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Uniform in bandwidth limit laws for

kernel distribution function estimators

David M. Mason1,∗ and Jan W. H. Swanepoel2,∗

University of Delaware and North-West University

Abstract: We use results from modern empirical process theory to establish
a uniform in bandwidth central limit theorem, laws of the iterated logarithm
and Glivenko–Cantelli theorem for kernel distribution function estimators.

1. Introduction and main results

Let X, X1, X2, . . . , be i.i.d. taking values in IRd having multivariate cumulative
distribution function [c.d.f.] F and for each n ≥ 1 let

Fn(x) =
1

n

n∑
i=1

1{Xi ≤ x}, x ∈ IRd,

denote the empirical distribution function based on the first n of these random
variables, where for x, y ∈ IRd, y ≤ x means that each component of y is ≤
each component of x. Next let K be a multivariate c.d.f. on IRd. In this paper we
shall obtain a uniform in bandwidth central limit theorem [CLT], law of the iterated
logarithm [LIL] and a Glivenko-Cantelli theorem for the kernel distribution function
estimator [kdfe], which using the notation of Mason and Swanepoel [14], is defined
as

F̂n,h(x) =
1

n

n∑
i=1

K

(
x−Xi

h

)
, x ∈ IRd.

The smoothed empirical distribution function is a special case of F̂n,h(x). To see
this, let k be a density function and consider the kernel density estimator

(1.1) fn,h(x) =
1

nhd

n∑
i=1

k

(
x−Xi

h

)
, x ∈ IRd,

where k is a density on IRd. The smoothed empirical distribution function becomes
with x = (x1, . . . , xd) ∈ IRd,

Ŝn,h(x) :=

∫ x1

−∞
. . .

∫ xd

−∞
fn,h(y) dy =

1

n

n∑
i=1

K

(
x−Xi

h

)
, x ∈ IRd,
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where K(t) =
∫ t1
−∞ . . .

∫ td
−∞ k(y) dy for t = (t1, . . . , td) ∈ IRd.

Essential to our approach will be a CLT and compact LIL for the empirical
process applied to the following class of functions. Consider for any 0 < b ≤ 1

Kb =

{
K

(
x− ·
h

)
− 1{· ≤ x} : 0 < h ≤ b, x ∈ IRd

}
∪ {0},

where 0 denotes the function of x ∈ IRd constantly equal to zero. Let P denote the
probability measure induced by F on IRd. The class Kb is bounded and separable
as defined in Section 2. It will be shown in Section 1.1 that for any 0 < b ≤ 1,
Kb is also a P-Donsker class. This means that the empirical process indexed by
ϕ = K(x−·

h )− 1{· ≤ x} ∈ Kb

αn(ϕ) :=
1√
n

( n∑
i=1

ϕ(Xi)− nIEϕ(X)

)
,

which can be written as

(1.2)
√
n
{
F̂n,h(x)− Fn(x)−

(
IEF̂n,h(x)− F (x)

)}
,

converges weakly in the sense of Hoffmann-Jørgensen to a mean zero Gaussian
process with covariance function cov(ϕ1(X), ϕ2(X)) and is continuous in the semi-
metric

ρ(ϕ1, ϕ2) = IE
[
ϕ1(X)− ϕ2(X)− IE

(
ϕ1(X)− ϕ2(X)

)]2
, ϕ1, ϕ2 ∈ Kb.

Since for any 0 < b ≤ 1, the class Kb is P-Donsker we have

(1.3) sup
ϕ∈Kb

|αn(ϕ)| =: Δn(b) = OP (1),

and since it also satisfies all the conditions for the compact LIL for the empirical
process (see (2.2) below), we get

(1.4) lim sup
n→∞

Δn(b)√
2 log logn

= σ(b) < ∞, a.s.,

where

σ2(b) = sup
ϕ∈Kb

Var
(
ϕ(X)

)
= sup

0<h≤b, x∈IRd

Var

(
K

(
x−X

h

)
− 1{X ≤ x}

)
.

