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1 A survey on models and questions

There is a natural class of generalizations of the standard random walks to
higher dimensional "time", which are mainly considered in mathematical
physics. To motivate them, we consider first a standard real valued random
walk XQ = 0,Xi,... ,Xn. For simplicity, we assume that the distribution
of the increments has a symmetric density / which is bounded and posi-
tive everywhere. Therefore, we can write f(x) = exp(—φ(x)), where φ is
bounded from below, and symmetric. The joint density of (Xi,... ,Xn) is
then (#i,. . . , xn) —• exp(— Σ£=i Φ(χi ~~ χi-ι)) where we put XQ = 0. For the
higher dimensional versions introduced below, it is usually more natural to
look at random walks which are tied down at the endpoint, i.e. conditioned
on Xn+1 = 0. As we have assumed the increments to have a density, there is
no problem to define that properly: The conditioned random walk has just
the n-dimensional density

(1)
, n+1

n

where we now set XQ = xn+i = 0, and where Zn is the appropriate norming

Zn

ί ί \ nJrl 1
n= " exp - ̂ 2 Φ(χi ~ x*-i)
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in order that (1) becomes a probability density. As we have to do this norm-
ing anyway, we can as well shift φ around by some constant, and therefore
assume that 0(0) = 0.

Using this formulation, one easily sees how a generalization to higher
dimensional "time" should look like. We replace the discrete time interval
{1,.. . , n} by a discrete box

Vn = {-n, -n + 1,... , n - 1, n} d ,

define the outer boundary by dVn = {x e I*d\Vn : 3y G Vn with \x - y\ = 1},
and then our measure Pn on R^71 by its density with respect to Lebesgue
measure:

Pn(dx) = ^ e x p \-H^\x)] ΓΓ

where the so called "Hamiltonian" is Hφ(x) = Σi jevnudvn H-j\=i Φ(Xi ~"
Xj), and where again, we put zero boundary conditions X Ξ O O Π dVn. Zn

is the appropriate norming constant, in order that Pn is a probability mea-
sure. They are usually called gradient models for obvious reasons. The
corresponding family of one dimensional projections X{ : RFπ -* R, i € Vn,
is called a "random field" or a "random surface". We could of course as well
consider Z-valued random fields. In the mathematical physics literature,
such models are often called SOS-interfaces, and there is a huge literature
about them. (SOS means "solid on solid", but the background of this name
is somewhat obscure.) Evidently these random fields are natural general-
izations of the standard simple random walks, but it should be emphasized,
that they may have quite different properties in higher dimensions than they
do in dimension 1.

The special case which is easiest is the so called harmonic case, where
φ(x) is proportional to x2. By scaling 0, the proportionality factor is at our
disposal. For later convenience, we take φ(x) = ^ ^ 2 In that case, of course,
the measure is just Gaussian. It is sometimes called the "harmonic crystal"
or the lattice massless free field. The covariances are easy to calculate. One
of the nice features of the model is that one has a random walk representation
for them:

(2)

where 770,771,... is a standard symmetric random walk on Z d , starting at
i under Pf w , and τyn is the first exit time from Vn. This representation
follows by observing that the covariance matrix of the field is the inverse
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of the discrete Laplacian on Vn with Dirichlet boundary condition, and this

inverse is just the right hand side of (2). The random walk representation

is very useful for the investigation of properties of this random field. For

instance, by standard properties of random walks, one derives that

n for d = 1

Varn(Xo) ~ { logn for d = 2 .
for d > 3

The one dimensional case is of course just the standard fluctuation of a
random walk. One sees that the behavior of the random field in higher di-
mensions is quite different from the standard one dimensional random walk.
Properties of the above type have been proved for more general cases, and
not just for the harmonic one. See for instance [3]. It should be emphasized
that although the random surface is localized for d > 3 in the sense that the
fluctuations are of order 1 (which is in striking contrast to the one dimen-
sional situation), the surface continues to have long range correlations: Prom
the random walk representation it is evident that for points i,j which are
not close to the boundary dVn (i, j G \Vn, say), the covariances En(XiXj)
are of order \i — j \ ~ d + 2 .

