
Chapter 9 

Likelihood Ratios for 
Genetic Analysis 

9.1 Monte Carlo likelihood ratio estimation 

The MCMC methods of Chapter 8 provide methods for obtaining realizations from 
Po (X I Y), the probability distribution of latent variables X conditional on data 
Y under a model indexed by parameters (). In this chapter, we discuss methods of 
using such realizations in Monte Carlo methods for linkage and segregation analysis, 
focusing on likelihood methods. 

Recall again (equation (7.8)) that, for phenotypic data Y, 

L(B) = Po(Y) = L Po(X, Y), 
X 

where latent variables X are genotypes G or meiosis indicators S. We again use 
(} to denote the general set of parameters of a genetic model. These include the 
recombination or gene location parameters. From equation (7.12), efficient Monte 
Carlo estimation of L(O) will result from sampling from a distribution P* (X) close 
to proportional to the joint probability Po(X, Y): 

P*(X) ~ Po(X I Y) ex Po(X,Y). 

One possible choice is thus to simulate, by the methods of Chapter 8, not from 
Pe(X I Y) but from Poo(X I Y), where Bo ~e. Then 

Pe(Y) = LPe(X,Y) = 
X 

( Po(X, Y) 
= Eea Pea(X I Y) 

"' Po(X, Y) 
~ Pea(X I Y) Pea(X I Y) 

I y) ( Pe(X, Y) I ) 
= Pea (Y) Eea Pea (X, Y) y . 

Hence in genetic analysis, or in any missing-data context, we have the key formula 
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of Thompson and Guo (1991) 

(9.1) L(O) - Po(Y) - E ( Po(X, Y) I v) 
L(Oo) - Po0 (Y) - 00 Po0 (X, Y) . 

In this expectation, X is the random variable, Y is fixed. The distribution of X 
is Poo(·IY). If x(r}, T = 1, ... ,N, arc realized from this distribution then the 
likelihood ratio can be estimated by 

1 N ( Po(X(r), Y)) 
N.?; Pea (X(r), Y) . 

In section 8.1 we saw how MCMC can be used to realize X from Po0 (·1Y). 
Simulation at a single model (}0 provides an estimate of the relative likelihood 

L(O)/ L(80 ) as a function of 8. This will be a satisfactory estimator only for 
those () close to 80 ; specifically, for those () for which Po(XIY) is close to 
proportional to Pe0 (X, Y). Sometimes, primary interest is in the shape of the 
likelihood surface in the neighborhood of some specific point, such as the maximum 
likelihood estimate (MLE). In this case, preliminary MCMC runs and likelihood 
ratio function estimates can be used to obtain a ballpark value of the MLE (Geyer 
and Thompson, 1992). Alternatively, Monte Carlo EM can be used (see section 9.3). 
Once a ballpark estimate of the parameter values is found, one very large MCMC 
run can provide an accurate estimate of the MLE and of the likelihood in the region. 
However, this approach has limitations. One may be interested in the likelihood 
surface, or in log-likelihood differences, over large regions in the parameter space. 
Or, the large MCMC run may reveal that one's initial estimate was not sufficiently 
close to the MLE, and additional large runs may be necessary. It is desirable to find 
a method that combines realizations from all the runs, and provides an estimate of 
the likelihood surface over a range of parameter values. 

9.2 Monte Carlo relative likelihood surfaces 

One way of combining realizations from different MCMC samplers was provided 
by Geyer (1991 b). MCMC samplers are run at many models, covering the range 
of interest, say at Oo,el,····()K· The sets of Ni realizations from Po,(XIY), j = 
0, 1, ... , K, give a combined set of realizations from 

P*(X) 
1 K -- L NjPe1 (XIY) 

"'J· NJ· LJ j=O 

1 K 

"'N· LNiPe1 (X,Y)jL((}j) 
LJJ J j=O 

and writing the likelihood estimation formula as an expectation with respect to this 
P* 

= E • (Pe,(X, Y)) 
P P*(X) . 
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Now, although we have a sample from P*, the denominator P*(X) cannot be 
explicitly computed, since it depends on the unknown L(fJj ), but we have the 
implicit Monte Carlo estimating equations 

