semistable Gyg y2 o of exponent
€ (0,2), then
(i) there exist some constants K1, Ky € (0,00) such that

2 -
K, < hmmf ) < limsup o°(s,1-3)

o%(s,1— .
SIR(s) s sie(s)

(i) if Cy > 0 in (2.8), then there exist some constants K. %1), Kél) € (0,00)
such that

2
K(l) < 11m1 f——(iﬂ < limsupM <k

and if C3 > 0 in (2.8), then there exist some constants K %2), Kéz) € (0,00)
such that

2(1/2,1 - 2 —
07(1/2,1-) < limsup (/2,1 =) < Kéz).

K® <liminf 2312 =79 ;
s slmap2(s) sl slTal?(s)

Proof We follow the proof of Lemma 1 in Csorgé, Horvath and Mason
(1986). Obviously the inequalities in (2.8) directly imply that

sQ%(s) +sQ*(1 — s)

2 2 _
C} +Cf < limjnf 8Q°(s) + sQ°(1 — 5)

< limsup
sima2(s) 540 sma2(s)
< D} + D}
and
S0 +51Q0 = 5)| _
pir3 s3=al(s)

Also from (2.8), similarly as at (3.11) and (3.12) in Csorgd, Horvath and
Mason (1986),

1-s 2 —8 2
(3.6) K: < hm mf i——Q—— <1 i—g— <K;
1"Z£2( ) sw 1"62( )
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for some constants K7, K5 € (0,00) and

(3.7) lim fsl__sigw —
840 s%_éé(s)

Using these four relations in the second formula in (1.2), the inequalities in
(i) follow.

The symmetric two statements in (ii) are obtained in a similar fashion.
Considering the first, for example, the first pair of inequalities in (2.8) imply
that

2 2
2 < liminf 2% < limeup 22 ) < 2 ang 1 PG _ ¢,
si0 - gl=ag2(s) 0 s'Tal2(s) 510 53— 4(s)

and (3.6) and (3.7) remain true by the same argument if 1 — s in the upper
limits of the integrals is replaced by 1/2. =

Proof of Theorem 3.1 To prove part (i), consider any two sequences
{1}, and {m,}32, satisfying (1.1) and introduce the “renormalized” half-
sided functions

an (ln ) mn)

(1)( ) an(ln,mn) )
a2,n\Mnp

Pnl, Gl,n(l )

(z € R), the original functions ¢1 () and g (-) being given between (1.3)
and (1.4), where

o1a(z) and 2, (z) = Yan(T),

a1n(ln) = \/ﬁcr(%" %) and ag,n(mn)=\/ﬁa(%,l——?).

Since none of ¥ = ¥ and ¥; = ¢§ is zero anywhere, 0 < a < 2, it follows
from (2.6) and (1.2) that a1,(ln), a2,n(mn) > 0, and so the definitions of the
renormalized functions are meaningful for all n large enough and, of course,
a1,n(ln), a2,n(mn) < an(ln,my). Hence, to prove (1.4), it suffices to show
that

(3.8) nlgglo ‘PSB,,(“’) =0 and hm (,0(2) (x) =0 forevery z € R

To deal with <p( ) (z) at any fixed z € R, note that by the domain
theorem at (2.6),

o oY) (2 2] E (4 E)

n n n n

<o ) 1)
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1
In In\ 2 ,(ln In )) (ln)
m)— (> n m B
Q(n) (n) e(ﬂ) [M1(7<n Ty
for all n large enough. We substitute these into the formula for wﬁf}n (z)
through the formula given for ¢ ,(z). Using then the fact that

and

K = /KO < liminf —2Un/m,1/2)
"7 (ln/n)2"al(ln/n)

) o(ln/n,1/2) 1)
< limsup <VK
n3%0" (I /n) =« l(ln/n) :

by the first statement of Lemma 3.4(ii), for all n large enough we obtain

2 () |e(m+2) 1 v
‘q)ﬁjjﬂ(m)ls K g(%) (zA +$ﬂ)i [Ml(v(_ +z—))

ol =] i) o )
ol e ) (i o) pot)

where

by the slow variation of ¢(-) at zero. Since Mj(-) is bounded, we see, there-
fore, that the first convergence in (3.8) will follow if we show that

(3.9) | [Mi(v(tn(2))) + ha(tn(2))] — [Ma(v(sn)) + ha(sn)]| = O,

where sp, = lpn! = 0 and t,(z) = lpn L+ zvinn ™ = s,[1 + :cl,:l/z] - 0.
Since also, as a result of our continuity assumption, limsy h1(s) = 0 by the
domain theorem at (2.6), and t,(0) = s, of course, for (3.9) it suffices to
show that