For future use, we set

μ(b) = sup
ϕ∈Kb

∣∣IEϕ(X)
∣∣

= sup
0<h≤b, x∈IRd

∣∣∣∣IEK(
x−X

h

)
− F (x)

∣∣∣∣.
Observe that

Δn(b)√
2 log logn

=
sup0<h≤b supx∈IRd

√
n|F̂n,h(x)− Fn(x)− (IEF̂n,h(x)− F (x))|

√
2 log logn

=
sup0<h≤b supx∈IRd |

√
n{F̂n,h(x)− IEF̂n,h(x)} − α̃n(x)|√
2 log logn

,
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where α̃n(x), x ∈ IRd, is the classical empirical process

(1.5) α̃n(x) =
√
n
{
Fn(x)− F (x)

}
, x ∈ IRd.

(Note that α̃n(x) := αn(1{· ≤ x}).) Summarizing these observations we get the
following general proposition.

Proposition 1.1. For any 0 < b ≤ 1, (1.3) and (1.4) hold.

Notice that (1.3) and (1.4) readily imply the following result.

Corollary 1.2. Whenever σ2(b) → 0 as b ↘ 0 , for any sequence of positive
constants 0 < bn < 1 satisfying bn → 0,

(1.6) Δn(bn) = oP (1)

and w.p. 1 as n → ∞,

(1.7)
Δn(bn)√
2 log logn

= o(1).

Proof. Assertion (1.6) follows from the fact that P-Donsker implies (cf. Theorem
3.7.2 in Dudley [3]) that for every ε > 0 there exist a δ > 0 such that

P
{
sup

{
‖ϕ1 − ϕ2‖IRd : ρ(ϕ1, ϕ2) < δ, ϕ1, ϕ2 ∈ Kb

}
> ε

}
< ε,

0 ∈ Kb and the assumption that σ2(b) → 0 as b ↘ 0. To see that assertion (1.7)
holds notice that for any b > 0

lim sup
n→∞

Δn(bn)/
√

2 log logn ≤ lim sup
n→∞

Δn(b)/
√

2 log logn = σ(b),

and σ(b) → 0 as b ↘ 0.

For d ≥ 1 let

(1.8) F =
{
fx(·) := 1{· ≤ x} : x ∈ IRd

}
.

This is also a P-Donsker class. Moreover it is translation invariant in the sense that
for every fx(·) ∈ F and y ∈ IRd the function fx(·+y) ∈ F . It is well-known that the
classical empirical process α̃n(x) converges weakly to the d–variate Brownian bridge
B(x), x ∈ IRd, i.e. B is a mean zero Gaussian process indexed by F with covariance
function IE(B(x)B(y)) = F (x ∧ y) − F (x)F (y), x, y ∈ IRd, where x ∧ y denotes
the vector (x1 ∧ y1, . . . , xd ∧ yd). Corollary 1.2 implies that whenever σ2(b) → 0 as
b ↘ 0, the centered kdfe process

ηn,h(·) =
√
n
{
F̂n,h(·)− IEF̂n,h(·)

}
,

converges weakly uniformly in bandwidth to B(·) in the sense that (1.6) holds.
Note that trivially we get from (1.7):

Corollary 1.3. Whenever σ2(b) → 0 as b ↘ 0 and bn is a sequence of positive
constants 0 < bn < 1 satisfying bn → 0, and

(1.9) sup
0<h≤bn

sup
x∈IRd

√
n
∣∣IEF̂n,h(x)− F (x)

∣∣ = o(
√

log logn),

then, w.p. 1,

(1.10) sup
0<h≤bn

sup
x∈IRd

√
n
∣∣F̂n,h(x)− Fn(x)

∣∣ = o(
√

log logn).
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We shall infer our uniform in bandwidth LIL and Glivenko-Cantelli theorem
from Corollaries 1.2 and 1.3.

First we can easily derive from (1.7) a uniform in bandwidth Finkelstein-type
functional law of the iterated logarithm [FLIL] for the sequence of classes of random
functions

Fn =

{
ηn,h(·)√
2 log logn

: 0 < h ≤ bn

}
.