(9.2) = 

for j = 0, ... , K, where the sum is over the total set of realizations X*. These 
equations determine only the relative values of L(fJj), but can be solved iteratively 
for these relative values. For example, one may iterate equation (9.2) directly, 
renormalizing after each cycle, to keep one value, say L(fJ0 ) fixed (=1). This 
iterative procedure is globally convergent to the unique solution of equation (9.2). 
Once the relative values of L(fJj) are found, then, for any other value of() in the 
range spanned by the set of fJj, L(fJ) can be estimated by 

(9.3) 
Po1(X*,Y) 1 

( 
K ) -I 

L(fJ) = ~ ~ Nt Po(X*, Y) L(fJt) 

where the sum is over the same total set of realizations as before. (Again, the 
estimate is relative to L(fJ0 ) = 1.) Geyer (1991b) named this method reverse logistic 
regression. 

There arc two requirements for this approach to be an effective solution to 
the likelihood estimation problem. First, each sampler Poi (XIY), j = 0, ... , K 
must cover well that part of the space of X-values that has high total probability 
mass under that probability distribution - for an MCMC sampler on a large and 
structured space of latent variables, this is a non-trivial consideration (section 8.1). 
Second, even if the separate samplers are behaving "well", in this sense, for the 
mixture estimates to be effective we need good "overlap" between adjacent models. 
The conditional probability that a particular observation X derives from the sample 
Poi is 

For every j, the values of these probabilities should not be too close to 1 for too 
large a proportion of the sampled X-values. Thus adjacent parameter values fJj 
must be chosen not too far apart, where the relevant measure of distance is in 
terms of the probability distributions Poi (XIY) of the X-values generated. 

Other difficulties with using the reverse logistic regression method concern 
computational resources. Either the realized X*, or at least the values Po(X*, Y) 
for each (} of interest, must be saved, in order for equations (9.2) and (9.3) to 
be implemented. This can demand massive amounts of storage. An alternative 
is to use block averages of the ratios of Poi (X, Y)/ Po1 (X, Y) in equation (9.2) 
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(Thompson, 1994b). In the extreme case, this block might be the average over a 
full run of the sampler at a given () J. Let 

= N:-l ""' Po, (X*Ul, Y) 
1 L......- Po. (X•(i) Y) 

X•(il ' ' 

be the likelihood ratio estimate of L(61)/ L(BJ) from Ni realizations x•Ul at Bi. Here 
the chosen values of l may vary with j. We define Rj(()t,BJ) to be 0 if L(()t)/L(BJ) 
is not estimated from realizations under model Bj. At a minimum, for each j, 
values for RJ(Bt,Bj) should be computed for the values 81 adjacent to BJ· Then the 
estimating equation (9.2) becomes 

(9.4) (t, R;(B,, B;)L(~,)) _, 

Writing Vj = l/L(()j), Rjt = Rj(Bt,()j), v = (vj), and R = (Rjt), equation (9.4) 
becomes 

v Rv. 

That is, the vector of v;-values is a right eigenvector of the matrix R. 
Asymptotically, for large Monte Carlo runs, each computed R1t-value converges 
to L(Bt)/L(()j) = VJ/Vt. Thus, if, for each j, Rjt is evaluated fort other Bt values, 
then each evaluated RjtVt is approximately vi> and the corresponding eigenvalue 
should be t. This provides one check on the performance of the method, although 
in practice it is a weak criterion. The eigenvalue can be close to t even when 
performance is poor. 

There are many open questions in the statistical properties of estimators such 
as those resulting from equation (9.4). If sufficient realizations can be stored, then 
equation (9.2) may provide the more satisfactory estimate. Suppose, however, only 
one in 1000 samples X* or resulting probabilities Pe, (X*, Y) can be stored. Then 
should one use the estimate (9.2), or one that uses the block averages over each 
block of 1000 steps? The latter would require more computation (evaluations of 
Pe, (X*, Y)), but the same amount of store. The Monte-Carlo variance of the 
block-average will be less than that of individual values Po, (X*, Y), but possibly 
not by much if the autocorrelation in the Markov chain is very high. Clearly these 
questions are related also to issues of computational efficiency in sub-sampling and 
spacing in the MCMC (Geyer, 1992), discussed briefly in section 8.1. 

