
Chapter 1

Introduction to Spatial Point Patterns

The goal of this chapter is to provide a brief overview of spatial data leading to
the focus on spatial point patterns, the primary subject of this book. This is taken
up in Section 1.1. Furthermore, since the inferential framework for the book is
Bayesian, we review the basics of Bayesian inference in Section 1.2. In particular,
since the Bayesian revolution has been driven by hierarchical modeling, we devote
Section 1.3 to elaboration of this rich modeling structure. Finally, since Gaussian
processes, along with associated covariance functions underlie much spatial model-
ing, we briefly visit these ideas in Section 1.4.

1.1. What are spatial data?

There has been a revolution in interest in spatial data over the last twenty years.
Increasingly, researchers are recognizing the value of recording spatial information
in the data they collect – taking into account the locations of events as well as
variables recorded at those locations altogether can provide a richer understanding
of a complex process. Specifically, researchers in diverse areas such as climatology,
ecology, environmental exposure, public health, and real estate marketing are in-
creasingly faced with the task of analyzing data that are highly multivariate, with
many important predictors and response variables, geographically referenced, and
often presented as maps. It is anticipated that there is dependence between loca-
tions of points as well as between measurements taken at these point, necessitating
the introduction of spatial correlation. Often, the data are collected spatially over
time, leading to so-called spatio-temporal data, needing temporal correlation, as in
longitudinal or other time series structures. This then leads to possible space-time
dependence. Does spatial dependence change/evolve over time? If we have a time
series at each location, does temporal dependence vary over space?

The focus of this monograph is on formal generative modeling using stochastic
specifications that could actually produce the data you have observed and are trying
to explain. Generative models are attractive for considering complex processes –
for incorporating features to provide behaviors of the process that you seek to
emulate. Evidently, for processes yielding geo-referenced data, these ideas certainly
apply. Generative modeling enables us to think hierarchically, to specify modeling in
stages, and to reflect, in some sense, the actual functioning of the process. It enables
us to incorporate all sources of information about the process, incorporating this
information at suitable levels of the modeling. Additionally, if such models are
fitted within a Bayesian framework, full posterior inference is available with exact
inference regarding uncertainty under the models. All of this motivates development
of the basics of hierarchical modeling and data analysis for complex spatial (and
spatio-temporal) data sets.

As a simple example, in an epidemiological investigation we might wish to an-
alyze lung, breast, colorectal, and cervical cancer rates by county and year in a
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particular state. Risk factors which we seek to connect to these rates, such age,
race, smoking, mammography, and other screening and staging information, are
also available at some, possibly different, spatial scale. As a second example, in a
meteorological investigation, we might wish to analyze temperature and precipita-
tion data with hourly or daily measurements at a network of monitoring stations,
with a mean surface that reflects elevation, or perhaps a trend in elevation.

However, most appropriate for the framing of this monograph, we may be inter-
ested in the point pattern of locations for, say, in an ecological setting, two different
species, e.g., juniper trees and pine trees. We have geo-coded locations for each of
the trees and a label indicating which species along with environmental features
to help explain species distributions, possibly collected over time in order to see
change, evolution, diffusion of the patterns.

As a first step, one may be interested in displaying the data collected. How-
ever, more value emerges if one has interest in carrying out statistical inference
tasks, such as modeling of trends and correlation structures, estimation of under-
lying model parameters, hypothesis testing (or comparison of competing models),
and prediction at unobserved times or locations. One might seek to employ regres-
sion specifications to explain spatial response. Returning to the above, we might
conceptualize a process model specification of the form

[data|process,parameters][process|parameters][parameters].

Here, the bracket notation specifies distributions, in particular probability density
or mass functions.

The first stage distribution brings in the data revealing how it is connected to
the process, or suitable levels of the process. The first stage parameters reflect our
ability to propose a parametric specification for this relationship but that we do not
know the proposed relationship explicitly. The second stage distribution enables us
to provide a suitable stochastic description of the process, or at least a description
of features of the process, that we seek to learn about but can not observe directly.
Again, this description will have a probabilistic form but will involve parameters
that are unknown. Finally, the third stage collects all of the unknown parameters
and, with a Bayesian lens, requires a prior distribution specification. The form also
reveals a generative model: unknowns are chosen at random, then a realization
of the process arises at random, and finally, given the unknowns and the process
realization, a sample of data is realized.

Do not let this rather innocuous looking hierarchical form underestimate its rich-
ness. The data can be of arbitrary type, multivariate, and collected over space and
over time. The process specification can range from fairly simple to quite complex,
perhaps introducing an uncountable number of unknowns, spatial dependence, and
dynamics. We return to this form of specification throughout the monograph, with
general elaboration in Section 1.3.

In an expository sense, it is generally asserted that spatial data arises in three
different flavors:
(i) point-referenced (or geostatistical) data, where Y (s) is a random vector at a
selected location s ∈ R

r and s varies continuously over D, a fixed subset of Rr,
with r = 2, perhaps 3 if we add a temporal index to the data. Figure 1.1 shows an
example of geostatistical data, capturing counts of hemlocks at 142 selected stands
which, at the spatial scale shown, are viewed as points.
(ii) areal data, where D is again a fixed region (of regular or irregular shape), but
now partitioned into a finite number of areal units with well-defined boundaries
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Fig 1.1. Assessment of hemlock woolly adelgid in 142 eastern hemlock stands across Mas-
sachusetts and Connecticut in 1997-1999 [182]. The size of the circle denotes ordinal abundance,
where 0 indicates the species was not present and 3 denotes very abundant.

−96 −95 −94 −93 −92 −91 −90 −89

36
37

38
39

40
41

longitude

la
tit

ud
e

0.2

0.4

0.6

0.8

1.0

1.2

Fig 1.2. Aerosol optical thickness observed by VIIRS Satellite on July 3, 2013 across the state of
Missouri at 12km resolution [180]. White squares denote missing observations.

and observations are associated with the areal units; we refer to this as discrete
spatial data. Figure 1.2 shows an example of areal unit data gathered at grid cell
scale from remotely sensed satellite images. The value associated with a grid cell is
the aerosol optical thickness associated with the cell.
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Fig 1.3. Locations of trees (dbh > 12.7cm) in a forest stand at the Coweeta Hydrologic Laboratory
in the southern Appalachians [42, 181].

