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1 Introduction

In this paper an attempt is made to sketch van Zwet's contributions to the
area of asymptotic expansions. Such a task is not particularly simple, as
it concerns an expanding area in more than one sense, which also covers
an impressively long period: from the early Seventies till now. (Hence the
attempt to capture this comprehensive aspect in a literal manner in the
title!) As a consequence, the resulting picture could easily become so loaded
with details that the reader will have difficulty to focus, and the remaining
impression will be blurred.

To avoid this from happening, we shall impose severe restrictions. In the
first place, technical details will be dealt with rather loosely, and references
will be given only sparingly. Both are amply available in the papers which
we do refer to. Moreover, striving for completeness as far as references are
concerned, would simply exhaust the available space and thus replace the
intended sketch. A more essential restriction, however, is the fact that we
shall not try to cover the whole area, but instead will select a single path
through it. Our selection criterion, which seems suitable for an occasion
like this, will be van Zwet's joint work on asymptotic expansions with quite
a few of his students, during and following their Ph.D. projects under his
guidance. Other contributions he made will typically only be included if
these provided essential tools in these Ph.D. projects, or answered questions
arising from such work.
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As will be clear from the above, almost no attention at all will be devoted
to areas of and approaches to asymptotic expansions other than those used by
van Zwet, and hence the efforts of many important contributors to the field as
a whole will remain unmentioned. Moreover, those working on similar topics
as van Zwet, or even together with him, may still go unnoticed. Finally, those
who do get mentioned, may feel that they are represented only bleakly.
So let us hasten to apologize to whom it may concern, once more asking
understanding for the consequences of just hacking a rather single-minded
path, linking van Zwet's contributions from the point where it more or less
began, till today.

The organization of the paper is as follows. In section 2 we briefly con-
sider the classical case and the corresponding standard techniques. The next
two sections are devoted to rank tests. In section 3 the one- and two-sample
cases figure, which are linked to the Ph.D. thesis of Albers (1974). Section
4 is devoted to the simple linear rank test, concerned with Does' thesis from
1982. In section 5 we move from it-statistics to L-statistics. Such linear
combinations of order statistics were studied in the Ph.D. thesis of Helmers
(1978). Note that we do not adhere strictly to chronological order: from
time to time we backtrack a little, to pick up developments which have been
unfolding simultaneously. This is also the case for [/-statistics, which we con-
sider in section 6. No Ph.D. project was directly involved here, but, as was
joked among his students, it was really unavoidable that Willem would do
something about [/-statistics: his university, the "Rijksuniversiteit Leiden",
is commonly denoted by its abbreviation as "the RUL". Hence [/-statistics
form the missing link in his roots between R- and L-statistics! (Incidentally,
since 1998 it is simply "Universiteit Leiden", so this time the ranks seem to
have gone missing.)

Several questions arose from the research till this point. In section 7
we briefly consider the one about "why first order efficiency implies second
order efficiency", while section 8 is devoted to the question how things can
be generalized, leading to the results for symmetric statistics. This material
is used in section 9 for empirical Edgeworth expansions and the bootstrap,
which are the topics of the Ph.D. thesis of Putter (1994).

2 The classical case

For several decades now there has been a profound interest in refinements of
first order asymptotic results, such as asymptotic normality of test statistics
and estimators. A definite impetus in this respect was provided by the
special invited paper on Edgeworth expansions in nonparametric statistics
by Peter Bickel (1974). He lists the following four reasons for interest in
higher order terms:

1) better numerical approximations than with simple normal approxima-
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tions,
2) qualitative insight into the regions of unreliability of first order results,
3) discrimination between first order equivalent procedures, for example

in terms of Hodges-Lehmann deficiencies,

4) challenging probabilistic problems.

The starting point for both first and second order results has been the
classical case of sums of independent identically distributed (i.i.d.) ran-
dom variables (r.v.'s). Let XL,. . . ,X/V be i.i.d. r.v.'s with positive and
finite variance σ2 and let FN denote the distribution function (d.f.) of
SN = N~ιl2 ΣjLι(Xj-EXj)/<τ> Then by virtue of the central limit theorem
supa, \FN(X) — Φ(X)\ = 0(1), where Φ is the standard normal d.f. An improve-
ment of this first order result is provided by the Berry-Esseen (BE) bound,
which allows replacement of the mere " = o(l)" by "< CN-^2E\Xι\3/σ^\
for some positive constant C, assuming of course that £7|Xi|3 < 00. Further
progress beyond this rate of convergence result requires replacement of Φ by
an Edgeworth expansion (EE). A typical result runs like