9.3 Monte Carlo EM for the mixed model 

For some models, exact computation of the conditional expectations required to 
implement an EM algorithm may be impractical or infeasible, particularly if the 
model is complex, or there are missing data. Penetrance parameters may not be 
simple functions of genotypic counts. Even the bivariate case of the simple polygenic 
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model (section 2.6) may be complicated, if some individuals are observed for just 
one of the two traits (Thompson and Shaw, 1992). Chiasmata patterns are not 
so readily imputed if the recombination patterns of some gametes are not fully 
observable (section 5.3), due to missing typings or parental homozygosity at some 
loci. However, if latent genotypes or meiosis indicators and missing phenotypes 
can be realized from their conditional distributions given the observed data Y = y 
under current values of the parameters, a Monte Carlo EM (MCEM) is easily 
implemented. 

In section 2.6, the simple polygenic model was introduced, and the EM-algorithm 
for the variance component parameters a~ and a; was outlined. In section 6.6, 
the univariate trait model was generalized to the mixed model, induding both 
Mendelian genotypes and Gaussian polygenic effects (see equation (6.5)). The 
parameters then include also the frequency of the alleles at the diallelic Mendelian 
trait locus, and the vector of genotypic means 1-L = (p.(g)) for the genotypes g at 
the locus. As before, we index the members of the pedigree by i, i = 1, ... ,ntot· 

Suppose that the nabs observed members of the pedigree arc those indexed by i E V. 
Then, for i in V, we have equation (6.5): 

Yi = Jt(G;) + Z; + t;. 

The vector Z = (Z;) is defined over all ntot members of the pedigree, and has the 
multivariate Gaussian distribution Z....., N(O, a~ A), where A is a matrix determined 
by the pedigree structure (section 2.6). 

If I { E} is the indicator function of the event E, the complete-data sufficient 
statistics of this exponential family model for (G, Z, Y) are: 

the number of observed individuals of each genotype g, or LiE'D I { G; == g} 
the total trait effect in those individuals, LiEv(Yi- Z;)l{G; = g} 
the quadratic residual term, for observed individuals, 

€ 1€ = (Y- Jt(G)- Z)'(Y- p.(G)- Z), and 
the total genetic variance over all pedigree members, Z' A --l z. 
If genotypes G; and polygenic values Z; were observable, then the MLEs of the 

parameters would be straightforward. For each discrete genotype g 

IL(g) = 
LiE'D(Yi- Z;)l{G; = g} 

LiE'DI{G;=g} 

For the variance component parameters (see equation (2.17)) 

= 
(Y -tt(G)- Z)'(Y -M(G)- Z)/nobs 

(Z'A- 1Z)/ntot 

where 11(G) denotes the vector of genotypic values of observed individuals 
(M(G;); i E V). However, for this mixed model, both exact implementation of 
an EM algorithm and exact evaluation of the likelihood are infeasible. Monte Carlo 
methods can, however, be implemented. 

For example, the conditional expectations of the statistics in the above equations, 
given the data Y, may be estimated by averaging the values given by N realizations 
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(Z(T), G(T)). At current parameter values, ((]';, (]'~, ~J.), realizations are obtained 
from the conditional distribution Prr;,rr~,ft(Z, G I Y), leading to Monte Carlo EM 
update equations 

p(g)" == 

(9.5) 

(9.6) 

(N)-l 2::~=1 I:iEv(Yi- ztl)l{G)T) == g} 

I:~=l I:iEV I{G)T) = g} 
N 

(Nnabs)- 1 ~)Y -- p(G(T))- z(T))'(Y- p(GH)- z(T)) 

T=l 

N 

(Nntat)- 1 L::z(Tl'A-1Z(TJ. 
T=1 

Equations (9.5) and (9.6) should be compared with the exact EM equations for the 
parameters of a polygenic model (equation (2.17)). With a Monte Carlo approach, 
the conditional variance of Z given Y and G need not be computed, since the 
variance is subsumed into the realized variability of the quadratic expressions. Note, 
however, that this variance is an intrinsic part of the iterative procedure. Just as 
in section 2.6, it is insufficient to use only the estimate a== N-1 2::~=1 z(T) of the 
conditional mean a= Err;,rr~,ft(Z I G, Y). 

