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On two results in multiple testing

Sanat K. Sarkar1,∗, Pranab K. Sen2, and Helmut Finner3

Temple University, University of North Carolina at Chapel Hill and
German Diabetes Center, Duesseldorf

Abstract: Two known results in multiple testing, one relating to the di-
rectional error control of augmented step-down procedure proved by Shaffer
(1980) and the other on the monotonicity of the critical values of step-up pro-
cedure proved by Dalal and Mallows (1992), are revisited and given alternative
proofs in this article.

1. Introduction

Testing of a null hypothesis against two-sided alternative is typically considered as
a problem of making one of two kinds of decision, acceptance or rejection of the null
hypothesis, and is designed in such a way that the Type I error rate associated with
false rejection of the null hypothesis is controlled at a specified value. Once the null
hypothesis is rejected, the direction of the alternative hypothesis is decided based on
the value of the test statistic. However, a directional error or Type III error might
occur in making such directional decisions. For instance, in testing H0 : θ = θ0

against H1 : θ �= θ0, with θ being the parameter of a random variable T and θ0

being some known value, a rejection region of the form T ≤ a or ≥ b is used, where
a and b are determined subject to a specified control of the Type I error rate, i.e.,
the probability of falsely rejecting H0. Once H0 is rejected, the decision regarding
θ > θ0 or θ < θ0 is made by checking if T ≥ b or T ≤ a. A Type III error occurs
when, for example, θ < θ0 (or θ > θ0) is the true situation, but we falsely decide
for θ > θ0 (or θ < θ0) after rejection of H0. It is interesting to see, however, that in
almost all testing situations where T stochastically increases with θ, controlling the
Type I error rate will ensure the same control for the Type III error rate. This is
because, when θ = θ0, there is no Type III error. On the other hand, when θ < θ0,
the chance of Type III error, which is

Pθ{T ≥ b}
≤ Pθ0{T ≥ b}
≤ Pθ0{T ≤ a or T ≥ b} = α,

the chance of Type I error. Similarly, the chance of Type III error is less than
that of Type I error, for any θ > θ0. In other words, in testing a null hypothesis
against two-sided alternative, directional decisions can be made following rejection
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of the null hypothesis without committing any additional error. Does this phe-
nomenon hold when multiple null hypotheses are tested simultaneously against
two-sided alternatives? This was first addressed by Shaffer (1980). She proved that
with Holm’s (1979) step-down procedure involving independent test statistics con-
trolling the familywise error rate (FWER) at α, directional decisions can be made
for the alternatives corresponding to the rejected null hypotheses without causing
the probability of at least one of Type I or Type III errors to exceed α. Her proof,
of course, relied on certain sufficient conditions related to the probability distrib-
utions of the statistics. We revisit this particular result in the present article and
provide an alternative proof requiring the more common monotone likelihood ratio
property of the underlying densities.

The other main result of this article concerns existence of increasing set of crit-
ical values in an FWER-controlling step-up-step-down procedure. Consider test-
ing n null hypotheses H1, . . . , Hn simultaneously against the corresponding one-
sided alternatives H̄1, . . . , H̄n using right tailed tests based on the test statis-
tics X1, . . . , Xn, respectively, which are identically distributed under the null hy-
potheses. Let X1:n ≤ · · · ≤ Xn:n be the ordered versions of these statistics, and
H1:n, . . . , Hn:n be the corresponding ordering of the null hypotheses. Then, a step-
up-step-down procedure of order r based on (X1, . . . , Xn) and the critical values
cr
1:n ≤ · · · ≤ cr

n:n accepts H1:n, . . . , Hj:n and rejects the rest if (X1, . . . , Xn) ∈ Ar
j,n,

where

Ar
j,n =

{ {
Xj:n < cr

j:n, Xj+1:n ≥ cr
j+1:n, . . . , Xr:n ≥ cr

r:n

}
for j = 0, 1, . . . , r − 1,{

Xr:n < cr
r:n, . . . , Xj:n < cr

j:n, Xj+1:n ≥ cr
j+1:n

}
for j = r, . . . , n,

with Ar
0,n = {X1:n ≥ cr

1:n, . . . , Xr:n ≥ cr
r:n} and Ar

n,n = {Xr,n < cr
r:n, . . . , Xn:n <

cr
n:n}. It reduces to a step-up procedure when r = 1, and to a step-down procedure