(iii) point pattern data, where now the set of locations in D are themselves random;
its index set gives the locations of random events that are the spatial point pattern.
One can assign Y (s) = 1 for all s ∈ D (indicating occurrence of the event), clarifying
that only a finite number of events occur in D, and that there are an uncountable
number of 0’s. Figure 1.3 shows a point pattern of trees, i.e., the random number
and locations, in a forest stand.

Our emphasis here is on the third type of data. As an extension, we might assign
labels to the points (producing a marked point pattern process). Such marks may
be discrete, e.g., species type as above, or continuous, e.g., a size measurement
associated with the point. Introduction of marks forces us to think about whether
we model the distribution of the marks and then provide a model for the points
given the mark or whether we model the pattern of points and then assign a random
mark to each point. The distributional specifications are quite different according to
the direction of conditioning and a more thorough discussion of this issue is taken
up in Section 2.3.3.

1.2. Principles of Bayesian inference

The reader is surely familiar with Bayes’ Theorem. In its simplest form

(1.1) P (A|B) =
P (B|A)P (A)

P (B)
.

It is natural to ask how this elementary probability law became an inference para-
digm (much less a controversial one!)? Suppose we move to random variables in
(1.1) obtaining

(1.2) P (X ∈ A|Y ∈ B) =
P (Y ∈ B|X ∈ A)P (X ∈ A)

P (Y ∈ B)
.
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Then, it is a simple step to move (1.2) to densities which generate probabilities,

(1.3) f(x|y) = f(y|x)f(x)
f(y)

.

Finally, letting Y denote what you observe and replacing X with θ denoting what
you don’t know (didn’t or couldn’t observe) we arrive at

(1.4) f(θ|Y) =
f(Y|θ)π(θ)

f(Y)

or

(1.5) f(θ|Y) ∝ f(Y|θ)π(θ).
Now, we have a natural inference paradigm. You can infer about what you don’t

know given what you have observed. This demands direct comparison with the clas-
sical inference approach using a sampling distribution (usually approximate) for
a statistic T , T (Y) given θ. You imagine what you might observe given what you
don’t know. It seems evidently more sensible (and certainly scientifically more ap-
propriate) to follow the former path which motivates our following of the Bayesian
path for this entire monograph.

Returning to (1.4), we really are just thinking about two ways of writing a joint
distribution

(1.6) f(Y,θ) = f(Y|θ)π(θ) = f(θ|Y)f(Y).

The first conditional/marginal form is generative, comprised of the likelihood
(aleatory), f(Y|θ) and the prior (epistemic), π(θ). The second conditional/marginal
form is inferential, the posterior, f(θ|Y) and the marginal distribution of the data,
f(Y), for model checking.

The benefits of fitting data using models in a Bayesian framework are clear. One
obtains an entire posterior distribution for an unknown rather than perhaps a point
estimate and an asymptotic variance, as with usual classical inference (except in
cases too simple to be of current interest). Formally, posterior inference for param-
eters is obtained from f(θ|Y). Posterior predictive inference for a new observation,
Y0 arises from f(Y0|Y) =

∫
f(Y0|Y,θ)f(θ|Y)dθ.

The primary criticism of the Bayesian paradigm comes from the need to specify
priors for all unknowns and the inherent subjectivity that this entails. How can sci-
ence be carried out objectively if prior specifications are needed? With two different
choices of priors yielding two different sets of inference, which one are we to believe,
if either? While no rebuttal can be completely convincing, we can argue that there
is also subjectivity in the specification of the likelihood, i.e., of the data generating
mechanism. Why shouldn’t there be comparable concern regarding different choices
of the likelihood? Moreover, since no models are correct but some are useful (an
adaptation of an old bromide from George Box), parameters are not real ; they
are artifacts of a model. Then, certainly there is no “true” value of a parameter.
Perhaps the best we can do is to assume that unknowns are random just like the
data are assumed to be random. Finally, we can (and should) do some sensitivity
analysis to the prior specification. Often, with a fairly large dataset and fairly weak
priors specified at the last hierarchical stage, there may be little sensitivity.

We will not spend much time here on prior specifications. There is a large world
regarding improper priors, objective priors, reference priors, etc. [21] which is be-
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yond the scope here1. Rather, we always will use proper priors since this ensures a
proper joint distribution for the data and the unknowns; we don’t have to concern
ourselves with checking whether the induced posterior distributions are proper. We
will make these priors noninformative, that is, weak or vague. We will be more spe-
cific in the ensuing applications. However, for regression coefficients, we can always
use normal priors with large variances where large is usually clear in terms of the
impact of extreme coefficient values on the resulting regression. Similarly, priors
on variances can usually be taken to be inverse gamma distributions, denoted by
IG(a, b) where say a = 1 (implying no mean or variance) or 2 (implying a mean but
no variance). Centering often is not consequential and a crude choice induced from
the variation of the data will typically be satisfactory. Priors for range or decay
parameters in covariance functions (developed in Section 1.4) can be obtained from
the size of the region of interest D. (See [16] for further discussion on priors in
spatial settings.)

Returning to the formulation

[data|process,parameters][process|parameters][parameters],

we can write down a simple version as f(y|θ)π(θ|λ)h(λ). Here, we can think of θ as
capturing the process and the first stage parameters, with λ capturing parameters
in the process model. Again, since λ will not be known, a second stage (hyperprior)
distribution h(λ) will be required. Therefore, we have

(1.7) p(θ|y) = p(y,θ)

p(y)
=

∫
f(y|θ)π(θ|λ)h(λ) dλ∫

f(y|θ)π(θ|λ)h(λ) dθdλ .