For dimensions d > 3 it is easy to see and well known, that there exists
a limit P ^ , a measure on R z , which is just the centered Gaussian measure
whose covariances are given by the Green's function of the discrete Laplacian
G(i, j) = E ^ w (Σ%L0 lτ/fc=i) An important development in recent years led
to the discovery that more general gradient fields with φ convex possess
also random walk representations, see [18], [23], [9]. However, the random
walks which have to be used in these cases are random walks in random
environments, where the random environment is generated by an auxiliary
diffusion process on M y n. Although many important properties have been
extended in this way from the Gaussian case to more general ones, the fine
properties of this more complicated random walk are difficult to discuss and
many questions remain open. We will not pursue that line here.

In mathematical physics, one has investigated questions about such sur-
faces which are quite natural in this context, but which have not attracted
much attention in the standard literature of random walks. Some of these
problems center around the interaction of the surface with {x G IR "̂ : x% = 0
Vi G V^}, which is sometimes called a "wall". For instance, one asks how the
properties of the surface change if there is a small attraction to this wall, or
if one considers only random surfaces being on one side of the wall. Often,
there appear qualitative transitions of the "macroscopic" behavior if some
of the parameters are changed smoothly. Examples are so called "wetting
transitions", where the surface at specific values of the parameters ceases to
cling to the wall. We briefly discuss the wetting transition in the last section.
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There is a survey paper by Michael Fisher [14], his lectures on the occasion
of the Boltzmann prize, where he introduced many of these problems and
discussed them for the random walk case.

During the rest of this paper, we entirely stick to the harmonic case

Φ(χ) = uχ2-
A relatively simple question is how the random surface is influenced

by the presence of a local attraction to the above wall. There are several
ways to build in such an attraction. The standard one is to modify the
Hamiltonian Hψ by adding a potential YJieVn V(xi) where V is a function
which is symmetric and has its minimum at 0. If the potential V itself is
quadratic, V(x) = %x2, μ > 0, say, we arrive at what in physical jargon is
called the massive free field. We define the so called "massive Hamiltonian":

(3) *$*(*) = & Σ (*i-*i)2+
Vn, \i-j\=i

and then the probability measure

(4) Pn,μ{dx) = J - exp f-ffW (x)l
i€Vn

where

(5)

Pn,μ is still Gaussian. The random walk representation needs only a simple
modification: We have to replace the standard random walk (ηk)k>o with
one having a constant death rate. More precisely, the random walk has prob-
ability -ίpy of disappearing into a "graveyard" at every step it makes. We
can also formalize that by introducing a geometrically distributed random
variable ζ, and replace τyn in the formula (2) by τyn Λ ζ. ^From this, one
easily checks that this massive field has exponentially decaying correlations,
uniformly in n.

Considerably more delicate is the case where V is flat at infinity, and
does not grow. For instance, one can consider

in which case the "pinned" probability measure is no longer Gaussian:

(7)

Udx
Pn{dx) = ^ r

n

8d
i,jevnυdvn, \i-j\=ι ievn
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(We will always write P for such a locally pinned measure.) It is much less
clear, but true, that also in the case of a local pinning, the field is localized
in a strong sense, meaning that

(8)
n

and there exist constants c, C > 0, depending on ε, α, such that

(9) supEniXiXj) <Cexp[-c\i-j\].
n

We will discuss such a property here for the most delicate two-dimensional
case. However, we will consider a slightly different form of local pinning,
which is technically somewhat easier to handle. We describe that in the
next section.

2 Statement of the result

The question of localization for the two dimensional harmonic crystal as in-
troduced above was first studied in the papers [10, 11, 12, 13] and Lemberger
[22]. They proved that £?n|Xo| ι s bounded no matter how small the potential
is. They also proved in a mean field regime that the correlation En(XkXι)
decays exponentially in |A — Z|, uniformly in n. The exponential decay for
the pinned measure given by (7) had however remained open for d = 2. This
problem is addressed here (for a slightly modified model).