when r = n (Sarkar, 2002a, b, 2004; Tamhane, Liu and Dunnett, 1998). The cr
j:n’s

providing a control of the FWER at α are determined from the following set of
conditions

minIj P{Xj:Ij ≤ cr
j:n} ≥ 1 − α, for j = 1, . . . , r,

minIj P{Xr:Ij ≤ cr
r:n, . . . , Xj:Ij ≤ cr

j:n} ≥ 1 − α, for j = r + 1, . . . , n,
(1.1)

where Ij is a ssubset of {1, . . . , n} with cardinality j, 1 ≤ j ≤ n, and X1:Ij ≤ · · ·
≤ Xj:Ij are the ordered components of the subset {Xi : i ∈ Ij}. The probabilities
are determined assuming null distributions of the underlying test statistics. Note
that, for In = {1, . . . , n}, we are using n, instead of In, in the subscripts of the
notations for the ordered components. The critical values satisfying (1.1) with the
equalities, of course, will provide the least conservative procedure.

Although it is required that the critical values of a step-up-step-down procedure
be increasing, the existence of such critical values in any distributional setting
is not always immediate, especially when they are determined to yield the least
conservative procedure (Finner and Roters, 1998; Sarkar, 2000). For instance, with
1 ≤ r ≤ n− 1, it is not obvious that there exist increasing critical values satisfying
(1.1) with the equalities. On the other hand, it is not difficult to see that, when
r = n, the critical values of the least conservative step-down procedure are indeed
increasing, as they are the 100(1−α)% points of a stochastically increasing sequence
of distributions. The problem of verifying the increasing property of the critical
values satisfying (1.1) with the equalities for 1 ≤ r ≤ n−1 is actually complicated by
the intricate relationship that exists between probability distributions of the ordered
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components of two successively increasing subsets of the Xi’s. The problem has been
solved by Dalal and Mallows (1992) in the situation where r = 1 and the Xi’s are
iid . The second main objective of this paper is to extend this result to a general r,
of course still assuming that the Xi’s are iid. Bai and Kwong (2002) considered a
more general version of Dalal-Mallows’ result. However, their proof of this version
seems to be incorrect (Finner and Roters, 2003, private communication).

The two main results of this article are described in Section 2 and proved in
Section 3. The first main result (Result 1) relates to the directional errors control in
a step-down procedure and the other main result (Result 2) is on the monotonicity
of the critical values of a step-up-step-down procedure. Our proofs in Section 3
require some supporting results which will be proved in the Appendix.

2. The main results

The two main results of this paper are stated in this section and will be proved in
the next section.

2.1. An improvement of Shaffer’s result

Suppose that random variables X1, . . . , Xn are independently distributed, with Xi

having a probability density fθi(x), i = 1, . . . , n. Assume that, for each i, fθi(x)
is TP2 in (x, θi) (Karlin, 1968); i.e., has the monotone likelihood ratio property
in x (Lehmann, 1986). As mentioned in the introduction, in testing a single null
hypothesis, say H1 : θ1 = θ10, against the corresponding two-sided alternative
H̄1 : θ1 �= θ10, a level α two-tailed test in terms of X1 will control the Type III
error rate at α if rejection of H1 is concluded by deciding θ1 > θ10 or < θ10 according
as X1 is large or small.

Consider now n null hypotheses Hi : θi = θi0, i = 1, . . . , n, which are to be tested
simultaneously against the corresponding two-sided alternatives H̄i : θi �= θi0,
i = 1, . . . , n. As described in Shaffer (1980), Holm’s (1979a) step-down procedure
controlling the FWER at α can be augmented to make directional decisions regard-
ing the alternatives corresponding to rejected null hypotheses as follows. Determine
constants aij , bij , i, j = 1, . . . , n, such that under HJ = ∩i∈JHi

PHJ {ai|J| < Xi ≤ bi|J|, i ∈ J} ≥ 1 − α, for all J ⊆ {1, . . . , n}. (2.2)

For example, one can choose aij (or bij) to be the maximum (or minimum) of those
values for which

PHi{Xi < aij} ≤ (1 − βi)
{
1 − (1 − α)

1
j
} (

or PHi{Xi > bij} ≤ βi

{
1 − (1 − α)

1
j
})

,

for some 0 ≤ βi ≤ 1/2. Note that, for every fixed i, ain ≤ · · · ≤ ai1 < bi1 ≤ · · · ≤ bin.
Define

BJ =
{
ai|J| < Xi ≤ bi|J|, i ∈ J

}
. (2.3)

Then, the augmented version of Holm’s step-down procedure consists of the follow-
ing steps.