Returning to single-locus models, if genotypes G can be realized given the data 
Y and current parameter values, MCEM equations for parameters of penetrance 
densities are straightforward. The use of MCEM also permits extension to more 
complex models. One example is that of a more general mixed model for a 
quantitative trait, including also the effects of observed covariates and other 
variance component effects, such as those due to shared environment. This model 
assumes the trait value y; is the sum of these effects together with the effect of a 
single-locus genotype Gi, a polygenic value Zi, and a residual with mean 0 and 
variance (]';. Provided genotypes and polygenic values (G, Z) can be realized, 
conditional upon data Y and current parameter values, MCEM is again feasible. 
Achieving these realizations is not, in general, straightforward. We can do so by 
using Markov chain Monte Carlo (MCMC). Guo and Thompson (1992; 1994) have 
used MCEM for the mixed model and for joint linkage and segregation analysis. 
Generally, MCEM is as effective as EM at getting a ball-park estimate, and is 
remarkably robust even when quite small Monte Carlo samples are used. However, 
it is of little use in obtaining a precise final MLE---a large number of very large 
samples would be required. 

9.4 Likelihood estimators for complex models 

The mixed model also provides an example of Rao-Blackwellization (section 3.8) of 
Monte Carlo estimates of likelihood ratios. Applying the formula (9.1) directly to 
the mixed model with latent variables (G, Z), we have 

L(O) - Po(Y) -Eo ( Pe(G, z, Y) I v) 
L(Oo) - Pea (Y) - o Pe0 (G, Z, Y) . 
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However, considering only the latent variables G, it is also the case that 

(9.7) L(B) = Po(Y) =Eo ( Po(YIG)Po(G) I ) 
L(Bo) Po0 (Y) 0 Po0 (YIG)Po 0 (G) y ' 

while considering only latent variables Z 

(9.8) L(B) = Po(Y) =Eo ( Po(YIZ)Po(Z) I ) 
L(Bo) Po0 (Y) o Po0 (YIZ)Po0 (Z) y . 

Since Y and Z are continuous random variables, we have now probability density 
functions rather than probability mass functions. However, we retain the notation 
Po ( ·), to avoid introducing additional notation for this one example. 

As shown in section 6.6, either integration over Z or summation over G is possible 
in the mixed-model likelihood (equation (6.6)), providing for exact computation of 
the probabilities 

(9.9) Po(YIG) = 1 Pr(Yiz, G)Pa~ (z)dz 

in equation (9. 7), or of the probabilities 

Po(YIZ) = L Po(YIZ, G)Po(G) 
G 

in equation (9.8). Equations (9.7) and (9.8) provide two alternative Rao­
Blackwellized estimators. To implement the estimate based on (9. 7) or on (9.8), 
only the realizations of G or of Z would be used. However, if using a Markov 
chain Monte Carlo (MCMC) sampler (Chapter 8), it will normally be necessary 
to generate both. For example, from N Monte Carlo realizations (G(r), z(r)) 

generated from Po0 (G, ZIY), the estimate based on equation (9.7) would be 

----
(9.10) 

L(B) 
L( Bo) 

The hope is that the reduction in Monte Carlo variance due to the partial exact 
computation (9.9) will compensate for this increased computation (see section 3.8). 

Note also that, for some model comparisons, additional exact integration or 
summation over latent variables Z or G may be unnecessary. If under models 
indexed by () and by Bo, 

Po(YIG) = Po0 (YIG) 

these probabilities need not be computed, and the estimate (9.10) reduces to a ratio 
of the prior genotype probabilities Pe(G)/Po0 (G) averaged over the realized G(r). 

Similarly, if 

Po(YIZ) = Po0 (YIZ), 
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the estimator based on equation (9.8) reduces to the ratio of population densities 
of z. By careful choice of models to be compared, procedures can be made more 
computationally efficient. 

Reduction in Monte Carlo variance by Rao-Blackwellization is guaranteed only 
for independent realizations (G(r), zCrl) of the latent variables (Geyer, 1992). 
For dependent realizations, Geyer (pcrs.comm.) has provided a simple counter­
example based on latent variables consisting the odd and even terms of a first order 
Gaussian autoregressive process. However, in many practical instances the Rao­
Blackwellization procedure works well, even when MCMC realizations are used. 
Estimators based on (9.7) and (9.8) were introduced by Thompson and Guo (1991) 
and compared by Thompson (1994c) in likelihood analyses of genetic models with 
several latent heritable components. It was found that the estimator (9.10) works 
very well, leading to substantial gains in computational efficiency, whereas the 
estimator based on (9.8) is very inefficient. The summation over G required for the 
latter is generally computationally more intensive than integration over Z. More 
importantly, the data Y and variables Z together constrain G very much more 
than Y and G constrain Z. Since the conditional variance of Z given Y and G is 
relatively high, exact integration over Z reduces Monte Carlo variance substantially. 