(1) sup\FN(x)-FN(x)\ = o(N-1),
N

where FN(X) equals

(2) Φ(x) - φ(x) [ ^ r ( * 2 - 1) + ̂ ( * 3 - 3s) + ̂ ( z 5 - 10x3 + 15a:)],

in which K3 and K4 are the 3rd and 4th cumulant of -XΊ, respectively, and
φ = Φ'. The choice in (2) is a two-step EE; omitting the terms of order JV"1

produces the one-step EE, which gives o{N~ιl2) rather than o(N~ι) in (1).
These first two improvements beyond the BE bound are of primary inter-

est, for example in second order comparisons. Hodges and Lehmann (1970)
focussed attention on this area with admirable clarity in a paper with the
concise title "Deficiency". Usually two competing statistical procedures A
and B are compared as follows: if B requires k = kn observations to match
the performance of A based on n observations, the ARE e = Zzran_>Oorc/fcn
of B with respect to A is studied. As Hodges and Lehmann point out,
a more natural quantity than this ratio would be the simple difference
dn — kn — n. Especially, whenever e = 1, i.e. the procedures are first
order equivalent, study of this deficiency dn is rewarding. For example, ob-
taining d = limn-̂ oo dn (if it exists) allows a perfectly simple comparison:
one procedure eventually just requires d more observations than the other
one. However, to obtain this type of knowledge, the distributions involved
have to be known up to o(ΛΓ~1), rather than merely up to o(l), i.e. a result
like the one given by (1) and (2) is required. In their paper, Hodges and
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Lehmann demonstrated the use of the deficiency concept through some very
convincing and elegant examples. Even more important perhaps, was the
fact that at the end of the paper they posed a number of open problems. This
stimulated many studies in the Seventies. One of their questions concerned
the deficiency of rank tests with respect to their parametric competitors,
which inspired the research covered in sections 3 and 4.

To ensure that (1) actually holds, obviously a moment condition like
£7|ΛΊ|r < oo for some r > 4, is needed. But we also have to assume some-
thing like Cramer's condition (C):

(3) limsup|p*(ί)| < 1,
|ί|-»oo

where p* is the characteristic function (ch.f.) of X\. We shall now take
a look at the arguments used in the proof of (1). This will explain why
(3) is used, but more importantly, it will be helpful in the sections that
follow. According to Esseen's smoothing lemma, the difference between FN
and FN can be measured by comparing their Fourier transforms p# and p#,
respectively. In fact, for all T > 0, we have that supx \FN(X) — FN(X)\ is of
order

(4) /
J-Ί

~ pN(t)

t

As Piv(ί), the ch.f. of SJV, satisfies |pjv(ί)| = \p*(N 1l2t/σ)\N, an expansion
for pN holds for \t\ < δNιl2, for some δ > 0. Now FN in (2) has been
chosen such that PN precisely equals the expansion for p^ truncated after
the fourth term, which suffices to make the integral in (4) sufficiently small
for T = δNιl2. But to get o(N~ι) in (1), we need that Γ" 1 = o(N~ι). On
the remaining set / it no longer helps to look at PN — PN and we simply need
to show that

(The accompanying result /7 \pN(t)/\t\dt = o(N ι) is trivial.) If X\ has a
lattice distribution, p* is periodic and |PΛΓ(*)| = \p*(N~1/2t/σ)\N will keep
returning to 1 and (5) may not hold true. To see that things in fact do go
wrong, just consider the binomial case, where (1) clearly is false. Hence the
strong non-lattice condition (3), to stay out of this kind of trouble.

3 One- and two-sample rank tests

The basic question is how to extend results for the i.i.d. case to more compli-
cated situations. As concerns first order results, a lot of effort was devoted in
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the Fifties and Sixties to obtaining asymptotic normality for classes of rank
statistics. As we saw above, in the early Seventies, similar questions arose
for second order problems. For the easiest case, the one-sample linear rank
statistic, this led to the Ph.D. thesis of Albers (1974) and to Albers, Bickel
and van Zwet (1976). The idea is that here it is not necessary to expand
the statistic: a direct approach will work, using an appropriate conditioning
argument.

Let Xi,...,X/v be i.d.d. r.v.'s with common d.f. G. Consider the
order statistics 0 < Z\ < Z2 < . . . < ZN of |ΛΊ|,.. ., |XJV| and the anti-
ranks DI,...,DN defined through \XDJ\ = Zj Let Vj — 1 if XDJ > 0,
and 0 otherwise, j = l,...,iV, then the hypothesis that the distribution
determined by G is symmetric about zero is tested on the basis of

N

(6) TN =

where the scores aj are typically generated by some continuous function J
on (0,1), e.g. through aj = J(j/(N + 1)) (approximate scores). For J equal
to 1, t or Φ - 1([l + ί]/2), we obtain the sign, the Wilcoxon signed rank or
the one-sample van der Waerden test, respectively.