Step 1. Start with J = Jn ≡ {1, . . . , n}. If (X1, . . . , Xn) ∈ BJn , stop by accepting
all the hypotheses. Otherwise, reject the subset of null hypotheses {Hi : Xi ≤ ai|Jn|
or Xi > bi|Jn|, i ∈ Jn} and go to the next step.

Step (j (j ≥ 2)). Let Kc
j be the subset of those indices i for which Hi is rejected

in one of the previous j − 1 stages. If (X1, . . . , Xn) ∈ BKj , stop by accepting the
set of null hypotheses {Hi : i ∈ Kj}. Otherwise, reject the set of null hypotheses
{Hi : Xi ≤ ai|Kj | or Xi > bi|Kj |, i ∈ Kj} and go to the next step.
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Continue this way until each null hypothesis is either accepted or rejected. Decision
regarding the direction of the alternative to a rejected null hypothesis is made
based on the value of the corresponding test statistic; i.e., upon rejection of Hi,
decide θi > θi0 or < θi0 according as Xi is large or small. To be more specific, let
us suppose that, for some J ⊆ {1, . . . .n}, the above procedure results in rejection
of the subset of null hypotheses {Hi : i ∈ J} and acceptance of the rest. Then,
regarding the directions of the alternatives corresponding to the rejected set of
hypotheses, {Hi : i ∈ Jc}, one can decide θi > θi0 or < θi0, for every i ∈ Jc,
according as Xi > bi|J| or < ai|J|.

Result 2.1. For the above procedure,

Pr{no Type I and Type III errors} ≥ 1 − α. (2.4)

Remark 2.1. It is interesting to note that the above result, originally proved by
Shaffer (1980), does actually hold only under the TP2 condition of the density
of each Xi. This is a natural multiple testing analog of the corresponding result
known for testing a single hypothesis. In Shaffer’s (1980) proof, although a slightly
less restrictive condition than the TP2 condition has been assumed, i.e., the cdf,
Fθi(x), of Xi is non-increasing in θi, some additional assumptions regarding Fθi(x)
have also been made. These are: (i) limθi→θi

Fθi(x) = 1, and limθi→θi
Fθi(x) = 0,

for every x in the support of Fθi0(x), where [θi, θi] is the interval of possible values
of θi, and (ii) ∂[1 − Fθi(x)]/∂θi is TP2 in (x, θi). Location families of distributions
with TP2 densities, scale families of distributions of positive-valued random variable
with TP2 densities and exponential families of distributions satisfy the conditions
assumed by Shaffer (1980); see also Finner (1999). However, the exponential families
of distributions considered in Shaffer (1980) have TP2 densities, and, as our proof in
the next section suggests, once the TP2 condition is known for all of these families
of distributions, the other two conditions are redundant. Shaffer (1980) used an
example involving Cauchy distribution to bring home the point that the above
derivative condition is unavoidable; without this the result does not hold. In fact,
it is not surprising that this condition does not hold for the Cauchy distribution as
it is not TP2. The TP2 condition actually appears to be unavoidable in this result.

2.2. An extension of Dalal-Mallows’ result

Consider simultaneous testing of null hypotheses H1, . . . , Hn using right-tailed tests
based on the corresponding test statistics X1, . . . , Xn that are assumed to be iid
with the common cdf F . The least conservative generalized step-up-step-down pro-
cedure of order r controlling the FWER at α ∈ (0, 1) based on the Xi’s requires
existence of critical values c1 ≤ · · · ≤ cn satisfying the following conditions:

P{Xj:j ≤ cj} = 1 − α, for j = 1, . . . , r,

P{Xr:j ≤ cr, . . . , Xj:j ≤ cj} = 1 − α, for j = r + 1, . . . , n.
(2.5)

While it is clear that the critical values obtained from the first r equations in (2.5)
are increasing, as they are the solutions to the following equations