It is remarkable that also in the case of a non quadratic potential V,
there is a random walk representation of covariances, at least if V is sym-
metric. This has been described in [5] (and in a less general way in [4])
where it is shown that the covariances E(XkXι) can be written as a sum
over paths connecting k and I. By using Osterwalder-Schrader positivity
this idea was embodied in a bound (see [5, lemma 4.1 and below]) which
uses that the typical walk tries to minimize the number of points it occupies
and thus resembles a geodesic. We will explain this below precisely for a
slightly modified case, where the random walk representation is technically
a bit simpler. The outcome is that E(XkXι) exhibits exponential decay and
is bounded for I = k. Thus results similar to Dunlop et al. can be and
were obtained in [5] but only for the easier case where V(x) is even, mono-
tone and increasing to infinity. The last condition was imposed because
otherwise the required pressure estimates were lacking. In this note we use
ideas developed in [1] to provide these pressure estimates which in turn then
provide these decay properties. In comparison with the work of Dunlop et
al. and Lemberger our arguments rest on special properties (even potential,
Osterwalder-Schrader positivity and monotonicity), but it applies in a wide
regime of coupling constants to potentials which are difficult to analyze by
cluster expansions used by these authors. It also appears that the method
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presented here provides correct dependencies of the decay on the relevant

parameters.

The method of [5] works directly only for periodic boundary conditions.

This means that we identify n and — n in Vn = {—n, — n + 1,... ,n} d , get-

ting a (discrete) torus T n, but we loose any outer boundary, and therefore

loose also any boundary condition. It is evident that in that case, a Gaus-

sian measure with Hamiltonian ^ Σk,ieτn,\k-i\=i(χk ~~ χι)2 n o longer exists

(\k —1\ = 1 has to be interpreted on the torus). This is easiest remedied by

introducing a (small) mass. Thus we start with the measure PUjμ defined in

(4), but with periodic boundary conditions (i.e. where Vn is replaced by T n ).

As remarked in the previous section, this automatically has exponentially

decaying correlations. The decay however disappears in the μ -> 0 limit. For

us, the "mass" parameter μ serves only to replace the 0-boundary condition

which no longer can be implemented in the periodic case, and we want to

have results which are uniform in μ, after taking the thermodynamic limit

n —> oo. The random walk for which (2) is correct is then simply a random

walk on the torus with killing rate ^ - . We can then perform the thermo-

dynamic limit n —> oo, and obtain a measure P<χ>,μ on Mz . This measure

evidently is a translation invariant centered Gaussian measure with expo-

nentially decaying correlations, where the decay depends on the parameter

μ, and disappears when μ —» 0 and where lim^-^o Var00 jμ(Xo) = oo. What

we will prove here is that if we introduce an additional pinning which acts

only locally, as described in section 1, we get localization, i.e. estimates (8)

and (9), which are uniform in μ.

We stick to the two-dimensional case which is the most delicate. (In three

and higher dimensions, there is actually a simple domination argument, as

has been remarked by Dima Ioίfe, which does not work in the two dimen-

sional case). We however change the pinning slightly, to make it purely local.

Our measures will be

(10) Pnfμ,j(ώ;) - jl— exp [-Hμ(x)] J ] (dXi

^n^J ieτn

where

(11) Zn^j = ίe~H^ Π
J ieτn

The parameter J G M regulates the strength of the pinning. The interesting

case is when exp( J) is small, which means that the pinning is weak.

Theorem 2.1 Assume d = 2. For αllJ G M the field is localized in the sense

that

(12) sup lim sup 25n,Ai,j l^o | 2 < oo,
μ>0 n—>oo
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and

(13) supliτnsupEn^j(XiXj) < Cjexp[-cj \i - j\]
μ>0 n—> oo

for some positive constants CJ,CJ. Furthermore, for sufficiently large nega-

tive J

(14) suplimsup£ n > μ , j |Xo| 2 < K\J\
μ>0 n—> oo

for some positive constant K.