Towards formulating our uniform in bandwidth FLIL, let 	∞(F) denote the space
of bounded functions ϕ on F equipped with supremum norm

‖ϕ‖F = sup
x∈IRd

∣∣ϕ(1{· ≤ x}
)∣∣.

Further let H denote the subset of 	∞(F) consisting of functions of F of the form

1{· ≤ x} �→
∫
IRd

(
1{y ≤ x} − F (x)

)
h(y)F (dy),

where
∫
IRd h2(y)F (dy) ≤ 1. For all ε > 0 set

Hε =
{
φ : φ ∈ 	∞(F) and inf

ϕ∈H
‖ϕ − φ‖F ≤ ε

}
and for each ϕ ∈ H let

Bε(ϕ) =
{
φ : φ ∈ 	∞(F) and ‖ϕ − φ‖F ≤ ε

}
.

A special case of the compact LIL formulated in Section 2 gives the following IRd

version of the Finkelstein FLIL for the empirical process α̃n(·): w.p. 1, for all ε > 0
there exists an N > 0 such that for all n ≥ N ,

α̃n(·)√
2 log logn

∈ Hε

and for every ϕ ∈ H there exists a subsequence {nk} such that for all k ≥ 1,

α̃nk
(·)√

2 log lognk
∈ Bε(ϕ).

When d = 1 and F is continuous this gives the Finkelstein [6] FLIL. Clearly it is
routine to combine (1.7) with the IRd version of the Finkelstein FLIL just stated
to infer the following FLIL.

Corollary 1.4. Whenever σ2(b) → 0 as b ↘ 0, for any sequence of positive con-
stants 0 < bn < 1 satisfying bn → 0, w.p. 1, for all ε > 0 there exists an N such
that Fn ⊂ Hε for all n ≥ N and for every ϕ ∈ H there exists a subsequence {nk}
such that for all k ≥ 1,

(1.11)
ηnk,h(·)√
2 log lognk

∈ Bε(ϕ), uniformly in 0 < h ≤ bnk
.

Notice that, in particular, under the conditions of Corollary 1.4 we can infer the
following uniform in bandwidth version of the Chung [2] LIL

(1.12) lim sup
n→∞

sup
0<h≤bn

sup
x∈IRd

√
n|F̂n,h(x)− IEF̂n,h(x)|√

2 log logn
= sup

x∈IRd

√
F (x)(1− F (x), a.s.
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Recall that the classical Glivenko-Cantelli theorem says that w.p. 1

(1.13) lim
n→∞

sup
x∈IRd

∣∣Fn(x)− F (x)
∣∣ = 0.

Next we get the following uniform in bandwidth Glivenko-Cantelli theorem for F̂n,h.

Proposition 1.5. For any sequence of positive constants 0 < bn < 1 satisfying
bn → 0, w.p. 1, we have

(1.14) lim
n→∞

sup
0<h≤bn

sup
x∈IRd

∣∣F̂n,h(x)− IEF̂n,h(x)
∣∣ = 0

and whenever μ(b) → 0 as b ↘ 0

(1.15) lim
n→∞

sup
0<h≤bn

sup
x∈IRd

∣∣F̂n,h(x)− F (x)
∣∣ = 0.

Proof. Assertion (1.14) follows immediately from (1.4) and (1.13). Whenever μ(b)→
0 as b ↘ 0, assertion (1.15) is an immediate consequence of (1.14).

These uniform in bandwidth limit theorems take on a statistical importance when
h is replaced by an estimator ĥn based on the sample X1, . . . , Xn chosen by some
optimality criterion. They imply that as long as ĥn → 0, w.p. 1, the CLT, LIL and
Glivenko–Cantelli theorem hold for their plug-in versions based on F̂n,ĥn

. For more
uniform in bandwidth results for kernel-type nonparametric function estimators and
discussions of their uses consult Einmahl and Mason [5], Mason and Swanepoel [14]
and Mason [13], as well as the references therein. For work on bandwidth selection
for kernel estimators of the c.d.f. refer to Janssen, Swanepoel and Veraverbeke [10],
Swanepoel [16] and Swanepoel and van Graan [17].