The problem is that the summands in (6) are independent under the hy-
pothesis only. The key step is to note that, conditional on Z = (Zi, . . . , ZN),
the Vj are independent under the alternative as well. Hence the classical the-
ory applies after all and an EE like (2) can be given for the conditional d.f.
of T/v A serious obstacle, however, is that the Vj are obviously lattice r.v.'s
and (3) will not hold. Fortunately, we are generally saved by the fact that in
this respect the i.i.d. case is least favourable. If |PΛΓ(£)| = \p*(N~ι/2t/σ)\N,
the only way to keep \p^\ away from 1, is to do so for |p*| through (3). But
in the case of varying components, for (5) it amply suffices if for each t there
is a positive fraction among the ch.f.'s of the summands which are not close
to 1 in modulus. This in its turn is easily achieved by letting the aj vary, i.e.
by letting J be non-constant. (On the other hand, a constant J produces
the binomially distributed sign statistic, for which the situation is indeed
hopeless).

Hereafter it remains to obtain an unconditional expansion for the d.f.
of T/v by taking the expectation with respect to Z of the conditional EE.
Although attention is restricted to the hypothesis and contiguous location
alternatives, there are still a lot of technicalities involved and the resulting
paper needs almost 50 Annals pages. The resulting expansions, however, are
completely explicit and enable quick and illuminating comparisons to first
order equivalent tests, such as parametric counterparts. As an example we
mention that the aforementioned Hodges-Lehmann deficiency d^ (the addi-
tional number of observations required to match the power) of the normal
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scores test with respect to the f-test satisfies

(7) dN ~ i

Hence the bad news is that its limit is infinite; the good news is that for all
practical purposes a single additional observation suffices. Several extensions
of the basic result for the one-sample case were realized; we merely mention
adaptive rank tests (Albers (1979)) and two-stage rank tests (Albers (1991)).

Next we turn to the two-sample problem. We modify the situation de-
scribed at the beginning of this section as follows: ΛΊ,..., X^ are still inde-
pendent, but now Xi,..., Xm have common d.f. F and X m +i, . . . , XN have
common d.f. G. The Zj in this case are the order statistics if Xi,... ,-XΛΓ?

the anti-ranks are defined through Xj)ά — Zj and Vj = 1 if m + 1 < Dj < N
and Vj =0 otherwise, j = 1,..., N. Then TN from (6) stands for the general
linear rank statistic for testing the hypothesis that F = G. An asymptotic
expansion to order N~x for the d.f. of this TN under the hypothesis and
contiguous alternatives, was obtained by Bickel and van Zwet (1978). This
paper is the natural counterpart of the one-sample paper by Albers, Bickel
and van Zwet (1976), but there is also a major difference.

In the one-sample problem we are always dealing with symmetric dis-
tributions and therefore the terms of order N~ιl2 in the expansions vanish.
Hence, when comparing first order equivalent tests, deficiencies of order (al-
most) 1 (cf. (7)) will typically arise. For the two-sample case there is no
reason to expect symmetry, and terms of order N~1/2 do occur. Conse-
quently, one would expect to find deficiencies of order TV1/2, but this is not
what happens. In fact, the results for the one- and two-sample case are typ-
ically qualitatively the same. This quite surprising result is due to the fact
that invariably for first order efficient tests all terms of order JV"1/2 agree,
and hence drop out in the deficiency computations. The phenomenon of first
order efficiency implying second order efficiency, noted earlier by Pfanzagl
(see e.g. Pfanzagl (1979)), was sufficiently intriguing to be studied in its own
right and we shall come back to it in section 7.

Although the techniques employed are similar to those of Albers, Bickel
and van Zwet (1976), the occurrence of the Λ/'~1/2-terms makes the two-
sample case essentially more complicated to handle. An additional complica-
tion is that the distance to the independent case is larger here. For, after con-
ditioning on Z in the one-sample problem, TN is distributed as Σj=\ CLJWJ,

where the Wj are independent Bernoulli r.v.'s. In the two-sample case, how-
ever this step produces a TN which is distributed as Σf=ι ajWj, given that
ΣjLi Wj = N — m. Hence an additional trick, essentially due to Erdos and
Renyi (1959), is required to obtain again an explicit representation for the
conditional ch.f. of TN- The foregoing hopefully demonstrates that it would
be a major understatement to call the two-sample case a straightforward
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generalization of the one-sample problem. In fact, it took almost 70 pages
in the Annals to do so!

4 The simple linear rank test

Let XI, . . . ,XΛΓ be independent r.v.'s with d.f.'s i<i,...,i<V, respectively
and denote the rank of Xj among (Xi,... ,-XΆr) by Rj,j — 1,..., N. In
addition to the scores α ,̂ we have a second vector (ci,..., c/v)? the regression
constants. This leads to the general simple linear rank statistic

N

(8) TN

which can be used to test the hypothesis of randomness Fι = ... = FN- The
two-sample case from the previous section is contained in (8) as a special
case for the choice Cj = 0, j = 1,..., ra, Cj = 1, j = m + 1,..., N.