Note that equation (9.1), or forms thereof such as (9. 7) and (9.8), are not the only 
possible ways to obtain Monte Carlo estimates of likelihood ratios. In particular, 
Meng and Wong (1996) have considered a variety of forms of importance sampling 
and Rao-Blackwellization, noting that (in the notation of this chapter) 

(9.11) 
L(O) 
L( Oo) = 

Po(Y) 
Po0 (Y) 

Eoa(Po(X, Y)o:(X) I Y) 
Eo(Po0 (X, Y)a(X) I Y) 

where a(X) is an arbitrary function on the space of X values (provided the 
expectations exist, and the distributions have the same support). If a(X) = 
1/Pe0 (X, Y), equation (9.11) reduces to equation (9.1). Note that whereas use 
of equation (9.1) requires MCMC only at 00 , the expectation in the denominator 
of equation (9.11) requires MCMC at the value 0. Various other choices of a(X) 
have been investigated in the recent MCMC literature .. Jensen and Kong (1999) 
have used a version of equation (9.11) in their MCMC estimation of a single-marker 
linkage lod score on a complex pedigree. 

As for the ratio estimator (7.17), the expression (9.11) is a ratio of expectations, 
and thus the Monte Carlo estimator is a ratio of averages over two sets of Monte 
Carlo realizations. For the estimator based on (7.17), the sampling distribution is 
the same in numerator and denominator, and thus Monte Carlo variance could 
be reduced, and computational efficiency enhanced, by using the same Monte 
Carlo realizations in the estimates of numerator and denominator. However, for 
the likelihood ratio estimator based on (9.11), different sampling distributions are 
required, so different Monte Carlo Markov chains must be run for the numerator 
and denominator. If MCMC is being done in any case at a set of values (Jj, for 
example as in section 9.2, this does not impose any increased computational burden 
for the Monte Carlo itself. However, long runs may be needed to reduce the Monte 
Carlo variance of the estimate of L(O) / L(00 ) to acceptable levels. 
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9.5 Likelihood estimation of gene locations 

M1 M2 M3 M4 M5 
(3 

Yr 

FIGURE 9 .1. Mode! parameters for estimation of a location likelihood curve 

In modern genetic analysis, a primary goal is the localization of trait genes. 
Genetic markers have been mapped throughout the genome at a scale suitable for 
multipoint linkage analysis. Thus, estimation of location lod score curves (sections 
6.2, 7.6) is an important goal. Here we denote the marker model parameters by 
r M 0 For a complex trait, the trait model parameters are also unknown. These 
parameters, (3, determine the probabilities of phenotypes given the latent genes. 
While in some analyses, joint maximization of the likelihood with respect to trait 
model (3 and trait locus position "'( may be attempted, often the location lod score 
curve is computed for fixed (3. The likelihood (or a profile likelihood) is evaluated 
as a function of a hypothesized trait-locus location "'(, against a fixed marker map 
r M. The parametrization of the overall model is shown in Figure 9.1 The overall 
model is indexed by parameter 0 = ((3, "'(, rM ). As before, the likelihood is 

L(fJ) = Po(Y) = 2:::: Po(Y I X) Po(X) 
X 

(equation (7.8)) which may take the form (1.5) if X= G, the underlying genotypes, 
or ( 4.11) if X = S, the inheritance patterns of genes. For computations with 
multiple marker loci, the Lander-Green paradigm (4.11) is more natural and more 
effective, but exact computation is limited to small pedigrees. 