Our results have largely followed from bookkeeping. To apply them we must
clarify when μ(b) → 0 and σ2(b) → 0 as b ↘ 0. In the next subsection we discuss
conditions for this to happen. We shall also show that Kb is a P-Donsker class for
any 0 < b ≤ 1.

1.1. Sufficient conditions and an open problem

We shall first show thatKb is P−Donsker for any 0 < b ≤ 1. To do this we shall apply
a result of Giné and Nickl [8]. As above we use the notation F = {1{· ≤ x} : x ∈
IRd}. For any 0 < h ≤ 1 let Ph(·) be the probability measure induced on IRd by the
multivariate c.d.f K(·/h) and let μh denote the corresponding probability measure
induced on IRd by defining for any Borel subset A ⊂ IRd, μh(A) = Ph(−A). Further
let M = {μh : 0 < h ≤ 1}. Notice that for any μh ∈ M and fx(·) := 1{· ≤ x} ∈ F

(1.16) fx ∗ μh(·) = K

(
x− ·
h

)
.

From identity (1.16) and the fact that F is a translation invariant P-Donsker class,
we can apply Lemma 2 of Giné and Nickl [8] to conclude that{

K

(
x− ·
h

)
: x ∈ IRd, 0 < h ≤ 1

}
is a P-Donsker class. This implies via Theorem 3.8.1, p. 121, and Exercise 6, p. 127,
in Dudley [3] that Kb is P-Donsker for any 0 < b ≤ 1.

We shall next derive some sufficient conditions for μ(b) → 0 and σ2(b) → 0 as
b ↘ 0. To ease some needed calculations, let X, U and V be independent, where
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X has c.d.f. F , U has c.d.f. K and V has c.d.f. K2. Notice that

IEK

(
x−X

h

)
=

∫
IRd

K

(
x− t

h

)
F (dt)

= P{hU +X ≤ x} =

∫
IRd

F (x− hz)K(dz).

Therefore

μ(x, h) :=IE

(
K

(
x−X

h

)
− 1{X ≤ x}

)
(1.17)

=

∫
IRd

(
F (x− hz)− F (x)

)
dK(z).

Now noting that

IEK2

(
x−X

h

)
=

∫
IRd

K2

(
x− t

h

)
F (dt)

= P{hV +X ≤ x} =

∫
IRd

F (x− hz)K2(dz)

and

IE

(
1{X ≤ x}K

(
x−X

h

))
= P{hU +X ≤ x,X ≤ x}

=

∫
IRd

F
(
(x− hz) ∧ x

)
dK(z),

we see that

σ2(x, h) := Var

(
K

(
x−X

h

)
− 1{X ≤ x}

)
=

∫
IRd

(
F (x− hz)− F (x)

)
dK2(z)

(1.18)
− 2

∫
IRd

(
F
(
(x− hz) ∧ x

)
− F (x)

)
dK(z)

−
(∫

IRd

(
F (x− hz)− F (x)

)
dK(z)

)2

.

We note for future reference that when d = 1

σ2(x, h) :=

∫
IR

(
F (x− hz)− F (x)

)
dK2(z)

− 2

∫ ∞

0

(
F (x− hz)− F (x)

)
dK(z)(1.19)

−
(∫

IR

(
F (x− hz)− F (x)

)
dK(z)

)2

.

It can be readily verified using equation (1.17) that whenever F is continuous or
K(·) = 1{· ≥ 0} then

(1.20) lim
b↘0

μ(b) = 0

and using equation (1.18) that whenever F is continuous or degenerate or K(·) =
1{· ≥ 0} then

(1.21) lim
b↘0

σ2(b) = 0.
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An open problem is to characterize when μ(b) → 0 and σ2(b) → 0 as b ↘ 0. In
this subsection we shall solve it in the case d = 1 and in the process obtain the
following refinement to Proposition 1.5 when d = 1, namely, we can add that when
d = 1, (1.15) holds if and only if F is continuous or K(·) = 1{· ≥ 0}. In addition,
if F is not continuous and K(0)−K(0−) < 1, then, w.p. 1,

(1.22) lim inf
n→∞

sup
0<h≤bn

sup
x∈IR

∣∣F̂n,h(x)− F (x)
∣∣ > 0.