Alternatively, we might replace λ in p(θ|y,λ) by an estimate λ̂; this is called
empirical Bayes analysis. These days there is little interest in the Bayesian commu-
nity in empirical Bayes analysis (though see [59]). Pretending that λ is “known”
rather than averaging over the uncertainty associated with it leads to underesti-
mation of uncertainty across the model. Moreover, using modern Bayesian model
fitting techniques [77], there is no need to estimate the hyperparameters.

Returning to (1.4), p(θ|y) �= π(θ). This is referred to as Bayesian learning,
the change in the posterior distribution compared with the prior. We can extend
this to so-called Bayesian updating, often referred to as “crossing bridges as you
come to them.” In particular, it simplifies sequential data collection. As the sim-
plest version, suppose Y1 and Y2 are independent given θ. Then, the joint model
is p(y2|θ)p(y1|θ)π(θ) ∝ p(y2|θ)π(θ|y1), i.e., Y1 updates π(θ) to π(θ|y1) before Y2

arrives. In different words, the posterior, π(θ|y1) becomes the prior to use with the
new data Y2. This updating notion works much more generally – for more than two
updates, for updating in blocks, and for both dependent and independent data.

Next, we make some remarks regarding posterior inference, in particular the ben-
efit of having a full distribution to work with. With regard to measures of centrality,
you can select whatever seems appropriate - posterior mean, median, or mode. For
uncertainty, you can use ranges or variances. For confidence statements, you can
use credible intervals. In fact, these are really probability statements about the un-
known rather than the frequentist version which arises from pivoting a probability
statement from the sampling distribution of some statistic. You can also make more
general statements regarding the quantiles for an unknown or the tail behavior of
an unknown, e.g., the probability that it exceeds some specified threshold.

1Improper priors change the role of the prior from providing a generative model to providing
an inference device satisfying some optimality criterion.
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Furthermore, hypothesis testing is enriched in the Bayesian setting and may be
more suitably referred to as model comparison. The point here is that customary
classical hypothesis testing considers a null hypothesis nested within a fuller param-
eter set and has little to offer for non-nested hypothesis testing. The Bayesian frame-
work enables such model comparison employing Bayes factors relying on “weight
of evidence” to distinguish them [23].

More importantly, in a world of complex hierarchical modeling, model compar-
ison is much more demanding than traditional hypothesis testing. Extending this
argument below, we argue that model comparison should be done in the data space
using predictive distributions and not in the parameter space, since observations
are real and parameters are artifacts of the model.

Expanding this a bit, since the hierarchical Bayesian framework is so liberat-
ing (Section 1.3), we often explore many models. Again, the familiar adage, “All
models are wrong but some models are useful” applies, necessitating assessment of
adequacy of models and comparison of models. Indeed, with computational tools to
fit Bayesian models [77], we face the issue of “overfitting” (more often than under-
fitting). That is, we often specify models that are richer than the data can support,
or are capable of explaining.

We offer some initial words regarding model adequacy and model comparison
within the Bayesian framework. Returning to (1.4), the quantity f(Y) is used to
assess model adequacy. That is, f(Y) is the marginal density of the data under the
specified model and f(Yobs) is the density ordinate at the observed data. In princi-
ple, a large value would support adequacy of the model. However, there are serious
challenges with using f(Yobs). First, the marginal density is difficult to compute,
requiring integration over θ, a high dimensional integral for most hierarchical mod-
els of interest. Second, even if we can compute it, as a value for a high dimensional
density, say over thousands or more observations (certainly common these days) it
is difficult to calibrate it. In different words, model adequacy requires an absolute
criterion. Does the model meet certain performance standards with regard to such
a criterion? We pursue this issue further below.

In the world of complex multi-level modeling, while we may be able to discard
some models as inadequate, there will still be many models that are adequate so
that we need comparison criteria. Fortunately, these criteria are relative; they order
models, enabling a choice of best model within the collection under investigation.

Formal Bayesian model comparison can be developed following Bayes rule. Say
we have models M1,M2,Mk with prior probability of being correct, p1, p2, . . . , pk.
Then, with data Y,

(1.8) P (Mj |Y) =
P (Y|Mj)pj∑k
j=1 P (Y|Mj)pj

.

Calculating P (Y|Mj) =
∫
P (Y|θj ;Mj)π(θj |Mj)dθj can be challenging due to the

integration over θj . Moreover, since none of the models are true, what do the
pj ’s mean? Where would they come from? Should they be equally likely? Should
we reward smaller, more parsimonious specification? Additionally, where does the
set of k models come from? In practice, model development is evolutionary which
does not fit into this formal paradigm and, evidently, can contaminate probabilistic
assessment of model selection. So, we do not pursue this formal approach further.

Instead, we turn to model selection criteria. There is an enormous literature
on model such criteria [23, 40] and there will never be agreement on a “best”
model criterion. The choice of criterion greatly depends on the utility for a model
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in a particular setting. A further concern is that such criteria reduce a model to
a single number. This may be unsatisfying when complex multi-level models are
being considered. We might wish to employ multiple criteria (though aggregating
them to enable comparison takes us back to our single number challenge).

Arguably, the most important issue is whether we evaluate models in the pa-
rameter space or in predictive space. That is, we have a posterior distribution for
the parameters which leads to a posterior distribution for the likelihood; we have
a posterior predictive distribution for an observation or for a set of observations.
Since the parameter space varies with the model and, in fact, according to marginal-
ization, the parameters in the likelihood can vary within a given model, we avoid
criteria which operate in the parameter space. We only consider model comparison
(and model adequacy) in predictive space. This leads us to the idea of holding out
data and doing cross-validation. That is, making the choice of a fitting or train-
ing dataset and a test or validation dataset, along with possible replication of this
activity, so-called k-fold cross-validation.

Returning to model adequacy/checking, working in predictive space, we imme-
diately come to the decision between prior predictive checks [50] and posterior
predictive checks [79]. The approach here is to generate samples under the model
and compare them with the observed data in some fashion. If there is adequate
agreement, then the model will be declared adequate.