For this general statistic, a direct approach no longer seems feasible and
we resort to the more or less traditional road of attack, which consists of
decomposing or expanding the statistic itself. The basic scheme suggests to
write
(9) TN = SN + RN,

where SN is a sum of independent r.v.'s, thus allowing application of the
classical approach from section 2, while the remainder RN = TN — SN is
supposed to be negligible in comparison to SN. For example, under the
hypothesis we can compare TN from (8) to SN = Σ?=i ^"^(^(^j))' where
J is the score function which generates the aj and F is the common d.f.
of the Xj under HQ. This approach has been used extensively to obtain
asymptotic normality results for T/v, under varying sets of conditions. (Note
that there is a trade-off: allowing quite general Fj means strong conditions
on the Cj and αj, whereas e.g. under contiguous alternatives the conditions
on regression constants and scores can be much milder.)

Typically, the first steps on the road towards second order results are
taken by just pressing the above argument a bit harder: SV, being an i.i.d.
sum, also allows a classical BE bound, while generally not merely RN =
op(\TN\), but in fact RN = OP(N-ι/2\TN\) will hold. Let GN be the d.f. of
the standardized version T^ = (TN — J5Tτv)/σ(TΛr), then we simply use, for
some sequence ê v > 0,

together with a similar inequality in the opposite direction. The last prob-
ability in (10) can be bounded by E\RN\r/(€N&(TN)Y for some large r. As
RN = OP{N-ι/2\TN\), this will typically be of order N~rl2e^. The first
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probability on the right-hand side of (10) will equal Φ(x + ê r) + O{N~ιl2)
by virtue of the classical BE bound. Hence GN(X) — Φ(x) will be of order

(11) eN + N-W + eJfN-*'2.

This sketch shows that this type of argument is not only simple (apart
from the technicalities involved!), but unfortunately also simply not good
enough: no matter how we choose the €N in (11), we will never get the
"right" rate N~1/2. Something like N~ll2+* or maybe N~ιl2\ogN will be
the best (11) gets us. Of course, one could object that for practical purposes
it really does not matter that much whether the error behaves like N~ιl2 or
like N~ιl2\ogN. The point is, however, that a method which already falls
short of providing the right answer in the first improvement step, will be
quite useless to get any further, i.e. to obtain asymptotic expansions.

To get rid of the final £, we need to replace a crude inequality like (10)
by a more delicate analysis using the smoothing lemma from section 2: just
use (4) for pN(t) = exp(-£2/2) and T ~ Nιl2. To begin with, replace RN

in (9) by QN + RN, with e.g.

N

(12) QN = N-1 Σ CjWXj)) {Rj -

and RN as the new remainder T/γ — (SN+QN) For the standardized version,
write Ttf = SN + QN + RN and use that its ch.f. satisfies

(13) pN(t) = EeιtbN + itEeιtbNQN + O ί -

The first term in (13) equals exp(-ί2/2) + O(Λ^-1/2exp(-ί2/4)) because
of the classical theory. As Sjy and QΛΓ are sums of independent r.v.'s and
as such are almost independent, the expectation in the second term can be
shown to be O{N-ιl2e~t2lA) as well. Finally, since both EQ2

N and E\RN\
are O(ΛΓ~1), it follows that the integral in (4) can be made O(N~1'2) for
T ~ iV1/4, rather than for T = δ*Nιl2 for some δ* > 0, which is what we
really need. To bridge the gap, we expand PN in this interval much farther,
producing a remainder term \t\mE\Qjsf\m/m\. As E\Qisr\m can be shown to
behave like (cm)mN~m/2 for some constant c, it follows that this remainder
term leads to a contribution of order (δ*ce)m in (4). Hence for δ* sufficiently
small and e.g. m = log iV, this can be made negligible and the desired result
follows.

This ingenious argument, which we have discussed in a little bit more
detail to convey the flavor of the techniques used, was mentioned by Bickel
(1974) in connection with [/-statistics, applied by his Ph.D. student Bjerve
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to L-statistics and used by Huskova on simple linear rank statistics. Never-
theless, it may have brought us at the right BE rate of order iV"1/2, but there
it stops again: the trick with m = logiV works only up to T ~ N1/2. As we
already mentioned in section 2, what is really needed to obtain asymptotic
expansions, is a way to deal with the integral in (5).

This is precisely what we find in van Zwet (1982): he essentially shows
that there exist positive β and b such that

(14) \pN{t)\ = O(N-βlo&N) for logiV < \t\ < WV"3/2.

Clearly (14) amply suffices to show (5). The techniques used to derive this
smoothness property depend on the particular structure of TJV They are
related to the arguments used in Albers, Bickel and van Zwet (1976) and
Bickel and van Zwet (1978), according to which some variation in the sum-
mands already suffices to keep their lattice character from destroying the
smoothness.