When d = 1, a version of this result for F̂n,hn for a fixed sequence hn converging
to zero can be inferred from those in Chacón and Rodŕıguez-Casal [1]. They base
their arguments on probability inequalities. Yamato [18] was the first to show that

the Glivenko-Cantelli theorem holds for F̂n,hn when d = 1, F is continuous and hn

goes to zero at a certain rate.

Our refinement to Proposition 1.5 is an immediate consequence of the follow-
ing lemma. The proof of part of it is contained in the arguments in the proof of
Theorem 1 of Chacón and Rodŕıguez-Casal [1].

Lemma 1.6. When d = 1, F is continuous or K(·) = 1{· ≥ 0} if and only if

(1.23) lim
b↘0

μ(b) = 0.

Proof. It has already been pointed out that if F is continuous then (1.23) holds,
and obviously, (1.23) holds if K(·) = 1{· ≥ 0}, since in this case for all h > 0 and
x ∈ IR, K(x−·

h ) = 1{· ≤ x}.
Next, assume that (1.23) holds and F has a discontinuity point at x. In this case

as h ↘ 0, ∫
(−∞,0]

F (x− hz) dK(z) →
∫
(−∞,0]

F (x) dK(z) = F (x)K(0)

and ∫
(0,∞)

F (x− hz) dK(z) →
∫
(0,∞)

F (x−) dK(z) = F (x−)
(
1−K(0)

)
.

This says that as h ↘ 0

Fh(x)− F (x) →
(
F (x)− F (x−)

)(
K(0)− 1

)
.

Hence if K(0) < 1, (1.23) cannot hold. Thus we must have K(0) = 1.
Suppose now that x is a discontinuity point andK(0) = 1, butK(0)−K(0−) < 1.

In this case there exists a γ > 0 such that K(−γ) > 0. We get for any h > 0∫
IR

(
F (x− hγ − zh)− F (x− hγ)

)
dK(z)

=

∫
(−∞,0]

(
F (x− hγ − zh)− F (x− hγ)

)
dK(z)

=

∫ 0−

−γ

(
F (x− hγ − zh)− F (x− hγ)

)
dK(z)

+

∫ −γ

−∞

(
F (x− hγ − zh)− F (x− hγ)

)
dK(z),
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which converges as h ↘ 0 to(
F (x−)− F (x−)

)(
K(0−)−K(−γ+)

)
+

(
F (x)− F (x−)

)
K(−γ)

=
(
F (x)− F (x−)

)
K(−γ) > 0.

This shows that (1.23) cannot be true unless K(·) = 1{· ≥ 0}.
An examination of the arguments just given shows if F is not continuous and

K(0)−K(0−) < 1, then (1.23) cannot hold. Thus in order for (1.23) to be valid F
must be continuous or K(·) = 1{· ≥ 0}.
Remark 1.7. Notice that we have also shown, when d = 1, that

(1.24) lim
b↘0

μ(b) > 0

if and only if F is not continuous and K(0)−K(0−) < 1.

The next lemma specifies exactly when σ2(b) → 0 as b ↘ 0, when d = 1.

Lemma 1.8. When d = 1, F is continuous or F is degenerate or K(·) = 1{· ≥ 0}
if and only if

(1.25) lim
b↘0

σ2(b) = 0.

Proof. Again, as has already been pointed out, if F is continuous then (1.25) is
valid, and it holds trivially if K(·) = 1{· ≥ 0}, since for all h > 0 and x ∈ IR,
K(x−·

h ) = 1{· ≤ x}.
If F is degenerate there is an x0 such that F (x0) − F (x0−) = 1. Thus with

probability 1, K(x−X
h )−1{X ≤ x} = K(x−x0

h )−1{x0 ≤ x}, so clearly σ2(x, h) = 0.
Now assume that F is not degenerate but is not continuous and recall the ex-

pression for σ2(x, h) given in (1.19).