F (cj) = (1 − α)
1
j , j = 1, . . . , r, (2.6)
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it is relatively less obvious, however, that there exist solutions to the remaining n−r
equations that will continue to be increasing. Since, for any given c1 ≤ · · · ≤ cj ,

P{X1:j ≤ c1, . . . , Xj:j ≤ cj}

= F (c1)
j−1∑
i=0

F̄ i(c1) −
j−1∑
i=1

(
j
i

)
P{X1:i ≤ c1, . . . , Xi:i ≤ ci}F̄ j−i(ci+1), (2.7)

where F̄ (·) = 1−F (·), the existence of c1 ≤ · · · ≤ ck satisfying (2.5) for j = 1, . . . , k,
for some r ≤ k ≤ n− 1, would imply the existence of ck+1 ≥ ck satisfying (2.5) for
j = k + 1 provided we can show that ck+1 obtained from the following:

F̄ (ck+1) =
1

k + 1

[
k∑

i=1

F̄ i(c1)−
k−1∑
i=1

(
k + 1

i

)
F̄ k−i+1(ci+1)

]
, with c1 = · · · = cr,

(2.8)
is greater than or equal to ck, which would ultimately prove the desired monotonic-
ity property of all the critical values satisfying (2.5). But, this is the main hurdle
in this problem. When r = 1, Dalal and Mallows (1992) proved the existence of an
increasing sequence of cj ’s satisfying (2.5). We extend this result by proving it for
a general r, of course using a completely different line of arguments.

Result 2.2. There exists an increasing sequence of critical values c1, . . . , cn satis-
fying (2.5).

Remark 2.2. Bai and Kwong (2002) considered the following conjecture. There
exist c1 ≤ · · · ≤ cn satisfying the following conditions:

P{Xj+1:m+k ≤ c1, . . . , Xj+k:m+k ≤ ck} = 1 − α, for k = 1, . . . , n, (2.9)

for any fixed 0 ≤ j ≤ m. This is a more general version of Dalal-Mallows result
than what we consider here. However, as mentioned before, the proof given by Bai
and Kwong (2002) seems to be incorrect.

3. Proofs of the main results

3.1. Proof of Result 2.1

Let us assume without any loss of generality that θi = θi0 for i = 1, . . . , k, and > θi0

for i = k + 1, . . . , n. Then, neither a Type I nor a Type III error occurs if and only
if, for some J such that {1, . . . , k} ⊆ J ⊆ {1, . . . , n}, Hi is accepted for all i ∈ J ,
and rejected because of Xi being large for all i ∈ Jc. Thus, with J1 = {1, . . . , k}
and θ = (θ10, . . . , θk0, θk+1, . . . , θn), we have

Pθ{no Type I and Type III errors}

=
n∑

j=k

∑
J:|J|=j,J⊇J1

Pθ

{
aij < Xi ≤ bij , i ∈ J ; Xi > bili , i ∈ Jc,

for some permutation (lj+1, . . . , ln) of (j + 1, . . . , n)
}
(3.1)

Now, use the following lemma related to TP2 property, whose proof will be
provided in the Appendix:

Lemma 3.1. Let Y ∼ fθ(y), which is TP2 in (y, θ). Then, for any fixed a < b, and
θ ≥ θ0,

Pθ{a ≤ Y ≤ b} ≥ Pθ0{a ≤ Y ≤ b}Pθ{Y ≤ b}. (3.2)
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From the lemma we note that the probability in (3.1) is greater than or equal
to

n∑
j=k

∑
J:|J|=j,J⊇J1

P(θi0:i∈J){aij < Xi ≤ bij , i ∈ J}

× Pθk+1,...,θn{Xi ≤ bij , i ∈ J − J1; Xi > bili , i ∈ Jc, for some permutation
(lj+1, . . . , ln) of (j + 1, . . . , n)}

≥ (1 − α)
n∑

j=k

∑
J:|J|=j,J⊇J1

Pθk+1,...,θn{Xi < bij , i ∈ J − J1; Xi > bili , i ∈ Jc,

for some permutation (lj+1, . . . , ln) of (j + 1, . . . , n)}
= 1 − α, (3.3)

as

n∑
j=k

∑
J:|J|=j,J⊇J1

Pθk+1,...,θn

{
Xi ≤ bij , i ∈ J − J1; Xi > bili , i ∈ Jc,

for some permutation(lj+1, . . . , ln) of (j + 1, . . . , n)
}

= 1. (3.4)

A proof of (3.4) is given in the Appendix. This proves Result 2.1.