The posterior predictive approach says generate Yrep from
f(Yrep|model,Yobs) =

∫
f(Yrep|θ)π(θ|Yobs)dθ. The prior predictive approach

says generate Yrep from f(Yrep|model) =
∫
f(Yrep|θ)π(θ)dθ. In either case, we

introduce a discrepancy function D(Yrep,Yobs) and then consider its posterior dis-
tribution or its prior distribution. With a hierarchical model, we can introduce
second stage (latent) variables to consider first stage or second stage discrepancies.

What is the debate? Should we generate samples under the actual model (the
prior predictive approach) when you know that the prior is weak and not a realistic
distribution to sample parameters from? Should we generate samples with a distri-
bution for θ that you are more comfortable with (the posterior predictive approach)
but is not the generative model for the data? In this regard, posterior predictive
model adequacy uses the data twice - once to obtain the posterior and then again
in the discrepancy function. As a result posterior predictive checks tend to be less
critical of the model. Prior predictive checks have the flavor of Monte Carlo tests,
comparing a feature of the observed data with a distribution of that feature under
the model. That is, compute a function of the observed data, T (Yobs) and compare
it with a set T (Yrep,b), b = 1, 2, . . . , B generated under the model.

This relates to the question of whether we should we implement such checks
in-sample vs. out-of-sample, relating to the cross-validation idea above. If we can
implement posterior predictive checks, employing training data for obtaining the
posterior and hold-out data for checking, then we mitigate concerns regarding using
the data twice. As we will see in subsequent chapters, with some point pattern
models it is not always possible to hold out data. Holding out data will change the
nature of interactions between points.

A model adequacy check we primarily use is empirical vs. nominal coverage of
predictive intervals. For a variable of interest, say T (Y), first obtain the posterior
predictive distribution, f(T (Y)|Yobs) under the model and the data. Then, deter-
mine whether T (Yobs) is in or out of the 90% predictive interval of f(T (Y)|Yobs).
Do this for many choices of T , compute the empirical coverage (the proportion
of times the predictive interval contained the observed value), and compare with
the nominal coverage. We note that the posterior predictive distributions will not
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usually be available explicitly. However, customary Bayesian model fitting is done
with simulation methods, e.g., Markov chain Monte Carlo and Gibbs sampling [77],
providing posterior samples of parameters which in turn provide posterior predic-
tive samples. For any given statistic T , these samples provide posterior predictive
realizations for that statistic and can be used to create predictive intervals at a
specified level of coverage.

Most important is the interpretation that goes with the comparison of empirical
vs. nominal coverage. If the empirical coverage is much smaller than the nomi-
nal, then the model is not performing well; it is underestimating uncertainty and
therefore will not be satisfactory for inference. If the empirical coverage exceeds the
nominal coverage, perhaps was 100%, we would also not be happy. Intervals are
wider than they need to be, meaning we have too much uncertainty, perhaps are
overfitting, and introducing variance inflation.

Returning to model comparison, since we propose to work in predictive space,
we walk away from familiar criteria such as AIC, BIC, DIC, and the posterior
log likelihood, π(L(θ;Yobs)|Yobs) [77]. Instead, we consider criteria in predictive
space. A first version employs a penalized posterior predictive loss criterion [73]
which attempts to penalize for model complexity. We need a loss function that
rewards goodness of fit to the observed data as well as predictive performance for
new or replicate data. We adopt a balanced loss function. Illustratively, for squared
error loss, we obtain Dk = k

k+1G + P where G =
∑

l(E(Yl,new|y) − yl,obs)
2 and

P =
∑

l Var(Yl,new|y). Here, G is a goodness of fit term, P is a penalty term, and
k provides weighting of the terms. Usually model comparison is not sensitive to
the choice of k. Small values of Dk are preferred but the magnitudes of G and
P are useful as well. This criterion can be employed both in-sample and out-of-
sample. Again, with sampling based model fitting, the posterior predictive mean
and variance are readily computed.

Criteria we will consider in the sequel are the following: (i) predictive mean square

error (PMSE) -
∑L

�=1(E(Y�|Yobs) − Y�,obs)
2, (ii) predictive mean absolute error

(PMAE), replacing square with absolute value, (iii) average length of predictive
intervals. We might use alternative loss functions for observations that are not
continuous, e.g., for counts a common loss function is (pred− obs)2/pred.

An attractive criterion which has emerged from the probabilistic forecasting liter-
ature and provides a proper scoring rule [85] is the ranked probability score (RPS)
for counts, and, with continuous observations, the continuous ranked probability
score (CRPS). The intention here is to compare an entire (predictive) distribution
with an observation, rather than comparing a feature (e.g., mean) of the predic-
tive distribution to the observation. The idea is that the more concentrated the
predictive distribution is around the held out observation the better.

For any continuous distribution/cdf F , CRPS ≡ ∫
(F (y) − 1(y > yobs))

2dy. For
the RPS, we have a discrete distribution and replace the integral with a sum. CRPS
is challenging to compute explicitly but a very useful alternative form, under the
posterior predictive distribution for Y�, is CRPS= E|Y� − Y�,obs| − 1

2E|Y� − Ym|.
Averaging is done over different Y�,obs. Here, cross-validation is appropriate and, in
this form, small values are preferred. Posterior predictive samples enable convenient
Monte Carlo integration for these expectations.

Finally, we note that for the spatial point pattern modeling that is our focus, we
will elaborate specific versions of the foregoing tools for model assessment within
the Bayesian framework in Chapter 2.
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1.3. Hierarchical modeling

In the 21st century we are experiencing a dramatically changing statistical land-
scape. We are witnessing remarkable growth in data collection, with datasets now
of enormous size, terabytes to petabytes. We are also witnessing a change to-
ward examination of observational data, rather than being restricted to carefully-
collected, experimentally designed data. Furthermore, we are studying increasingly
complex systems using such data, requiring synthesis of multiple sources of infor-
mation (empirical, theoretical, physical, etc.), and necessitating the development
of multi-level models. The general hierarchical framework which we have alluded
to above, [data|process,parameters][process|parameters][parameters], is intended to
reflect these dramatic changes, albeit in a simple expression. What it really con-
veys is the need for stochastic modeling – sophisticated modeling – that can in-
corporate behaviors we seek to emulate involving uncertainty, nonlinearity, scale,
dependence, etc.