Case 1. If x is a discontinuity point of F and K(0) < 1 as h ↘ 0, we get by using
expression (1.19) for σ2(x, h) that

σ2(x, h)→ 2
(
1−K(0)

)(
F (x)− F (x−)

)
−

(
1−K2(0)

)(
F (x)− F (x−)

)
−
(
1−K(0)

)2(
F (x)− F (x−)

)2
.

This last expression equals(
1−K(0)

)2[(
F (x)− F (x−)

)
−
(
F (x)− F (x−)

)2]
,

which is strictly positive since F is not degenerate. Thus (1.25) cannot hold.

Case 2. If x is a discontinuity point of F and K(0) = 1, but K(0) −K(0−) < 1.
In this case there exists a γ > 0 such that K(−γ) > 0. We get as h ↘ 0,

σ2(x− hγ, h) =

∫
(−∞,0]

(
F (x− hγ − hz)− F (x− hγ)

)
dK2(z)

−
(∫

(−∞,0]

(
F (x− hγ − hz)− F (x− hγ)

)
dK(z)

)2

→
((
F (x)− F (x−)

)
−
(
F (x)− F (x−)

)2)
K2(−γ) > 0.

Hence (1.25) is not valid.
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Examining the above arguments we see that if F is not continuous, K(0) −
K(0−) < 1 and F is not degenerate then (1.25) does not hold.

Remark 1.9. Notice that when d = 1, F is not continuous, F is not degenerate
and K(0)−K(0−) < 1 if and only if

(1.26) lim
b↘0

σ2(b) > 0.

Remark 1.10. One may conjecture that Lemmas 1.6 and 1.8, as well as the above
addition to Proposition 1.5 remain true in dimension d ≥ 2. However this is not
the case. Consider (X,Y ), (X1, Y1), (X2, Y2), . . . , i.i.d.,where X is independent of
Y and X has continuous c.d.f. FX and Y has discontinuous c.d.f. FY . Consider the
kernel defined for (s, t) ∈ IR2 by

H(s, t) = K(s)1{t ≥ 0},
where K is a continuous c.d.f. and its corresponding class of functions

Hb =

{
K

(
x− ·
h

)
1{· ≤ y} − 1

{
(·, ·) ≤ (x, y)

}
: (x, y) ∈ IR2, 0 < h ≤ b

}
for 0 < b ≤ 1. Using Lemma 22 of Nolan and Pollard [15] one sees that the classes of
functions F and {K(x−·

h ) : x ∈ IR, 0 < h ≤ 1} have polynomial covering numbers,
from which one readily infers that H1 has a polynomial covering number. (See, for
instance, Lemma A.1 in Einmahl and Mason [4].) This implies that Hb is P-Donsker
for any 0 < b ≤ 1.

Now

IEH

(
x−X

h
,
y − Y

h

)
= IEK

(
x−X

h

)
FY (y),

IEH2

(
x−X

h
,
y − Y

h

)
= IEK2

(
x−X

h

)
FY (y)

and

IEH

(
x−X

h
,
y − Y

h

)
1
{
(X,Y ) ≤ (x, y)

}
= IE

[
K

(
x−X

h

)
1{X ≤ x}

]
FY (y).

From these expressions one readily verifies that μ(b) → 0 and σ2(b) → 0 as b ↘ 0,
so that Corollaries 1.2-1.4 apply, along with the second part of Proposition 1.5.
However, clearly the joint c.d.f. of (X,Y ) is not continuous, not degenerate and
H(x, y) �= 1{(x, y) ≥ (0, 0)}.

1.2. A straightforward generalization of our results

Though in our note we have focused on the kernel distribution function estimator,
our analysis can be readily extended to the following more general indexed by func-
tion setup. Let G be a bounded separable translation invariant class of measurable
real valued P−Donsker functions defined on IRd and for any 0 < h ≤ 1 let μh be as
above. Consider the process indexed by g ∈ G

(1.27)
1√
n

n∑
i=1

{
g ∗ μh(Xi)− g(Xi)− IEg ∗ μh(X) + IEg(X)

}
.