3.2. Proof of Result 2.2

Replacing Xi by Ui = F (Xi), which is a U(0, 1) random variable, the result can be
restated as that of proving the existence of constants α1 ≤ · · · ≤ αn satisfying the
following conditions:

P{Uj:j ≤ αj} = α1, for j = 1, . . . , r,

P{Ur:j ≤ αr, . . . , Uj:j ≤ αj} = α1, for j = r + 1, . . . , n.
(3.5)

As pointed out in Section 2.2, there exist critical values α1, . . . , αr satisfying the first
r conditions in (3.5) that are increasing. The fact that the critical values satisfying
the last n − r equations continue to be increasing, i.e., αr ≤ αr+1 ≤ · · · ≤ αn, is
proved in the following.

First, we prove the following lemma.

Lemma 3.2. Let there exist αr ≤ · · · ≤ αj < 1 satisfying (3.5) for all j = r, . . . , k.
where r + 1 ≤ k ≤ n− 1. Then, for an αk+1 satisfying (3.5) for j = k + 1, we have
αk+1 ≥ αk if and only if

Var(Uk−1:k−1) ≥ Var(Uk−1:k−1|Ur:k−1 ≤ αr, . . . , Uk−1:k−1 ≤ αk−1), (3.6)

Proof. First note that

P
{
Ur:k ≤ αr, . . . , Uk:k ≤ αk

}
= kE

{
(αk − Uk−1:k−1)I(Ur:k−1 ≤ αr, . . . , Uk−1:k−1 ≤ αk−1)

}
= kE

{
(αk − Uk−1:k−1)|I(Ur:k−1 ≤ αr, . . . , Uk−1:k−1 ≤ αk−1)

}
× P

{
Ur:k−1 ≤ αr, . . . , Uk−1:k−1 ≤ αk−1

}
. (3.7)
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Since this is equal to P{Ur:k−1 ≤ αr, . . . , Uk−1:k−1 ≤ αk−1}, we have

αk =
1
k

+ E
(
Uk−1:k−1|Ur:k−1 ≤ αr, . . . , Uk−1:k−1 ≤ αk−1

)
. (3.8)

Also,

P
{
Ur:k+1 ≤ αr, . . . , Uk+1:k+1 ≤ αk+1

}
= (k + 1)E

{
(αk+1 − Uk:k)I

(
Ur:k ≤ min(αr, αk+1) . . . , Uk:k ≤ min(αk, αk+1)

)}
≤ (k + 1)E

{
(αk+1 − Uk:k)I(Ur:k ≤ αr, . . . , Uk:k ≤ αk)

}
= (k + 1)(αk+1 − αk)P

{
Ur:k ≤ αr, . . . , Uk:k ≤ αk

}
+

k(k + 1)
2

E
{
(αk − Uk−1:k−1)2I(Ur:k−1 ≤ αr, . . . , Uk−1:k−1 ≤ αk−1)}

= (k + 1)(αk+1 − αk)P{Ur:k ≤ αr, . . . , Uk:k ≤ αk

}
+

k(k + 1)
2

[
Var

{
(αk − Uk−1:k−1)|Ur:k−1 ≤ αr, . . . , Uk−1:k−1 ≤ αk−1

}
+ E2

{
(αk − Uk−1:k−1)|Ur:k−1 ≤ αr, . . . , Uk−1:k−1 ≤ αk−1

}]
× P

{
Ur:k−1 ≤ αr, . . . , Uk−1:k−1 ≤ αk−1

}
= (k + 1)(αk+1 − αk)P

{
Ur:k ≤ αr, . . . , Uk:k ≤ αk

}
+

k(k + 1)
2

[
Var

{
(αk − Uk−1:k−1|Ur:k−1 ≤ αr, . . . , Uk−1:k−1 ≤ αk−1

}
+

1
k2

]
P

{
Ur:k−1 ≤ αr, . . . , Uk−1:k−1 ≤ αk−1

}
. (3.9)