3 Random Walk Expansion

The main advantage of using the "delta-pinned" measure (10) is that it has a
more elementary random walk representation of the correlations than in the
case of a general (symmetric) V in (7). It would however be only technically
a bit more complicated to consider for instance the case (6) in combination
with the random walk representation of [5]. On the other hand, it should be
emphasized that the periodic boundary conditions are crucial for applying
the chessboard estimates we are using here. For A C Tn and Ac — Tn\A, let

keAc

This is a probability measure on K7™, but restricted to MA, it is just the
free field on A. In particular, we will have the random walk expansions for
the covariances under PA,μ exactly as (2), where only we have to replace τyn

by TA Λ ζ — min(τ,4,C)> C being the geometrically distributed killing from
the positivity of μ. The measure, we are interested in, namely Pn,μ,j can
now easily be expanded in terms of these Gaussian measures: Expanding
the product we get

The covariance is therefore

We insert the random walk expansion for the Gaussian expectation

fc=0
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Resumming over A under the random walk expectation noting that the con-
straint lTAΛζ>k is the same as requiring Ac to be disjoint from the range of
the walk η^Q^ and the walk not being killed by the clock, we get

k=0

where, for any set B c T n ,

dxk f j {dxk + eJδ0(dxk))

This is the random walk representation. It is essentially a special case of [5,
Theorem 2.2] which applies to any even potential V. From this expression
one also sees that the variables are always positively correlated.

4 Reduction to a pressure estimate

We define

(17) ^ = i n Π i m i n f — log

where Z n ? μ has been defined in (5). We prove in the next section the following

Proposition 4.1 For all J E R, we have δj > 0 and

lim inf — log δj > 1
j-ϊ-00 J

As a special case of the estimates in section 4 of [5], it follows that

δj > 0 implies that the variance of Xo is bounded in the thermodynamic

limit. Exponential decay of the covariance is also an easy consequence. For

the convenience of the reader, we prove here how the theorem now follows

from this proposition, in particular as the argument is simpler in our "delta

pinning"-case than for a potential V of the type (6).

Following [5], we use Osterwalder-Schrader positivity in the form of the

chessboard estimate [17], [15], [24], [16]
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so that from (16), we get

k=0

oo

rRW

<RW

•7ft 3 C>fc

z

Γ Zn,μ 1
_Zn,μ,Jm

l*?[offc]L'|τ»|

hθ,k]\/\Tn\~

We therefore have

(18) α(ij) ά=

where on the right hand side the random walk is on Z2. Remark that we are
done now with the positive μ and therefore with the geometric clock ζ, and
also with any finite size of the torus, and so we can now use just estimates
for the standard random walk. Using this expression, we can easily estimate
the covariances and the variance. Let τyN be the first exit time from the box
VN. Then

(19) α(0,0) <
N=0 k=0

N=Q k=0

For i,j G VM define

k=0

This is a Green's function, the kernel of (—Δy^)"1, where ΔyN is the lattice
Laplacian with Dirichlet boundary conditions at the boundary of V}v Prom
(19) we get:

α(0,0) < ]Γ (GVN+1(0,0)-GVN(0,0))
N=Q

= f ; GVN(0,0)
N=0 N=0

By [20, Theorem 1.6.6] we have the estimate

GyN (0,0) < clogΛΓ = c{logNδj - logίj),
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and therefore

OO

α(0,0) <c\δjΣ log{δjN)e-δ^N-ιϊ - δjlogδj J ] e"^^"1) I < oo
^ N=0 N=0 '

which proves (12) of the theorem. Evidently, we have δj —> 0 for J -» — oo.
As δj -> 0, the two sums on the right hand side of the estimate are Riemann
sum approximations to

/•oo z

/ logί e~*dt-logίj /
Jo Jo

oo

/ g g j / e~fdt
Jo Jo

and therefore

α(0,0)<\ogδj\l + o(-J))

as J -> — oo. This together with (18) proves (14) of the theorem.