Specializing to G = F we get (1.2). It should be clear to the reader that a straight-
forward extension of the arguments just given show that the obvious analogs of
Proposition 1.1 and Corollaries 1.2-1.4 hold for the process (1.27).
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1.3. Comparison with results in Mason and Swanepoel [14]

In this subsection d = 1. We assume that F satisfies the Lipschitz condition

(1.28)
∣∣F (x)− F (y)

∣∣ ≤ C|x− y|, for all x, y ∈ IR, some 0 < C < ∞,

and that

(1.29)

∫ ∞

−∞
|z| dK(z) < ∞.

Using empirical process inequalities Mason and Swanepoel [MS] [14] obtained a gen-
eral uniform in bandwidth theorem that, when specialized to the kernel distribution
function estimator, yields the following proposition.

Proposition 1.11 (Proposition 1 MS [14]). Assume that F satisfies (1.28) and K
fulfills(1.29). Then for c > 0, 0 < h0 < 1, w.p. 1, for some constant 0 < A(c) < ∞,

(1.30) lim sup
n→∞

sup
c log n

n ≤h≤h0

sup
x∈IR

√
n|F̂n,h(x)− Fn(x)− (IEF̂n,h(x)− F (x))|√

h(| log h| ∨ log logn)
= A(c).

They then pointed out that (1.30) readily implies the following corollaries, which
show that under more smoothness assumptions one can obtain rates in our Corol-
laries 1.2 and 1.3, however with the supremum taken over c log n

n ≤ h ≤ bn instead
of 0 ≤ h ≤ bn.

Corollary 1.12 (Corollary 1 MS [14]). Under the assumptions of Proposition 1.11,
for any sequence of positive constants 0 < bn < 1 satisfying bn → 0 and bn ≥
c logn/n, w.p. 1

sup c log n
n ≤h≤bn

supx∈IR |√n{F̂n,h(x)− IEF̂n,h(x)} − α̃n(x)|
√
log logn

(1.31)

= O

(√
bn

(
| log bn|
log logn

∨ 1

))
= o(1).

Corollary 1.13 (Corollary 2 MS [14]). Under the assumptions of Proposition 1.11,
if bn → 0, bn ≥ c logn/n and

(1.32) sup
c log n

n ≤h≤bn

sup
x∈IR

√
n|IEF̂n,h(x)− F (x)| = O

(√
bn
(
log logn ∨ | log bn|

))
then

(1.33) sup
c log n

n ≤h≤bn

√
n‖F̂n,h − Fn‖∞ = O

(√
bn
(
log logn ∨ | log bn|

))
a.s.

Notice that these results show that with added smoothness assumptions one can
obtain almost sure rates in Proposition 1.1 and Corollaries 1.2 and 1.3. Mason and
Swanepoel [14] also derived the following uniform in bandwidth refinement to the
Finkelstein FLIL, where here we use the same notation as in Corollary 1.4.
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Corollary 1.14 (Corollary 3 MS [14]). Under the assumptions of Proposition 1.11,
for any sequence of positive constants bn satisfying bn → 0 and bn ≥ c logn/n, w.p.
1, for all ε > 0 there exists an N such that Fn ⊂ Hε for all n ≥ N and for every
ϕ ∈ H there exists a subsequence {nk} such that for all k ≥ 1,

(1.34)
ηnk,h(·)√
2 log lognk

∈ Bε(ϕ), uniformly in
c lognk

nk
≤ h ≤ bnk

.

Remark 1.15. Clearly our Corollary 1.4 is an improvement of Corollary 3 of MS
[14], since we do not require F to be Lipschitz and we can replace c lognk

nk
≤ h ≤

bnk
by 0 < h ≤ bnk

. We also point out that Giné and Nickl [9] have obtained
under smoothness conditions a FLIL for the special case of the kdfe process when
F̂n,hn(x) =

∫ x

−∞ fn,hn(y)dy, where fn,hn is the kernel density estimator defined in

(1.1) and hn goes to zero such that hn ≥ logn/n and supn≥1

√
nh1+t

n < ∞ for some
t > 0 depending on the smoothness of F . When the kernel k used to define fn,hn is a
bounded density, Corollary 1.4 implies their FLIL by choosing K(x) =

∫ x

−∞ k(y)dy.