As in the discussion of Elods (equations ( 4.8) and (7.15)), for convenience 
we partition the data Y into the trait data Y r and marker data Y M. The 
corresponding latent variables are partitioned into Xr and XM. Monte Carlo 
estimation of the location likelihood ratio is always feasible. The form that follows 
directly from equation (9.1) is 

L(f3, "Y1, rM) 
= L((3, "'(o, r M) 

E (Pol(Yr,YM I Xr,XM)Po 1 (XT,XM) 
00 Po0 (Y r, Y M I Xr, XM )Po0 (Xr, XM) 

for two hypothesized trait locus positions "YI and "Yo· Noting the fact that only the 
position of the trait locus differs between numerator and denominator, the above 
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equation reduces to 

(9.12) 

Thus only the conditional probability of trait-locus latent variables given marker­
loci latent variables appears explicitly in the estimator. Although realization of 
the latent variables is complex, and requires MCMC methods, computation of the 
estimate from the realizations is generally very straightforward (Thompson and 
Guo, 1991). 

One practical difficulty of the above approach is accurate estimation of Jog­
likelihood differences for trait locations in different marker intervals. The likelihood­
ratio estimate (9.1) works well in comparing locations within an interval, and 
in principle the mixtures method (9.2) facilitates estimation between intervals. 
However, in practice, values of Xr realized at 'Yo may have very small probabilities 
under 'Yl if there is a marker locus between the two positions. Additionally, the usual 
objective is to estimate the Jod-score relative to the base-point in which the trait 
locus position 1' is not within the marker map r M. That is, the null hypothesis that 
the trait locus is unlinked. Again this can be accomplished by using the mixtures 
method (9.2), but several intervening positions ')', linked to but not within the 
marker map, may be required for effective estimation (Thompson, 1994b). The 
procedure becomes computationally intensive. 

Another disadvantage of the approach of section 9.1 and this section is the fact 
that it allows estimation only of likelihood ratios, not of likelihoods. A modification 
is due to Lange and Sobel (1991) for the particular case of Monte Carlo estimation 
of location likelihoods. Their procedure also avoids the problems of sampling of 
the trait locus variables. Again, we assume the marker map and parameters r M 

known, so that Pr M (Y M) is a constant factor in the likelihood. Then Lange and 
Sobel (1991) write the likelihood in a form which, using our current notation, 
becomes 

(9.13) 

L(/3,'/',rM) = P13,')',rM(YM,Yr) 

ex P/3,')',I'M (Y T I Y M) 

= L P13,'Y(Y T I XM )PrM (XM I Y M) 

Now latent variables XM are sampled from their conditional distribution given the 
marker data Y M. Provided exact computation of P13 ,')' (Y T I XM) is possible for 
alternative trait models ({1) and locations (1'), we have a Monte Carlo estimate of 
L(f:3, ')', r M ). Comparison to the unlinked base-point requires only computation of 
P13 (Y T ), the probability of trait data under the parameters (J of the trait locus 
model. This can be accomplished by single-locus peeling methods of Chapter 6. 
Since r M is fixed, the Monte Carlo requires only a single set of realizations 
{X~~/, r = 1, ... , N}. The disadvantage is that P13,'Y(Y T I X~) must be computed 
for each such realization; this requires a single-locus peeling computation for the 
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trait-locus data under the trait model. Further, this computation must be done, 
not only for each realization x);l, but also for each f3 and 'Y at which a likelihood 
estimate is required. 

In many cases, however, the gains outweigh the costs, except when the simulation 
distribution Pr M (XM I Y M) is not close to proportional to the ideal importance­
sampling target distribution P13,1 ,rM(XM I YM, YT)· This is particularly so for 
models (trait locations) 'Y which are not close to the truth, and for a trait which 
provides substantial information about the inheritance patterns of genes at the 
underlying trait locus, and hence also at linked marker loci. In fact, the cases 
where the Monte Carlo estimator based on equation (9.13) performs poorly are 
precisely those in which the likelihood ratio estimator (9.12) also has difficulties. 
There continue to be interesting open questions in the estimation of multilocus 
linkage likelihoods. 

9.6 Marker ibd and complete-data log-likelihoods 

Again suppose that, as in sections 7.5 and 9.5, we have trait data Y r and marker 
data Y M· Further, suppose that the marker map rM, marker allele frequencies and 
marker population genotype frequencies are known, Consider also the case where 
the latent variables XM arc the meiosis indicators SM. As described above, MCMC 
methods, and in particular the M-sampler of section 8.4, provide effective methods 
for sampling from the conditional distribution PrM (SM I Y M ). Among pedigree 
members, the patterns of gene ibd at marker loci are functions of SM; J = J(S) 
(section 3.6). Thus we have MCMC estimates of the conditional probabilities of 
gene ibd at marker loci, given the marker data. 