Using van Zwet (1982) as a starting point, Does could make remarkable
progress in his 1982 Ph.D. thesis. To begin with, he obtained a BE bound
under weaker conditions, allowing unbounded score functions, such as the
important special case Φ" 1 , which is optimal for normal underlying distri-
butions (see Does (1982a,b)). But he also obtained the desired expansions
to o{N~ι), both under the hypothesis (Does (1983)) and under contiguous
alternatives (Does (1984)). In view of (14), the emphasis in this work lies
on studying the integral from (4) over the region |t| < logiV. This is a
highly technical matter, using more sophisticated versions of (12) and (13).
A large part of the effort required is due to the desire to not merely prove
the result, but to do so under mild conditions which allow direct verification
in applications.

5 Linear combinations of order statistics

Since we started with β-statistics in section 3 for the one- and two-sample
case, it made sense to continue this development in the next section for the
case of the simple linear rank statistic. As a consequence, our changing from
β-statistics to L-statistics in the present section means going back in time
a little: the developments for linear combinations of order statistics were
parallel to or even preceded those for Tjy from (8). Incidentally, the fact
that this is not some matter of chance, is discussed by van Zwet (1983). He
observes that there exists a striking similarity between the techniques em-
ployed in both areas, and uses the image of two armies marching on parallel
roads. In fact, they are basically going the same place, in the sense that he
manages to show under very general conditions that asymptotic normality
of a two-sample rank statistic under a fixed alternative follows from a similar
result for an appropriate L-statistic. Another occasion where the two areas
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meet, was encountered in Albers, Bickel and van Zwet (1976). Here it was
observed that an asymptotic expansion for the d.f. of the one sample rank
statistic under fixed alternatives would require such an expansion for the
d.f. of an L-statistic. For this reason, attention was restricted to contiguous
alternatives.

Let Xi,..., J*0v be i.i.d. r.v.'s from some d.f. F, then we replace (8) by

N

(15) TN = N-1

where X{:N is the ith order statistic of Xi,..., XN and the CM are weights.
Just as was the case with i?-statistics, asymptotic results for L-statistics are
available under varying sets of conditions. Typically, either the weights are
smooth, i.e. ĈAΓ = J(i/{N + 1)) for some smooth function on (0,1), or F
is supposed to be smooth. In the latter case, however, attention has to be
restricted to trimmed L-statistics, i.e. with ĉ v = 0 for i < Na or i > Nβ,
for certain 0 < a < β < 1.

Again we begin with the BE case. As we already mentioned in the
previous section, Bjerve obtained such a result for L-statistics, using an
argument due to Bickel. He considered the trimmed case, while Helmers
(1977) applied the same type of approach to smooth weights. The result of
Bickel for {/-statistics was further improved by Callaert and Janssen (1978).
Using this latter paper, Helmers (1981) improved his previous result by
proving it under weaker conditions.

Next we move to asymptotic expansions. Here the pattern is again the
same as in the previous section: a special argument is required to deal with
(5), and here as well this is provided by van Zwet. To be more precise, by
van Zwet (1977) it is shown that the ch.f. p^ of the standardized Tjy- =

— -ET/v)/cr(T/v) satisfies, for every positive integer r and for t φ 0,

(16) |p,v(ί)|

where 7 > 0 depends on r. Using (16), Helmers (1980) obtained an EE
to o(N~1) for L-statistics with smooth weights; the companion result from
the trimmed case is contained in Helmers (1979) (the special case of the
trimmed mean was already covered by Bjerve). Just as in the case of R-
statistics, it is a highly laborious and technical matter to achieve all this
under reasonably mild conditions. Collected together, all this material can
be found in Helmers' Ph.D. thesis (1978). An additional remark is that van
Zwet (1979) demonstrated that for the special case of uniform underlying
distributions stronger results can be obtained than in general.

As was discussed in sections 2 and 3, the interest in second order analysis
of i2-statistics was stimulated by the desire to obtain deficiencies. Similarly,
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one can wonder about deficiencies of first order efficient tests based on L-
statistics. For results of this nature we refer to Bening (1995).

6 [/-statistics

After R- and L-statistics, we shall now consider [/-statistics. Let again

XI,...,XN be i.i.d. r.v.'s, but this time introduce for symmetric h (i.e.

h(x,y) = h(y,x)) the [/-statistic

ΛΓ-1 N

(17) UN = Σ Σ κχ»Xi)i

where we assume Eh(X\,X2) = 0 and Eh?{Xι,X2) < oo. Defining g(x) =

E(h(Xι,X2)\Xι = x) and ψ{x,y) = h(x,y) - g(x) - g(y), we can write

(18) UN

with UN = (N-l)Σ?=19(Xi) and Δ * = Σ ^ Σ & i + i !«**,*;)• Pro-
vided that Eg2(X\) > 0, we have that [/jv/σ([/jv) is asymptotically standard
normal.