The decay of the correlations (13) follows by a simple modification. By

translation invariance, we only have to consider α(j,0). Then in the above

estimates (19), we can restrict the summation over N to N > \j\\ + \J2\

where j = (ji, J2) Therefore we get

α(i,0) < ciδj Σ log(δjN)e-WN-V - δjlogδj

N=\h\+\j2\

from which (13) is immediate.

5 Estimates on 5j, proof of proposition

We finish the proof of our main theorem by proving the proposition of the

last section. In the sequel, c > 0 is a generic constant, not necessarily the

same at different occurrences.

We subdivide Tn into boxes B of side length 2L, where for convenience

we assume that L divides n. The partition function Zn^j is expanded as in

(15). A lower bound for Zn^j is then obtained by restricting the sum over

A in the expansion to a special class 2le of sets defined by: A G 2le if, for

every box £?, B Π Ac contains exactly one lattice point and this point lies

within L/2 of the center of B. Thus

L2(n/L)2

eJ(n/L)
ZA9μ

The proof is now easily finished using the following result:
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Lemma 5.1 There exists Lo E N and depending on μ > 0, there exists

no(μ) £ N, such that for n > no(μ) and L > Lo

inf

We postpone the proof of this lemma for a moment, and proceed with the
proof of the proposition. Evidently, the right hand side in the above lemma
is //-independent, but we have to remember that we have the restriction
n > no(μ) which does not bother us, as the claimed μ-uniformity is after
taking the thermodynamical limit only. Prom the lemma we get

δj > L~2 (J - loglogL - c + logL2)

The key point is that the entropy in the sets 2lc has given rise to the last
term which dominates at large L, so by optimizing over L,

L2 = e- J +°( J) as J -> -oo

we achieve a strictly positive

δj > eJ+°(-J)

and this implies the statement in the proposition.

Proof of Lemma 5.1 By definition of 2l£, every box B contains exactly one
point, call it A;, which is not in B Π A. In the ratio ^βnΛ,μ/^β,μ of partition
functions below we integrate first out all the variables except x — Xk which
leads to a Gaussian law with variance a~ι = Gβ(fc, A;), and therefore

ZBφ fe~2aχ2dx

where in the last inequality, we estimate the Green's function GB(A;, fc) using

[20, Theorem 1.6.6]. This we do with every box £?, and therefore, we get

TT ZBnA,μ > e-(n/L)2(loglogL+c)

Noting that this is the right hand side of the expression in Lemma 5.1, we

see that it is sufficient to prove that Q defined by

(20)
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satisfies

Q < c{n/Lf.

These Gaussian partition functions can be integrated in terms of determi-
nants of lattice Laplacians, which then can be expressed with a random walk
representation. This is reviewed in details in [1], Section 4.1. The outcome
is that

keAm=l

Formally, this is just coming from expanding the logarithm in the equality
det [1 + A] = exp(Tr log [/ + A]) and using a random walk representation for
the resulting terms. Implementing the above expression into (20), we arrive
at

oo 1

fcW(%m = k,τB< 2m,τA < 2m,C > 2m)

because the partition function Z^μ/Z^μ involves the sum over all paths
in Tn that leave A. Amongst these are paths that stay inside some box
B but leave A at the single point in B Γ\ Ac. These are divided out by
the denominator in Q so we are left with paths that exit A and whichever
box B they started in. We can replace the random walk on the torus by
the free random walk, making an error in the above expression of order
n2 exp [—cμn] Σm=i ^ (C > 2m) /2m, which for any μ > 0 is at most 1, if n
is large enough, n > no(μ), say, and can therefore be neglected. After having
made this replacement, we write