The role of the statistician is evolving in this landscape to that of an integral
participant in team-based research: a participant in the framing of the questions to
be investigated, the determination of data needs to investigate these questions, the
development of models to examine these questions, the development of strategies
to fit these models, and the analysis and summarization of the resultant inference
under these specifications. These are exciting times, offering an exciting new world
for modern statistics. The range of applications runs the scientific gamut, e.g.,
biomedical and health sciences, economics and finance, environment and ecology,
engineering and natural science, political and social science.

Again, hierarchical modeling has taken over the landscape in contemporary
stochastic modeling. We use this subsection to attempt a partial elaboration of the
rich opportunities encompassed in hierarchical modeling. In this regard, though
analysis of such modeling can be attempted through non-Bayesian approaches, the
Bayesian paradigm (as elaborated in the previous subsection) enables exact infer-
ence and proper uncertainty assessment within the given specification.

With the revolution in hierarchical modeling and the objective of fitting within a
Bayesian framework has come an enormous revolution in Bayesian computing. Ap-
proaches that have emerged over the past thirty years include importance sampling,
Markov chain Monte Carlo and Gibbs sampling, along with sequential importance
sampling, particle filters and particle learning, and now, the emergence of integrated
nested Laplace approximation (INLA), approximate Bayesian computation (ABC),
and variational Bayes methods. We do not have the space here to review this large
literature. Rather, with a focus on Bayesian inference for spatial point patterns, in
Chapter 4, we review the computational strategies appropriate for fitting various
models to such data.

1.3.1. What are hierarchical models?

“Hierarchical model” is a broad term that refers to a wide range of model specifica-
tions. In particular, here is a partial list which likely includes at least one modeling
scenario that the reader will have encountered:

• Multilevel models
• Random effects models
• Random coefficient models
• Variance-component models

• Mixed effects models
• Latent variable models
• Missing data models
• State space models.
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The key feature is that hierarchical models are statistical models providing a for-
mal framework for analysis with a complexity of structure that matches the system
being studied. Four important concepts are associated with such models:
(i) Modeling data with a complex structure - There is a large range of nested struc-
tures that can be handled routinely using hierarchical models, e.g. pupils nested
classes, classes nested in schools or houses nested in neighborhoods, neighborhoods
nested within metropolitan areas.
(ii) Modeling heterogeneity - Standard regression hierarchical models allow for het-
erogeneity of variance as well as modeling of variances at multiple levels, e.g., vari-
ability in house prices can vary from neighborhood to neighborhood as well as from
house to house within a neighborhood.
(iii) Modeling dependent data - Capturing potentially complex dependencies in the
outcome over time, over space, over context, e.g. house prices within a neighbor-
hood tend to be similar, environmental exposures tend to be similar at locations
near each other and at times close to each other.
(iv) Modeling contextuality - Introducing micro and macro relations, e.g., individual
house prices depend on individual property characteristics as well as on neighbor-
hood characteristics. Regression coefficients can be attached at appropriate scales.

While there is by now a rich array of techniques for fitting Bayesian models, the
simulation based approach incorporated into Gibbs sampling and MCMC is ideally
suited to fitting such models. More precisely, the overarching building block is the
notion of latent variables, e.g., random effects, missing data, labels. These variables
introduce unobservable process features which will be of interest, as well as facilitate
model fitting. That is, for fitting, Gibbs sampling loops become natural - update
other parameters given the values of the latent variables and then update the latent
variables given the values of the other parameters.

To illustrate the structure, we consider the standard hierarchical linear model:

First stage : Y|X,β ∼ N(Xβ,ΣY)

Second stage : β|Z,α ∼ N(Zα,Σβ)

Third stage : α ∼ N(α0,Σα).

We typically specify vague Gaussian priors for the regression parameters and in-
verse Gamma or inverse Wishart priors for the variances or covariance matrices.
Fitting within the Bayesian framework becomes routine. Due to the conjugacy,
every updating step within a Gibbs sampler is a standard distribution - normal,
inverse Gamma, or inverse Wishart. We have what might be referred to as a vanilla
Gibbs sampler

If we replace the Gaussian first stage model with an exponential family distribu-
tion model (adopting a suitable link function), we have a hierarchical generalized
linear model. Now, conjugacy between the first and second stages is lost. Metropolis-
Hastings updating would likely be used with adaptive tuning of the acceptance rates
[77].

1.3.2. A collection of examples

Conditionally independent hierarchical models

Early hierarchical modeling work began with conditionally independent hierarchical
models (CIHMs) at Carnegie Mellon University in the 1980s using Laplace approx-
imation [199]. Being implemented through Gaussian approximations, it preceded



12 Introduction to Spatial Point Patterns

the use of Gibbs sampling and MCMC as Bayesian computation tools. Notably,
it is now enjoying a revival through the recent development of integrated nested
Laplace approximation (INLA) [176].

The CIHM takes the basic form Πi[Yi|θi]Πi[θi|η][η]. Exchangeable θi are as-
sumed. If η is fixed, we are fitting separate models for each i. With unknown η, we
add a hyperprior for η. Now, the models across i are linked; now η is informed by
each i. More importantly, we now bring in shrinkage or borrowing strength with
regard to inference across the θi’s. This is an attractive feature both for smooth-
ing and for expected loss under various loss functions. Further development of the
CIHM included the hierarchical GLM as well as natural extension to autoregressive
moving average (ARMA) time series models. Illustratively, we might have

(1.9) Yit = xT
itβi +

∑
j

φijYi,t−j +
∑
k

θikεi,t−k + εit.