(3.10) v (z) == |Mi(y(tn(z))) — Ma(v(sn))| = 0 for each z # 0.
Let ¢ > 1 be the limit in (2.5b) for the sequence {k,}32; which defines

v(+) preceding (2.6). We may and do assume that ¢ > 1 since in the case of
¢ =1, when F € D(a) for the given a € (0,2) at hand and M (-) is a constant
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function, (3.10) is trivial. Then for all n large enough, ¥(s,),v(tx(z)) €
[1, ¢?], say, the definitions

{v(tn(z‘)), if Y(ta(z)) > v(sn),
Yo () = for z > 0,
A(tal@), I Y(ta®) S 7(sn),
and
{ Y(ta(z)), i v(ta(z)) < ¥(sn),
Tn(z) = for z <0,
y(ta(2)), if Y(ta(z)) > v(sn),

are meaningful and ¢! < y,(z) < ¢ for z < 0 and 1 < v,(z) < & for
z > 0. Since M, ('y(tn( ))) = Mi(vn(z)) by the multiplicative periodicity of
M (), we have vp(z) = |M;(n(z)) — Mi(v(sn))| and, using the continuity
condition for the second time, the function M;(-) is uniformly continuous
on the closed interval [c™!,¢®]. Now, based on the definition of (-) above
(2.6), the asymptotic equality

@) e o (o)

-1,
'Y(sn) Sn ’ Sn

can be shown by elementary arguments, which since the sequence {y(sn)} is
bounded, implies that |y,(z) —¥(sp)| = 0. The uniform continuity of M (-)
then implies (3.10), proving the first statement in (3.8). Using the second
statement of Lemma 3.4(ii), the proof of the second statement in (3.8) is
completely analogous, and hence we have part (i) of the theorem.

Condition (3.2) for part (ii) of the theorem implies the existence of
some finite positive constants A; < 1 < A such that Aym, <[, < Aam,
and A;'l, < m, < Ay'l, for all n large enough. When proving (1.4),
we renormalize @1 ,(-) and ¢2.(-) replacing an(ln,ms) in the denominator
by the sequences an (A7 ln, A7 n) < an(ln,ms) and an(Asmy, Agm,) <
an(ln, my) to obtain the present versions of 905112,.(') and gaszzznn() of the proof
above, respectively. For unified notation, we write Tin = lp and ron = my.

Part (ii) itself has two cases. When G = G g, is normal for some o > 0,
we see by the criterion (1.26a) in Corollary 1 of Csorgd, Haeusler and Mason
(1988a) for the domain of attraction of a normal distribution that both terms
in <p$3)%(z) go to zero separately at every z € R, j = 1,2, and hence (3.8)
holds and implies (1.4) again.

Finally, the other case of part (ii) is when one of Mj(-) and Mz(-) in (2.4)
and (2.6) is identically zero while the other is nowhere zero. Replacing K by
VK7 of part (i) of Lemma 3.4, the proof of (3.8) for that one of the present
two sequences {cpn ria(-)} for which M;(-) > 0, j € {1,2}, is practically the
same as the one above for case (i), whlle it is simpler for the other j € {1, 2}
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for which M;(-) = 0 because (3.9) for that M;(-) is trivial. Thus condition
(1.4) for asymptotic normality holds true once more. =

We also separate two lemmas for the proofs of Theorems 3.2 and 3.3,
respectively.

Lemma 3.5 Suppose that F' € Dgp(Gyg yg,0) With a quantile function
given by (2.6). Then for any a,b € [1,¢), a < b, that are continuity points
of both M;, j = 1,2, and for any § > 0 and € € (0,1) there exists a threshold
number N(a,b,d,€) such that the inequality

| My, (1) — My, ()|

Y 0N Y2 Y2
@1 =[[se) (5] - oG(E)) + (2 )|
< 2[|Mj(a) — M;(b)| + C(a,b, a,) + 4]
holds true for alln > N(a,b,d,¢) and y1,y2 € [a,b], j = 1,2, where

l/a
Cla,b,ae) = maX{Dl,Dﬂ[l -(1- 5)(%) / ]
with the constants Dy and D, from (2.8) and My ;(-) = M;(y(-/kn)) +
h’J(/kn)’ j=12

Proof Notice first that (3.11) is trivial if M; = 0. Thus, since the half-sided
version of the proof below will be an obvious special case when exactly one
M; = 0, it suffices to deal with the situation when M; # 0, j = 1,2. In
this situation M; and Ms both have positive infima on (0, 00) and we see by
applying (2.6) for s = t/ky, where t > 0 is a continuity point of M; and Mj,
and by the monotone nondecreasing nature of Q that lim, o Q(s) = —oo and
limgy Q(s) = co. We choose N* = N(a, b, d,€) so that, for j = 1,2,

Q+(Eb~> <0 and Q(l - ki) >0, andso My ;(y) >0, a<y<p,
v(a/ka) =a and ~(b/kn) =b,

™ Uya/kn) m(ie) + ()

hold simultaneously whenever n > N* and show (3.11) with this choice of
the threshold.