The eqn. (3.8) has been used in the last equality in (3.9). Since P{Ur:j ≤ αr, . . . ,
Uj:j ≤ cj} is the same for j = k − 1, k and k + 1, we get

αk+1 − αk ≥ k

2

{(
2

k(k + 1)
− 1

k2

)

− Var
(
(αk − Uk−1:k−1|Ur:k−1 ≤ αr, . . . , Uk−1:k−1 ≤ αk−1)

}

=
k

2
{
Var(Uk−1:k−1)

− Var(Uk−1:k−1|Ur:k−1 ≤ αr, . . . , Uk−1:k−1 ≤ αk−1)
}
. (3.10)

Now, if (3.10) is greater than or equal to zero, we have αk+1 ≥ αk, which proves the
‘if’ part of the lemma. Conversely, if αk+1 ≥ αk, we will have equalities in (3.9) and
(3.10), and hence (3.10) must be greater than or equal to zero. Thus, the lemma is
proved.

Next, we will prove the following lemma.

Lemma 3.3. Let 0 < αr ≤ · · · ≤ αj < 1 satisfy the condition (3.5) for all j =
r, . . . , k, where r ≤ k ≤ n. Then,

Var(Uj:j) ≥ Var(Uj:j |Ur:j ≤ αr, . . . , Uj:j ≤ αj), (3.11)

for all j = r, . . . , k.
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Proof. A proof for j = k will be enough. The conditional variance in this lemma
for j = k is the variance corresponding to the following distribution function

Fk(x) =

{
α−1

1 P{Ur:k ≤ αr, . . . , Uk−1:k ≤ αk−1, Uk:k ≤ x} if x ≤ αk

1 if x > αk,
(3.12)

with the density given by

fk(x) = kFk−1

(
min(x, αk−1)

)
I(x ≤ αk). (3.13)

The lemma then follows from the result (Lemma A.1), proved in the Appendix,
that the variance of this distribution is less than that of

Gk(x) =

{
0 if x < 0

min(xk, 1) if x ≥ 0,
(3.14)

the distribution of Uk:k, with

gk(x) = kxk−1I(0 < x < 1). (3.15)

being the corresponding density.

From Lemmas 3.2 and 3.3, we see that, if there exist αr ≤ · · · ≤ αj < 1
satisfying (3.5) for all j = r, . . . , k, then there exist αk+1 ≥ αk satisfying (3.5) for
j = k + 1, where r + 1 ≤ k ≤ n − 1. This holds also for k = r, which is easy to
check. Thus Result 2.2 holds by induction.

4. Concluding remarks

The results in this article provide alternative proofs of two previously known results
(Shaffer, 1980; Dalal and Mallows, 1992). We have given a much simpler proof of
Shaffer’s result based only on the TP2 property of the underlying densities, and
an alternative proof of Dalal and Mallows’ result in a much more general context.
Nevertheless, these proofs are still limited to the framework of independent test sta-
tistics. While it is believed that these results might hold for certain types of depen-
dent test statistics, they still remain to be two of the most challenging problems in
multiple testing. Some partial attempts, however, have been made to address these
open problems, theoretically as well as empirically. For instance, Finner (1999) and
Holm (1979b, 1981) extended Shaffer’s result and Sarkar (2000) extended Dalal and
Mallows’ result, to some very special types of dependent test statistics. Also, exten-
sion of Dalal and Mallows’ result to some other dependence situations have been
empirically checked (Dunnett and Tamhane, 1992; Kwong and Liu, 2000; Liu, 1997;
Tamhane, Liu and Dunnett, 1998). The method of Shaffer (1980) was adopted by
Finner (1994) and Liu (1996) to prove directional error control for a step-up test
with independent test statistics under the same distributional assumptions as those
made by Shaffer. We conjecture that these assumptions can be relaxed and only
the TP2 condition will suffice. Finner (1999) generalized the method of proof under
Shaffer’s (1980) assumptions for a large class of procedures satisfying a unimodality
property of acceptance regions, and gave a new but very simple and elegant proof
under the assumption of TP3 densities.
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Appendix

Proof of Lemma 3.1. Let φ(x, y) = 1 if x ≥ y, and = 0 if x < y. The function
φ(x, y) is known to be TP2 in (x, y) (see, for example, Karlin, 1968). The basic
composition theorem of Karlin (1968) then implies that

Pθ{a ≤ Y ≤ b} =
∫

[1 − φ(y, b)]φ(y, a)fθ(y) dy

is TP2 in (a, θ) for fixed b. Therefore,

Pθ0{−∞ ≤ Y ≤ b}Pθ{a ≤ Y ≤ b} ≥ Pθ0{a ≤ Y ≤ b}Pθ{−∞ ≤ Y ≤ b},

which yields the lemma.