As was mentioned in section 4, the first BE bound for [/-statistics was
already obtained by Bickel (1974). Moreover, in the previous section we
discussed how this result was used by Helmers to obtain a BE bound for
L-statistics, and that he subsequently sharpened his result by using an im-
proved version of the BE bound for [/-statistics due to Callaert and Janssen.
The final step in this apparent interplay between rate of convergence re-
sults for L- and [/-statistics was due to Helmers and van Zwet (1982), who
obtained the BE-bound for [/jv/σ([/;v) under the natural condition that

The situation for asymptotic expansions to o(N~1) is as follows: the
first result on EE's for [/-statistics was obtained by Callaert, Janssen and
Veraverbeke (1980) (also see Janssen's Ph.D. thesis from 1978). However,
they had to impose a complicated smoothness condition on the distribution
of /i, which was difficult to verify, and also clearly more strict than necessary.
But, just as in section 3, it turns out that problems caused by a possible
lattice character, become less, rather than more pronounced as the situation
gets more complicated. In the former case, the i.i.d. sum was least favorable
and some variation in the summands already sufficed to obtain the required
smoothness. Here we observe that in going from single to double sums, like
those in (17), the magnitude of the jumps in the d.f. for the lattice case
typically goes down from N~ιl2 to N~3/2 (cf. the "bad" sign statistic to the
"good" Wilcoxon or signed rank statistic, which falls under (17)).

Consequently, Bickel, Gδtze and van Zwet (1986) succeeded in establish-
ing the EE to o(N~λ) under very mild conditions that are easy to verify and
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do not involve smoothness of the d.f. of Λ(-XΊ, X2), but only of the d.f. of
g(X\). In fact, conditions on g are given such that UN from (18) admits
an EE, supplemented with a moment condition on ^(JYi, JΓ2) to control the
behavior of the remainder AN in (18).

However, one awkward condition remains. Let u>i,W2,... be some or-
thonormal sequence of eigenfunctions of the kernel φ with respect to the d.f.
F of the Xi, and let λi, λ2,. . . be the corresponding eigenvalues, i.e.

(19) ίφ(x,y)ωj(x)dF{x) = XjUjίy).

Then it is assumed that a sufficient number of these λj are nonzero. The
meaning of this condition only becomes clear during the proof. Again, the
source of trouble is the behavior of the ch.f. PN(Ϊ) for large |t |, making it
hard to prove (5). In the present case the problem is that for these large
|ί| this behavior is no longer governed by UN, but instead by the remainder
AN- TO avoid degeneration in the subsequent analysis, a certain number of
eigenvalues should be nonzero.

7 Efficiency of first and second order

After completion of sections 3-6, we have reached the level where BE bounds
and EE's to o(N~λ) are available for iZ-, U- and L-statistics. Before climb-
ing on to the next level, we briefly pause to contemplate the phenomenon
of first order efficiency implying second order efficiency, which we encoun-
tered in section 3 in connection with two-sample rank tests. In the mean
time, several other groups, such as Pfanzagl and his students, had also made
significant contributions to higher order theory. Here we merely mention
that Pfanzagl (1979) demonstrated that this phenomenon happens in general
when first order efficient tests are compared. The powers of such tests typi-
cally agree to second, rather than merely to first order. Now it is one thing
to observe this state of affairs, but because of the technicalities involved,
it is quite something else to understand why it does happen. Fortunately,
Bickel, Chibisov and van Zwet (1981) provide a nice intuitive explanation of
the phenomenon.

The idea (very roughly!) is as follows. For N = 1,2,..., let XN be the
outcome of an experiment and suppose that this XN has density either pNfi
or PNI- (Usually N simply stands for the number of independent r.v.'s in
the Nth testing problem.) The test function of the most powerful level-αw

test in this case is

/ o π , . , A v ί 1 iϊAN>cN,
(20) ΦN\AN) — S n IL
v J ^ v ' \ 0 otherwise,
where AN is the log likelihood ratio log{pN,i(XN)/PN,o(XN)}' Typically,
we are interested in the contiguous case, where CXN = EN,OΦN(AN) re-
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mains bounded away from zero, while the power π ^ = EN,IΦN(ΔN) re-
mains bounded away from one. Under these circumstances, ΛΛΓ is generally
asymptotically normal and moreover usually admits an EE for π ^ like

(21) π*N

Let ZΛΓ be a competing first order efficient test statistic, with level
test function ΨN{ZN) = 1 for ZN > d/v and ΨN{ZN) = 0 otherwise, and
power 7πv admitting an EE TΠV = c0 + c'ιN~ιl2 + o(N~1/2). Note that we use
the same co here as in (21) by virtue of the first order efficiency. However,
calculation for explicit examples invariably shows that also c[ = c\, implying
that ZJV is in fact second order efficient. To understand why 7Γy — ΈN =
o(N~1/2), rather than of the exact order iV"1/2, we observe that this power
difference equals