At the second stage, we might adopt exchangeable βi, φi, θi. Then, we could add
a vague Gaussian prior on β, with constrained priors on the φ’s and θ’s (to ensure
stationarity), and finally, εit ∼ N(0, σ2).

Random effects models

Random effects are introduced under both Bayesian and frequentist modeling, cus-
tomarily as normal random variables with an associated variance which is referred
to as a variance component. These effects can be at different levels of the modeling
but usually assumed exchangeable, in fact, independent and identically distributed
(i.i.d.). A typical linear version with i.i.d. effects takes the form

(1.10) Yij = xT
ijβ + φi + εij .

At the second stage, β has a Gaussian prior while the φi are i.i.d. ∼ N(0, σ2
φ). The

εij are i.i.d. ∼ N(0, σ2
ε ). The variance components, σ2

φ and σ2
ε , become the third

stage hyperparameters. Care is required with the prior specifications for σ2
φ, σ

2
ε . It

is important to avoid an IG(ε, ε) specification where ε is very small since such priors
are nearly improper and produce posteriors that are nearly improper, resulting in
poorly behaved MCMC model fitting. A protective recommendation is an IG(1, b)
or IG(2, b). Nowadays, we are seeing random effects with structured dependence in,
e.g., dynamic, spatial and spatio-temporal models [16, 213]. In the context of point
pattern models, we introduce these random effects in log Gaussian Cox processes
(Section 2.3).

Missing data and imputation

In collecting information on, e.g., individuals, we typically gather vectors of data.
Often, one or more of the components is missing. Similarly, when we collect data
from monitoring stations often observations are missing. We don’t want to be re-
stricted to analyzing only the complete data cases; we don’t want to discard the
information for the partially observed individuals. In order to use the individu-
als with missing data, we must complete them by doing so-called imputation [61].
There are many ad hoc imputation techniques for filling in missing data. However,
we would prefer model-based imputation, i.e., filling in the missingness under the
proposed model. Such imputation recognizes that the missing data must be treated
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as random variables under the model specification. Importantly, the uncertainty in
the imputation propagates to uncertainty in subsequent inference about other un-
knowns in the model. Fully model-based imputation in the Bayesian setting results
in latent variables and Gibbs looping. That is, we iterate between updating the
missing data given the model parameters and then update the model parameters
given the full data (imputed missing data as well as the observed data). In the
Bayesian setting, we extend the Expectation-Maximization (EM) algorithm [49] to
provide full posterior inference.

As a simple example, supposeYi ∼ N(μi,Σ) (the components of μi may have re-
gression forms). Assume some components of some of the Yi’s are missing. Again,
we can use Gibbs sampling to perform the imputation: update the missing data
given values for parameters and then update the parameters given values for the
missing data along with the observed data. Another standard example considers
missing categorical counts (say, from aggregation) within a multinomial model
where the multinomial cell probabilities might be modeled using some version of
a multivariate logit model. Here, we need to impute/sample missing cell counts
under a multinomial model with sum constraints, the constraints arising from the
observed aggregated counts over the missing cell counts. After imputation of the
cell counts we have a complete set of counts, then we sample all of the parameters
in the multinomial model.

Latent variables

Again, latent variables are at the heart of most hierarchical modeling. We can en-
vision latent variables beyond random effects or missing data. A customary version
is a hierarchical specification of the form [Y|Z][Z|θ][θ]. Here, Y ’s are observed, Z’s
are latent and the “regression” modeling is moved to the second stage.

As an elementary example, suppose Yi ∼ Bernoulli(p(xi)). Let Φ−1(p(xi)) =
xT
i β with a prior on β. It is awkward to sample β using the likelihood in this form.

So, following ideas in [4], instead, we introduce Zi ∼ N(xT
i β, 1). Immediately,

P (Yi = 1) = Φ(xT
i β) = 1 − Φ(−xT

i β) = P (Zi ≥ 0). Now, we have a routine
Gibbs sampler: update the Z’s given β,y (sampling from a truncated normal).
Then, update β given the Z’s and y (the usual conjugate normal updating). This
example can be elaborated to include ordinal categorical data where random cut
points on R

1 are used to define the categories and latent Gaussian variables are
converted to ordinal categorical observations using these cut points.

Errors in variables models

Errors in variables models offer another latent variables setting. In this context,
the usual objective is to learn about the relationship between say response Y and
predictor X. Unfortunately, X is not or can not be observed. Rather, we observe
W instead of X. W may be a version of X, subject to measurement error, i.e., W
may be Xobs while X may be Xtrue. Alternatively, W may be a variable (variables)
that play the role of a surrogate for X.

Conceptually, we may propose a model for W |X, referred to as a measurement
error model or a model for X|W referred to as a Berkson model [35, 72]. In fact,
we could imagine a further errors in variables component. Perhaps we only observe
Z, a surrogate for Y . Altogether, we obtain a hierarchical model with latent X’s,
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possibly Y ’s. For the measurement error case we have

(1.11) Πi[Zi|Yi, γ][Yi|Xi, β][Wi|Xi, δ][Xi|α]

while for the Berkson case we have

(1.12) Πi[Zi|Yi, γ][Yi|Xi, β][Xi|Wi, δ].

Note that, for the Berkson case we do not have to model the Wi’s. Usually, we have
some validation data to help to inform about the components of the specification.

Perhaps most remarkable is that, with a full Bayesian specification, we can learn
about the relationship between Y and X without ever observing X (and, possibly,
without observing Y as well). Though there may be high uncertainty in our ability
to learn about this relationship, it does reveal the inferential power of hierarchical
specifications.

Mixture models

Mixture models are now widely used due to their flexibility for distributional shapes
and their representation of a population in terms of unidentified groups. What we
envision here is a setting where we anticipate latent groups within the population we
are sampling from but we do not know the group membership for the observations.
So, this is different from sampling a population and labeling the individuals by say
sex, or race, or ethnicity.