They derive their FLIL via a general exponential inequality for
√
n‖F̂n,h − Fn‖∞

and they do not assume that the kernel k is a density.

Remark 1.16. We take this opportunity to point out the following corrections in
Mason and Swanepoel [14]:

1. Replace “(logn)−1” by “c logn/n” in their Corollaries 1-3 and three lines
above equation (2.16).

2. In equation (2.5) replace “O(
√
bn)” by “= O(

√
bn(

| log bn|
log logn ∨ 1)) = o(1)”.

3. In equations (2.6) and (2.7) and in the two lines below their Corollary 2,
replace “

√
bn log logn” by “

√
bn(log logn ∨ | log bn|)”.

4. Three lines below equation (2.15) replace “0 < bn < 1 satisfying bn ≥
(logn)−1 and

√
nbn/

√
log logn = o(1)” by “bn satisfying bn ≥ c logn/n and

bn → 0”.

2. Compact LIL

In this section we clarify for the convenience of the reader the compact LIL used in
(1.4) above. The presentation in this section is adapted from material in Giné and
Mason [7]. Let X,X1, X2, . . . , be i.i.d. random variables from a probability space
(Ω,A, P ) to a measure space (S,S). Consider an empirical process indexed by a
class F of measurable real valued functions on (S,S) defined by

√
n(Pn − P )ϕ =

∑n
i=1 ϕ(Xi)− nIEϕ(X)√

n
, ϕ ∈ F .

Assume that the class F is separable for P (P -separable) in the following sense:

Definition 1. A class F is separable for P if, for each n, the process (Pn − P )ϕ,
ϕ ∈ F , is separable. This means that there exists a countable set F0 ⊆ F such that
for each ϕ in F ,

(Pn − P )ϕ ∈
{
(Pn − P )g : g ∈ F0, ‖ϕ− g‖L2(P ) ≤ ε

}
,

for every ε > 0, where A denotes the closure of a set A and

‖ϕ− g‖2L2(P ) = IE
(
ϕ(X)− g(X)

)2
.
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In the following definition 	∞(F) denotes the space of bounded functions γ on F ,
equipped with supremum norm ‖γ‖F = supϕ∈F |γ(ϕ)|.
Definition 2. We say that a P -separable class of functions F satisfies the compact
LIL for P , whenever the sequence{√

n(Pn − P )ϕ√
2 log logn

: ϕ ∈ F
}∞

n=1

is almost surely relatively compact in 	∞(F) with set of limit points

(2.1) H =
{
γ �→ IE

[(
γ(X)− Pγ

)
h(X)

]
: IEh2(X) ≤ 1

}
.

Note that, in particular, if F satisfies the compact LIL for P , then

(2.2) lim sup
n→∞

sup
ϕ∈F

∣∣∣∣√n(Pn − P )ϕ√
2 log logn

∣∣∣∣ = sup
ϕ∈F

(
Var

(
ϕ(X)

))1/2
, a.s.

Let us recall a LIL for empirical processes proved by Ledoux and Talagrand [11]
in separable Banach spaces and stated in the language of empirical processes in
Theorem 9 on p. 609 of Ledoux and Talagrand [12]. Let F be a separable for P
class of functions in the sense of Definition 1.

In this situation, a P−separable class F ⊂ L2(P ) such that supϕ∈F |Pϕ| < ∞
satisfies the compact LIL for P if and only if

(a) F is totally bounded in L2,
(b) IE(H2/ log logH) < ∞ where H = supϕ∈F |ϕ|, and
(c) supϕ∈F |

√
n(Pn−P )ϕ√
log logn

| → 0 in probability.

In particular, assuming separability, if EH2 < ∞ and F is P -Donsker then F
satisfies the compact LIL (since, F being P -Donsker, the sequence supϕ∈F |(Pn −
P )ϕ/

√
n| is stochastically bounded).
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