Q = Q- + Q- corresponding to ^ = ^ + ^
m m<L2 m>L2

Thus

keTn πι>L2

92
1 1 r r n 2

9 v ^ 1 1 rr
<cn2 } <c\τ2mm

m>L2

where the second inequality rests on the local central limit theorem. Also

Q-<ΣΣ Σ 2 ^ W ( τ ? 2 m = *'T B-2 m'T A-2 m )

B keTnm<L2

m<L2
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Stop the walk on first exit from B and write it in terms of the hitting
distribution on the boundary of the box. The sum over walks that start with
this hitting distribution and return to 0 is bounded by (1/m) exp(—cL2/m)
by the local central limit theorem. Therefore

because as L —> oo

We have now proved Q < c(n/L)2 as required. •

6 Concluding remarks

There have been some very recent developments concerning the topics of this
paper. In particular, in Deuschel and Velenik [8] and Ioίfe and Velenik [19],
these authors have been able to prove (among other things) the exponen-
tial decay of correlations in two dimensional gradient models with convex
interactions in quite some generality. They are using a refined version of the
pressure estimate as developed here, and a renormalization procedure.

A particularly interesting topic with similar questions is the so called
"wetting transition". Here one considers the random field which stays on one
side of the "wall" {x : xι = 0}, say on the positive side. One therefore consid-
ers the probability measures P+( ) d= Pn( |Ω+), where Ω+ d= {X; > 0, Vi},
and similarly for the pinned situation P^ji') = Aι,j( |Ω+). (We consider
again measures here with zero boundary conditions outside a box V^). In
the one dimensional case, the measure P£ just describes a random walk tied
down at the endpoints of the interval, and conditioned to stay positive. It is
well known that after Brownian rescaling, this measure converges weakly to
the law of the Brownian excursion with base line [—1,1]. If we now consider
the pinned measure P^3 (still in one dimension), it is not clear from the
outset if the paths under this (for n large) should still look like a Brownian
excursion or if the walk sticks close to 0 due to the pinning. In his survey
paper [14], Michael Fisher proved the somewhat surprising fact that there is
a transition in the behaviour depending on the pinning parameter. (Fisher
actually looked at a discrete random walk, but similar results can easily be
proved for the situation described here, see [2]). It turns out that for small
J, the pinning is not sufficient, and the path indeed just looks like if the
pinning would not be present, i.e. like a Brownian excursion (after rescal-
ing). On the other hand, if J is large, then the pinning takes over and the
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path becomes localized in the strong sense described by (8) and (9). This
transition is what is called a "wetting transition". The phenomenon had
actually been known before, see [6], [21].

The question arises if there is a similar transition occurring in higher
dimensions. Quite recently, we were able to show that there is no such
transition for d > 3 in the harmonic case [2]. On the other hand, Caputo
and Velenik [7] showed very recently the existence of a wetting transition for
d = 2, and actually in all dimensions for the continuous SOS case, where the
interaction function φ of Section 1 is not quadratic but the absolute value.
The results proved in these papers are however somewhat weak in the sense
that only the pressure estimates have been provided. To be precise, it is
proved in [2] that

> 0

for all J € K, and d > 3, where

Zt = ί e-»V Π **

and

Kτn = ί e~H{x) Π (<** + eJδo(dxi)) ,
Jn+ ievn

and in [7] it is proved that 5j~ = 0 for small enough J. The proof that δ~j > 0
for large enough J is actually very easy in all dimensions (see [1]). Prom
Jj > 0, it is easy to see that under P*j, there is a positive density of zeros
in the sense that there exists an ε( J) > 0 with

lim P+j(%{i eVn:Xi = 0}> ε(J)nd}) =

It seems however to be quite delicate to conclude from that that one has a
behavior of the type (8) and (9). In [22] such a result was proved by cluster
expansion techniques for a slightly different model in a situation which would
correspond to J being large. These methods however appear to be powerless
to prove the result for arbitrary J for which δ~j > 0, which certainly should
be true, but cannot be proved by the methods discussed in this paper (or
any other methods presently available).
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