Neither trait data, YT nor trait model enter into this sampling of marker latent 
variables conditional on marker data. However, under any trait model with some 
genetic component, related affected individuals or related individuals exhibiting 
extreme trait values will share genes ibd at trait loci with some increased probability. 
Hence also they will share genes ibd with increased probability at marker loci 
linked to those trait loci. In so-called "non-parametric" computations for linkage 
detection, marker data on a pedigree are analyzed to detect regions of the genome in 
which there is evidence for excess gene ibd among affected individuals, or individuals 
exhibiting extreme trait values. Such regions provide evidence for linkage. 

The Monte Carlo sampling of SM given marker data Y M provides direct 
estimates of conditional probabilities of patterns of gene ibd J(SM ). These gene 
ibd probabilities at locus j are computed dependent on all the marker data Y M, 

as, for example, are the probabilities Qj(S.,j) of section 7.1. Here we have only 
Monte Carlo estimates of these probabilities, but MCMC realization on larger 
or more complex pedigrees is feasible in cases for which exact computation is 
not. Moreover, the resulting gene ibd patterns J(SM) may be scored jointly over 
haplotypes, and over loci. The example of section 4.5 showed the importance of 
considering both individuals and loci jointly. For the case where only marker data 
are considered, many of the problems of the Monte Carlo estimation procedures 
are much reduced, provided a good MCMC sampler is used (see sections 8.3, 8.4). 
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The statistical problem becomes one of development of appropriate test statistics, to 
detect linkage on the basis of estimated conditional ibd probabilities. Although most 
current methods involve statistics computed marginally over loci, and pairwise over 
individuals, there is an increasing literature in this area; see for example Whittemore 
and Tu (1998). 

Another readily computed by-product of MCMC on pedigrees, or in any 
latent-variable problem, is the expected complete-data log-likelihood, lly(B; Bo) 
(section 2.4). Returning again to the full data Y and latent variables S, at a 
general model indexed by parameters Bo we have 

Hy(B;Bo) = Ee0 (1ogePe(S,Y)IY) 

(9.14) = Eo0 (1oge Pe(Y I S) + loge Po(S) I Y). 

For easier comparison with statistical results, we use natural (base-e) logarithms 
throughout this section. Due to the a priori independence of meioses 

m 

(9.15) logPo(S) L log Po(Si,.) 
i=l 

and, provided data arc locus-specific, 

L 

(9.16) logPe(Y IS) L log Po (Y.,j I s.,j) 
j=l 

(sec equation (4.11)). Thus the expectation partitions into terms for each locus and 
for each meiosis. These terms must be computed in any case in the course of the 
MCMC, making accumulation of values for the estimated expectation particularly 
straightforward. Note that (9.15) depends only on the genetic map parameters, 
while (9.16) depends on the penetrance aspects of the model. In expectation, 
under the conditional distribution Po0 ( ·IY), each term depends, of course, on all the 
parameters in 80 . The expected complete-data log-likelihood, with its component 
parts, proves to be a useful diagnostic measure of the performance of the MCMC. 

The above discussion depends on the decomposition 

logPe(S, Y) = logPe(Y IS) + logPe(S). 

Reversing the decomposition of the complete-data log-likelihood 

logPo(S, Y) == logPo(Y) + !ogPo(S I Y). 

Thus, as in equation (2.9), differences in expected complete-data log-likelihoods 
depend on the true log-likelihood difference and the Kullback-Leibler information 
(section 2.2) in the distribution of S given Y. That is, 
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so the difference in expected complete-data log-likelihoods is 

Hy(Bo; Bo) - Hy(B; Bo) 

= Eo0 (1ogPo 0 (S,Y) I Y) -Eo0 (logPo(S,Y) I Y) 

= Eo0 (logPo 0 (Y) + logPo0 (SIY) -logPo(Y) -logPo(SIY) I Y = y) 

= logPe0 (Y) - logPe(Y) + Ee0 (Po0 (SIY) -logPe(SIY) I Y = y) 
(9.17) = f(Bo) - £(8) + Ky(O; Bo). 

The extent to which this identity can be exploited in making inferences from MCMC 
output is also an area of ongoing research. 
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