(22)

Note that the contribution involving edN in (22) can be smuggled in because
both tests have level a^ and thus EN,QΦ{AN) = EN,OΨN(ZN) Since ZN

is first order efficient, we can write ZN = AN + ΔJV, with AN = 0p(|ΛjvΊ)
(cf.(9)). The factor (ΦN(AN) - ΨN{ZN)) in (22) will be non-zero only on
the set where AN is between CAT and (IN — AN- In view of the first order
equivalence of the tests, CN and (IN are close and therefore AN is with large
probability close to (IN on this set. Consequently, when the second factor in

(22) is non-zero - which happens with small probability - the first factor will
typically be small. This provides the acceleration from precise order N~ιl2

to o{N-λl2).
As a final remark in this section we mention that Bickel, Gόtze and

van Zwet (1983) have extended the approach above to the study of third-
order efficiency of maximum likelihood-type estimates.

8 Symmetric statistics

Nowadays, many scientists are thrilled by studies of the expanding universe.
Some, however, seem to have reversed preferences and rather pursue univer-
sal expansions! As van Zwet (1984) pointed out, the multitude of results
obtained till then (and described in the previous sections) may have been
extremely useful for statistical applications, but from a probabilistic per-
spective it still looks rather ad hoc, without much hope for a general theory.
Consequently, he started the development of a general second order theory
for asymptotically normal statistics. As the statistics involved are functions
of i.i.d. r.v.'s X\,..., XN , it can be assumed without loss of generality that
the functions involved are symmetric. But this restriction to symmetric
statistics is the only limitation imposed. Nevertheless, even this limitation
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can be avoided, but for arbitrary functions the conditions involved will be
much more complicated and difficult to verify.

Consider T — t{X\,... ,XN), where the function t is symmetric in its
N arguments. As we have seen, a common approach towards second order
results involved Taylor expansion of T (cf. e.g. (9) and (12)). But the
smoothness of ί, which is needed for this method, does not seem to be essen-
tial. The proper approach for the general case is Hoeffding's decomposition,
which expands T in a series of [/-statistics of increasing order. Assume that
ET2 < oo and write

N N-l N

(23) T

where Ti = E(T\Xi)-ET
To illuminate the idea behind (23), let Tm be the L2-projection of T on

the linear space spanned by functions of at most m r.v.'s from
then

N

N-l N N

f* - f* = Σ Σ τ^ R=Σ(fi - fi-ι)
i=l j=i+l j=3

(The alternative term ANOVA-type decomposition is sometimes used, in
view of these repeated orthogonal projections.) Using (23) and properties
of L2-projections, van Zwet (1984) obtained the BE bound for T, assuming
that E\E(T\Xι)\3 = O(ΛT3/2), together with a simple moment condition
to control the behavior of T — f\. If this result is applied to special cases
like U- and L-statistics, it reproduces the optimal results for these situations
(e.g. E\g(Xι)\* < oo and Eh2(XuX2) < oo for ^-statistics, cf. section 6).

For the present general case, the step from the BE bound to an appro-
priate EE, is essentially more complicated than in the special cases studied
before. In view of the similarity between (18) and (23), at first sight one
would expect that the approach of Bickel, Gόtze and van Zwet from section
6 for [/-statistics, would lead in a rather straightforward manner to an EE
to o(N~λ) here as well. Unfortunately, the behavior of the "sole" difference
R between (23) and (18) turns out to be extremely complex. In a sense, this
is not completely surprising: the term preceding R in (23) corresponds to
ΔJV from (18), and already AN required a peculiar eigenvalue condition (cf.
(19)) to ensure its proper behavior. Hence, for terms of still higher order,
things probably get even worse.

The situation at present is as follows: an EE to o(N~1) does exist (see
Gδtze and van Zwet (1991)), but is as yet not in a form fit for publication.
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Bentkus, Gotze and van Zwet (1997) present an EE to O(ΛΓ~1), which thus
not includes the terms of order iV"1, but does attain the right order, and not
something like O(N~ι+δ) (cf. the discussion following (11)). Incidentally,
they also show that without the eigenvalue condition, the need of which was
in some doubt, the EE to o(N~1) for [/-statistics is not necessarily valid.
The result obtained looks quite natural: take the one-step EE (cf. (2)) and
use for KS simply the third cumulant of

N N-l N

i.e. neglect R in (23). This leads to an error O(N~ι) under appropriate
moment conditions: a fourth for 2\, a third for Tyi and a relatively simple
one to control the behavior of R. In addition, as expected, a Cramer-type
condition on T\ is needed. Just as in the BE case, the general result obtained
here turns out to be comparable to the best available results for special
cases. The proof is long and tedious, among others since the traditional
smoothing lemma (cf. (4)) does not seem to work anymore; its role is now
played by a nonstandard smoothing inequality, on which a technique called
data-dependent smoothing is based.