Assuming without loss of generality that a < y; < y2 < b, notice that

_1
Q*('%) >1 and Q(l B z_,l.) >1, thatis, (%)_ae(%)Mﬁg(yl) -
Q) A-£) () "e(12) M)

<& YynLYy2€ [aab], and

<4,

R~
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(4 =1,2), and so

M, ;(y1) > (yl)l/af(yl/kn) (a)l/"‘(l _e), j

M () Uya/kn) =

if n > N*. Recalling (2.8) we see that for n > N* the inequality

Y2

b =1727

(3.12) |M; (1) — M j(y2)| < C(a, b, a¢)

holds true for any choice of y1,y2 € [a,b], y1 < y2, provided My i(y1) <
M, i(y2), 5 = 1,2. If this is the case indeed, then (3.12) in itself proves
(3.11), but the following considerations apply in general. Indeed, observe
that the choice of N* ensures that

(3.13) |M;, (@) — My ;(0)] < [Mj(a) — M;(®)| +6, j=1,2,
for all n > N*, and note also that

|Mrt,j(y1) — M, ()| < |M;; i(a) — My ()| + |M;; i(a) — M, i(y2)]-

Here |[My ;(a) — My ;(y1)] < C(a,b,a,€) by (3.12) if My ;(a) < My (1),
1,7 € {1,2}, but if this fails for some [, j € {1,2} then we still have

| M ;(a) — My, ;(w)| < | My ;(a) — My ;(5)| + | M, 5(b) — My i(w)],

where the first term can be estimated using (3.13) and C(a,b,a,¢€) is an
upper bound on the second one, provided M ;(yi)) < M, ;(b). However,
if the latter inequality is not the case either, then |My ;(a) — My ;(yi)| <
|M;; i(a) — M, ;(b)|, since M ;(a) > My ;(yi) > M, ;(b). All this together
imply (3.11). =

Proof of Theorem 3.2 We only have to deal with the case when G =
Gye yg o for some a € (0,2), where at least one of ¥{ and 9% is not iden-
tically 0. The other case being analogous, suppose that ¢{ # 0. Retaining
the notation in the proof of Theorem 3.1, we show that a sequence {l,} of
positive integers can be chosen to satisfy both (1.1) and the first conver-
gence relation in (3.8). The latter follows, through the same considerations
as there, if {l,} is chosen to make sure that (3.9) holds.

By the monotonicity of ¥¢ we can pick a sequence of pairs (a;,b;),
1 < aj < bj < ¢, and constants €; € (0,1) such that both a; and b; are
continuity points of M; and the inequalities |Mj(a;) — Mi(b;)| < 6%. and
C(aj,bj,a,5) < 6%. hold for all j € N. Next, put N§ := 0 and, by means of
the threshold numbers of Lemma 3.5, define an increasing sequence {N7} of
positive integers by setting Ny := max{N(aj, b, Glj,sj),N;-’_l +1},j€eN
Elementary consideration shows now that for each j € N there exists a
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threshold number N} € N such that for every n > N} one can choose an
ln; € N with the properties that

(3.14)
* * ‘/ x .
lﬂ_,j_j\'l"” l:‘_ﬂ'_i_jii C a; b and Ipyq; 2105

and it can clearly be stipulated that 1 < NY < N3y < :--. By Lemma 3.5 we
see that

(Bl (B EN oo (52)] <

for all z € [~j,j] and n > N7.

Now we are ready to choose the desired sequence {l,}. We set [, := 1
for n < N} and define {l,}32 Ny by the following algorithm, in which T' € N
is a new auxiliary variable:

Step 1. Let the initial values of j and n be j := 1 and n := Ny, and put
T := N7.

Step 2. If N <n < Nj,, thenlet I, =1 ..

Step 3. If n 2 NJ+1 then put lp ;=17 n,j Or ln = l;‘w-+1 according as l:‘,,jﬂ <lr
orly iv1 >1lr, and if I7 ; 1y > I then set also j := j+ 1 and T :=n.

Step 4. Set n:=n+ 1 and go to Step 2.