There is a rich literature on mixture models [e.g., 136, 200], parametric and non-
parametric, incorporating discrete (finite, countable) or continuous mixing. Here,
we consider the most basic finite mixture version

(1.13) Y ∼
L∑

l=1

plfl(Y|θl).

where the pl are non-negative and sum to 1 and the fl are a collection of parametric
density functions over the same domain. Often, the fl are normal densities, whence,
we have a normal mixture model.

If L is specified and we observe vectors (perhaps scalars) Yi, i = 1, 2, . . . , n, then
we envision a latent label, Li, for each Yi. That is, if Li = l, then Yi ∼ fl(Y|θl).
With the labeling variables, the hierarchical model becomes

(1.14) Πi[Yi|Li,θ][Πi[Li|{pl}][θ][{pl}].

The prior for pl’s might make them equally likely. Again, Gibbs sampling is routine
with obvious Gibbs looping. We update θ, {pl} given the L’s and the data. Then,
we update the Li’s given θ, {pl}, and the data. We sample each label from an
associated L-valued discrete distribution, i.e. a multinomial trial. If L is unknown
we will need to add a prior specification for it. Now, model dimension changes with
L. Model fitting options here are reversible jump MCMC [91] or model choice over
a set of L’s. It is evident that identifiability of the parameters is a challenge. For
example, with L = 2 and model pf1 + (1 − p)f2, unless we restrict p < .5, we can
not identify f1 and f2.
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Revisiting random effects

Consider the setting of individual level longitudinal data say with interest in growth
curves. A customary strategy is to model individual level curves centered around
a population level curve. We are interested in the population level curve to see
average behavior of the process. We are interested in the individual level curves,
for example, to prescribe individual level treatment.

If Yij is the jth measurement for the ith individual, let

(1.15) Yij = g(xij , zi,βi) + εij

where εij ∼ N(0, σ2
i ). The form for g depends upon the application but it need not

be linear.
At second stage, we set βi = β+ηi where the ηi have mean 0 (or perhaps replace

β with a regression in the zi). Then, the βi (or the ηi) are the random effects. They
provide the individual curves with β providing the global curve. We see that this
specification can be viewed as a CIHM. Learning with regard to any individual
curve will borrow strength from the information about the other curves.

We now offer an important remark. Again, hierarchical models usually intro-
duce latent variables in addition to parameters. Recalling our general hierarchical
specification, at times these will be variables associated with the process, e.g., true
environmental exposures. However, often they are introduced either to facilitate
computation or explanation. This raises the opportunity to introduce the latent
variables at the first stage or at the second stage. At the first stage, they imply
that the observations are a function of them; at the second stage, they imply that
they are explaining the mean of the function.

To be more explicit, consider the simplest example. Suppose the data, Yi’s are
Bernoulli trials and suppose the latent Zi’s are normal variables. In the first case,
we set say Yi = g(Zi) = 1(Zi ≥ 0). In the second case, we set E(Yi) = P (Yi = 1) =
P (Zi ≥ 0), a probit model. We return to this example in Section 5.3.

Another example is to handle positive random variables using the Tobit, e.g.,
Yi = max(0, Zi) vs. Z∗i = max(0, Zi) and E(Yi) = Z∗i . Other possibilities include
Poisson, ordinal categorical data, and compositional data. The point is that neither
modeling specification is right or wrong. Rather, it is a modeling decision which
requires deciding whether you want to use the latent variables to deterministically
yield the data or to have them provide a probability distribution for the data.

We conclude this subsection with some caveats associated with hierarchical mod-
eling. Hierarchical models offer an extremely powerful modeling tool but it is easy
to abuse them. First, while laying out the stages sequentially can be useful in terms
of process specification, it is usually technically very challenging, and typically an-
alytically intractable, to see the impact of changes in the structural specifications
on the resultant posterior distributions. Next, with Gibbs sampling and MCMC as
very capable model fitting tools, proposed models often grow very big. We often
specify models which are too large for the data to support, meaning we are overfit-
ting the data. This leads to challenges in the model fitting in terms of identifiability
of parameters. It results in poorly behaved MCMC fitting due to multiple modes
in the posterior space which can be hard to find, difficult to assign the appropriate
posterior mass to, and potentially difficult to interpret. Additionally, bigger models
usually are built with the introduction of more random effects - at different levels,
perhaps with dependence in, e.g., space and/or time. These random effects provide
so much model flexibility that they will tend to annihilate the coefficients of the
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fixed effects which typically enter the modeling linearly. This results in damaging
the explanatory capability of the modeling (though it often improves the predictive
capability!). In summary, hierarchical models must be handled with care.

1.4. Gaussian processes

Gaussian processes play a crucial role in spatial modeling. They provide extremely
flexible specifications for introducing spatial and spatio-temporal dependence. More
precisely, they play a primary role in geostatistical modeling and have a role in spa-
tial point pattern modeling as well. In particular, they supply random effects with
spatially structured dependence. These effects enable local adjustment to regression
modeling at locations using spatially referenced regressors. They specify a spatial
surface as a realization of a stochastic process over a region of interest. Moreover,
despite the terminology of “Gaussian” process, they offer what would be more ap-
propriately referred to as a nonparametric model for these random effects in that
they deliver an uncountable number of random variables, one at each location in the
study domain. In this regard, they differ from spatial surfaces provided by splines
[51]. Spline surfaces are often viewed as nonparametric specifications but, in fact,
they employ a specified number of basis functions and so, only introduce a finite set
of coefficients with regard to these functions in order to create the desired spline
surface.

Formally, a process Y (s) is said to be Gaussian, i.e., a Gaussian process, a GP,
if, for any n ≥ 1 and any set of sites {s1, s2, . . . , sn}, Y = (Y (s1), Y (s2), . . . , Y (sn))
has a multivariate normal distribution. How do we create these multivariate normal
distributions? We specify a mean function μ(s) and a “valid” covariance function
(see below) C(s, s′) ≡ cov(Y (s), Y (s′)). Then, Y ∼ N(μ,Σ) where μi = μ(si) and
Σij = C(si, sj). Avoiding technical details, this recipe for providing finite dimen-
sional distributions satisfies the Kolmogorov consistency conditions [152], ensuring
that the stochastic process is determined.