9 Empirical Edgeworth expansions

In this final section we consider the results obtained by Putter in his '94
Ph.D. thesis. He studies substitution estimators (formerly known as plug-in
estimators!), with the bootstrap as the most prominent example. Besides re-
sults on consistency of such substitution estimators (see Putter and van Zwet
(1996)), he also pays ample attention to so-called empirical Edgeworth ex-
pansions (EEE's), which provide the link to the present review.

In analogy to our observation in section 5 about R- and L-statistics, the
existence of such a link is no coincidence: the closer one looks, the better one
sees the relation between bootstrap and EEE. To begin with, practitioners
often hope that the bootstrap automatically works, and thus effectively re-
places the need for statistical thinking by routine application of simulation,
but (un?)fortunately, this is not the case. Van Zwet in particular has shown
that typically the bootstrap requires asymptotically linear and asymptot-
ically normal statistics. Moreover, finer properties such as second order
correctness, which have made the bootstrap even more popular, typically
require the validity of an Edgeworth expansion. Hence it seems that the
bootstrap and appropriate expansion techniques work under similar circum-
stances.

In addition, the use of expansions helps to understand the behavior of
the bootstrap. Consider for example the second order correctness property,
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which means that the error of the bootstrap approximation can actually be
of a smaller order of magnitude than the error in the customary normal
approximation. Specifically, let ΛΊ,... ,Xχ be i.i.d. r.v.'s from a d.f. F and
let TN = tpι(Xi,- . ,XN) be a symmetric statistic (cf. section 8). Suppose
the d.f. GN of the standardized version

(24) T*N = (TN-ETN)/σ(TN)

admits an EE. Then the bootstrap approximation G*N for GN relies on re-
placing F by some empirical version, like the empirical d.f. FN Conse-
quently, the coefficients in the EE for G*N are just the empirical counterparts
of the corresponding coefficients in the EE for GN.

But now a similar argument applies as in section 7: these coefficients are
of order N~ιl2 (or even N~ι) to begin with, and estimation errors are op(ί)
(typically even Op(N~1/2)), which in combination leads to an approximation
error op{N~ιl2) (or even Op(N~1)), rather than merely Op(7V~1/2), for
this EEE, and thus for the bootstrap. Incidentally, do note that we have
considered the standardized version Tjy. For Γ/v itself, σ(TJv) will occur
already in the leading term of the EE, leading to an estimation error of at
least order N~ιl2. As σ(T/v) is typically unknown in practice, the statistic
of real interest is neither T^ from (24) nor TV, but a Studentized version

(25) fN = (TN - ETN)/SN,

where Sjj is some appropriate estimator of σ2(Tjy).
The above immediately prompts the following question: instead of merely

using the EEE to explain the bootstrap, can't we use it to replace the boot-
strap altogether? In this way, a lot of simulation effort can be avoided.
This attractive idea is studied extensively by Putter. Generally speaking,
it turns out that both bootstrap and EEE indeed outperform the ordinary
normal approximation. In the mutual comparison, the bootstrap seems to
be slightly better than the EEE, which agrees with intuition as the bootstrap
also estimates higher order coefficients, whereas the EEE stops after one (or
two) steps.

Up to now, we have mainly outlined the motivation and the general
ideas. At the end of this section, we shall briefly also consider some specific
aspects, such as methods applied, types of estimators used, etc. But, as
usual, we largely refer to the relevant papers, which in this case are Putter
(1994) and Putter and van Zwet (1998). Consider symmetric statistics T/v
with ETN = 0, then one-step EE's with error o(N~1/2) are established
for TN/σ(TN) and for fN = TN/SN (cf. (25)). For S2

N the well-known
jackknife estimator of variance is used. Next, the coefficients in these EE's
are estimated in a similar fashion, also using jackknife techniques, and it is
shown that the resulting one-step EEE's have error op{N~ιl2).
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As concerns the methods of proof, for the EE's the key tool again is
Hoeffding's decomposition (cf. (18) and (23)). Extensive use is made of the
results by Bickel, Gδtze and van Zwet (1986) on the EE for [/-statistics,
which were discussed in section 6. For the step from EE's to EEE's, it suf-
fices to show the consistency of the jackknife estimators applied. It is demon-
strated that the results obtained are sufficiently general to allow application
to [/-statistics, L-statistics, smooth functions of the sample mean, as well as
smooth functionals of the empirical d.f. Moreover, it is also demonstrated
how the results can be used to prove second order correctness of the boot-
strap for Studentized [/-statistics of degree two, a case which was studied
earlier by Helmers (1991) under stronger moment conditions.

Here our sketch comes to an end. Maybe this comes across a little
abruptly, leaving the reader out on a limb. But remember that this is the
appropriate place to be at the end of a journey through a tree-like structure
such as this review!
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