Then I, — oo by the choices of T and, since NJ“> — 00 as j — 0o, we
also have I,,/n — 0 by (3.14). Thus (1.1) holds for the chosen sequence {I,,}
and the displayed inequality following (3.14) above shows that (3.9) is also
satisfied for any fixed = € R.

If 9§ # 0, then the sequence {my} can be chosen in a similar fashion.
If ¥v§ = 0, then simply put my, := [, for every n € N, and the desired
asymptotic normality follows as in the proof of part (ii) of Theorem 3.1. =

Lemma 3.6 If a function £(-) on (0,1) is slowly varying at zero and {rn}
is a sequence of positive numbers such that r, — oo and rp,/n — 0, then

(ra/n)2~b(ra/n) _ o
(1/n)s~=£(1/n)

If, in addition, F € Dyp (Gyg yg ) for a semistable Gyz yg 0 of exponent
€ (0,2), then

o(1-%)

— —0
(1/n)z~a£(1/n)

Proof The first statement is just a special case of Lemma 2 in Csorgo,
Horvath and Mason (1986), while the second follows from the first and part
(i) of Lemma 3.4. =
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Proof of Theorem 3.3 We see by (2.8) and the first statement of Lemma
3.6 that for all z € R,

ben V ten m oo™
\/lan+(k,. +2o ) o and Ve, Q1 — T+ 2 )
kY20(1/k,) o (1 /kn)

- 0.

In fact, these convergences take place along the whole sequence {n} = N.
Next, according to Megyesi (2000), since the main source of the domain
theorem at (2.6) is that M;(v(y/kn)) = M;(y) for every continuity point
y > 0 of M;, we have

Qi) . —Q-&) .
(3.15) m — Y7 (y) and m — Y3 (y)

at all the respective continuity points y > 0 of the limiting functions. Fur-
thermore, Lemma 3.4(i) implies that

Vkao( i,
limsup—%ﬁ(iﬁzﬁ K3,
n—oo ki/%0(1/ky)

Vkpo{l— Tk 1L
lim sup na(l/a i k") < VK.
n—oo 1 g(l/kn)

Finally, Lemma 3.6 implies
Vo . Yo VEno{l = T ] — T
. (k" k")—)O and na( Fn k")

—0
1201 /ky) 2/20(1/kn)

for any sequence {r,} of positive numbers such that r, — oo, r,/l, — 0 and
rn/mpn — 0; in fact, these are true along the whole N again.

These four pairs of facts allow a subsequential application of that vari-
ant of a two-sided version of Theorem 1 in Csorgd, Haeusler and Mason
(1991a), the version alluded to on p. 789 there, in which the basic functions
Q+(s) and Q(1 — 5), 0 < s < 1, are taken right-continuous and the Poisson
processes Ni(-) and Ny(-) are taken left-continuous as in the present paper.
Using the eight facts above, this variant implies that every subsequence of N
contains a further subsequence such that (3.3) and (3.5) hold jointly along
that subsequence. This implies that (3.3) and (3.5) hold jointly as stated.

By the convergence of types theorem, (3.3) and (3.5) already imply (3.4)
for the subsequence {kn}. However, if neither of M; and My, or equivalently,
neither of ¢/¢ and 1§ is identically zero, then the left side of (3.9) is bounded,
by 2(D; + D3) from (2.8), for both M; and M3 even if they are not con-
tinuous, implying that the two sequences of functions in (3.8) are pointwise
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bounded. Hence the same is true for the sequences {p;n(-)}, j € {1,2}.
Also, setting r,, = min(l,,m,), we have ap(ln,my) < an(rp,m) foralln € N
and an(rn, ™)/ [n'/*€(1/n)] = 0 by Lemma 3.6. Therefore, the discussion
at (1.13) in Csorgd, Haeusler and Mason (1988b) yields (3.4) as stated.

If, on the other hand, M; =0 and M3 # 0, then by the same argument

n—mn 7':‘11 P
i |, B e @) o

n

and, since in this case the first convergence in (3.15) takes place along the
whole {n} = N with an identically zero limiting function, we also get

nl/ae(l/n {;X’ n/:l_lTQ(’Ur) dU} l)0,

for both r, =, and r, = m,, which together prove (3.4).
We see that if M;(-) =0 and Mjy(-) > 0, then in fact we have

n—mn 1-n

nl/ae o) {Z:: Xjn— /l nQ(u)du}Lo

along with (3.5). Similarly, if My(-) =0 and M;(-) > 0, then again we have
(3.4) and, in fact,

1__

nl/ae (/) { IZ -n i Q(u)du} —0

along with (3.3). =
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