The mean function is usually some form of regression specification although when
we employ a GP as a random effects model, we set the mean function be 0 over
the entire domain of interest. The covariance function is specified through a few
parameters say θ, so we have Σ(θ) providing structured dependence.

Why do we love GPs? After all, there are other distributional families which,
in principle, could be used to provide the required finite dimensional distribution.
Restriction to Gaussian processes enables several advantages. Here is a list of these
advantages:

(i) Gaussian processes offer convenient specification since the mean function and
the covariance function determine all finite dimensional distributions.

(ii) Gaussian processes have convenient distribution theory since joint, marginal,
and conditional distributions are all immediately obtained from standard results
given the mean and covariance structure.

(iii) With hierarchical modeling, a Gaussian process assumption for spatial ran-
dom effects at the second stage of the model aligns with the way independent ran-
dom effects with variance components are customarily introduced in the foregoing
linear or generalized linear mixed models.

(iv) Technically, with Gaussian processes and stationary models, strong station-
arity, f(Y (s1+h), Y (s2+h), . . . , Y (sn+h)) = f(Y (s1), Y (s2), . . . , Y (sn)) for arbi-
trary n, h, and sites, is equivalent to weak stationarity, cov(Y (s+h, Y (s)) = C(h)
for arbitrary s and h.
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Table 1.1
Common isotropic covariance functions.

Model Covariance function, C(||h||)
Spherical C(||h||) =

{
0 if ||h|| ≥ 1/φ

σ2
[
1− 3

2
φ||h||+ 1

2
(φ||h||)3] if 0 < ||h|| ≤ 1/φ

Exponential C(||h||) = {
σ2 exp(−φ||h||) if ||h|| > 0

Powered
exponential

C(||h||) = {
σ2 exp(−|φ||h|||p) if ||h|| > 0

Gaussian C(||h||) = {
σ2 exp(−φ2||h||2) if ||h|| > 0

Matérn
at ν = 3/2

C(||h||) = {
σ2 (1 + φ||h||) exp(−φ||h||) if ||h|| > 0

(v) It is difficult to criticize a Gaussian assumption. We have Y = (Y (s1), Y (s2),
. . . , Y (sn)), a single realization from an n-dimensional distribution. With a sample
size of one, can we criticize any multivariate distributional specification?

Strictly speaking this last assertion is not quite true with a Gaussian process
model. That is, the joint distribution is a multivariate normal with mean, say, 0,
and a covariance matrix that is a parametric function of the parameters in the
covariance function. As n grows large, the effective sample size will also grow. By
linear transformation, Σ−

1
2 we can obtain a set of uncorrelated variables through

which the adequacy of the normal assumption might be studied. However, the
difficulty is that we don’t know the parametrized matrix, Σ−

1
2 . We would have

to use the data to estimate it and, with an estimated Σ̂−
1
2 , we don’t produce

uncorrelated variables.
Returning to the concept of a valid covariance or, say up to a scaling, a valid

correlation function, the challenge is to provide a function where, for all n and all
s1, s2, . . . , sn, the resulting covariance matrix is positive definite. It will not suffice
to write down an arbitrary function on [−1, 1]; we need a positive definite function
[66]. A covariance function is said to be stationary if cov(Y (s + h), Y (s) = C(h)
for all s and h. A covariance function is said to be isotropic if cov(Y (s+h), Y (s) =
C(||h||), i.e., a function of the length of h, for all s and h. Isotropy is a very strong
assumption, implying that dependence has no directionality. It is almost surely
never true in practice; it is hoped that, adjusted for a suitable mean function, it
will be adequate as a random effects model.

Isotropic covariance functions are widely used in practice. Some common choices
are included in Table 1.1. The exponential function is most frequently used due to
its convenient functional form and ease of interpretability. For instance, to define
a range, we might choose the distance such that e−φd = .05, i.e., the effective
range would become the distance at which dependence is deemed to be negligible,
i.e., beyond which correlation is less than .05. It is easy to calculate that, with
the exponential correlation function, the range is essentially 3/φ, facilitating prior
specification for φ.

The Matérn correlation function is seeing increasing usage [16]. It takes the form

C(t) = σ2

2ν−1Γ(ν) (2
√
ν||h||φ)νKν(2

√
(ν)||h||φ) if ||h|| > 0

where Kν is the modified Bessel function of order ν (computationally tractable
in C/C++ or geoR) It introduces ν, a smoothness parameter, where ν = 1/2 ⇒
exponential; ν → ∞ ⇒ Gaussian; ν = 3/2 ⇒ the convenient closed form above. The
smoothness idea, in two-dimensions, asserts that the greatest integer in ν indicates
the number of times process realizations will be mean-square differentiable [189].
We have the very powerful idea that the smoothness of a random realization of an
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uncountable number of random variables, i.e., of a stochastic process surface over
a region, is determined by the covariance function driving that realization.

We conclude this chapter with a few more words on covariance functions. As
remarked above, to be a valid covariance function the function must be positive
definite. Whether a function is positive definite or not can depend upon dimension.
In any event, C is a valid covariance functions if and only if it is the characteris-
tic function of a symmetric about 0 random variable (Bochner’s Theorem) [120],
i.e., c(h) =

∫
cos(wTh)G(dw). Once we think in terms of characteristic functions,

we immediately think of Fourier transforms using the 1-to-1 correspondence. In
turn, this leads to spectral distributions and spectral densities, working with de-
pendence structure in the spectral domain and frequencies rather than distances.
Further development is beyond our scope here but see the book of [189] for a useful
development.

Finally, there are simple ways of constructing valid covariance functions from
familiar ones, e.g., those above by using properties of characteristic functions. For
example, we can multiply valid covariance functions (this corresponds to summing
independent random variables), we can mix covariance functions (this corresponds
to mixing distributions), and we can convolve covariance functions (if c1 and c2 are
valid then c12(s) =

∫
c1(s− u)c2(u)du is valid).
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