Proof of (3.4). Note that∑
J:|J|=j,J⊇J1

P
{
Xi ≤ bij , i ∈ J − J1; Xi > bili , i ∈ Jc, for some permutation

(lj+1, . . . , ln) of (j + 1, . . . , n)
}

is the probability P{N = n−j}, where N represents the number of null hypotheses
that are rejected when the n− k null hypotheses in the set {Hi : i ∈ Jc

1} are tested
simultaneously against the corresponding right-sided alternatives using Holm’s step-
down procedure using the critical values bij , i ∈ Jc

1 , j = k + 1, . . . , n. In terms of
this N , the left-hand side of (3.4) is

∑n
j=k P{N = n − j}, which is equal to 1.

Lemma A.1. The variance of Fk in (3.12) is less than that of Gk in (3.14).

Proof. Given two distribution functions G and H , H is more dispersive than G,
implying that H has larger variance than G, iff H−1(v) − H−1(u) > G−1(v) −
G−1(u), for any 0 ≤ u < v ≤ 1. Let, for a function φ(x) defined on A ⊂ R, S−(φ)
be the number of sign changes of φ as defined in Karlin (1968); that is,

S−(φ) = S−[φ(x)] = sup S−[φ(x1), . . . , φ(xm)],

where S−(y1, . . . , ym) is the number of sign changes of the indicated sequence, zero
terms being discarded, and the supremum is taken over all sets y1, . . . , ym, with
yi ∈ A, m < ∞. Shaked (1982) proved that when G and H are both continuous and
strictly increasing on their supports [0,∞), a necessary and sufficient condition for
H to be more dispersive than G is that, for every fixed a > 0, S−[G(x−a)−H(x)] ≤
1, with the sign sequence being −,+ in case of the equality, and, for every x > 0,
G(x)−H(x) ≥ 0. Furthermore, it follows from Karlin (1968), and also pointed out
in Shaked (1982), that if g and h are the densities of G and H respectively, then
the fact that S−[g(x− a)− h(x)] ≤ 2, with the sign sequence being −, +,− in case
of the equality, implies that S−[G(x−a)−H(x)] ≤ 1, with the sign sequence being
−, + in case of the equality. Using these results, we will show that the variance of
Fk is less than that of Gk.

The required result is proved once we prove the following: (i) For any fixed
a > 0, S−[Fk(x− a)−Gk(x)] ≤ 1, with the sign sequence being −, + in case of the
equality, and (ii) Fk(x) ≥ Gk(x), for all x > 0. For any fixed a > 0,

fk(x − a) − gk(x) =




k
[
Fk−1(x − a) − Gk−1(x)

]
if a < x ≤ αk−1 + a,

k
[
1 − Gk−1(x)

]
if αk−1 + a < x ≤ αk + a,

−kGk−1(x) if αk + a < x ≤ 1,

0 otherwise.
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Therefore, S−[fk(x− a)− gk(x)] ≤ 2, with the sign sequence being −, +, − in case
of the equality, if S−[Fk−1(x − a) − Gk−1(x)] ≤ 1, with the sign sequence being
−, + in case of the equality. The result (i) then follows from induction because for
Fr(x), which is

Fr(x) =




0 if x < 0

1
α1

min
(
xr, α1

)
if x ≥ 0,

we see that S−[Fr(x − a) − Gr(x)] ≤ 1, with the sign sequence being −, + in
case of the equality. Result (ii) also follows from induction. To verify this, first
note that S−[fk(x) − gk(x)] ≤ 1 with the sign sequence being +, − when the
equality holds, provided Fk−1(x) − Gk−1(x) ≥ 0, for all x > 0. That is, Fk is
stochastically smaller than Gk, implying that Fk(x) − Gk(x) ≥ 0, for all x > 0,
provided Fk−1(x) − Gk−1(x) ≥ 0, for all x > 0. Thus the lemma is proved.
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