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Smooth and non-smooth estimates of

a monotone hazard∗

Piet Groeneboom and Geurt Jongbloed

Delft University of Technology

Abstract: We discuss a number of estimates of the hazard under the assump-
tion that the hazard is monotone on an interval [0, a]. The usual isotonic least
squares estimators of the hazard are inconsistent at the boundary points 0 and
a. We use penalization to obtain uniformly consistent estimators. Moreover,
we determine the optimal penalization constants, extending related work in
this direction by [Statist. Sinica 3 (1993) 501–515; Ann. Statist. 27 (1999)
338–360]. Two methods of obtaining smooth monotone estimates based on a
non-smooth monotone estimator are discussed. One is based on kernel smooth-
ing, the other on penalization.

1. Introduction

In survival analysis and reliability theory, the hazard rate (also known as failure
rate) is a natural function to model the distribution of data. It describes the prob-
ability of instantaneous failure at time x, given the subject has functioned until x.
The exponential distributions are the only distributions with constant hazard rate,
which is related to the ‘memoryless property’ of this distribution. Other shapes of
the hazard rate indicate whether the object suffers ageing (increasing hazard rate)
or is getting more reliable having survived longer (decreasing hazard rate).

In estimating a hazard function under the restriction that it is monotone, popular
methods are maximum likelihood and isotonic least squares projection ([24], Sec-
tion 7.4). These estimators are typically piecewise constant and non-smooth. More
recently, the method of monotonic rearrangements was studied in [16]. Depending
on the choice of the initial estimator, these estimators can be smooth. Methods to
obtain smooth estimators of the hazard rate include plug-in ratio estimators and
smoothed empirical hazards as discussed in [23]. See [25] for an overview of the
various estimators. These smooth estimators are typically not monotone. In [8] the
so-called maximum smoothed likelihood estimator was introduced, an estimator
that is both smooth and monotone. In this paper, non-smooth as well as smooth
monotone estimators of a monotone hazard rate will be studied. Before giving an
outline of the paper, we spend some words on our motivation to study this problem.

The problem of testing a null hypothesis of exponentiality (constant hazard rate)
against the alternative of a monotone hazard rate, was extensively studied in the
sixties of the preceding century; see e.g. [22]. Only quite recently, the problem of
testing the null hypothesis of monotonicity of a hazard rate has received attention.
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Gijbels & Heckman [12] consider a multiscale version of the Proschan-Pyke test, and
compute critical values based on the exponential distribution. Hall & Van Keilegom
[13] use an integral type test statistic that is based on second order differences
of the empirical cumulative hazard function and approximate the critical values
of the test using bootstrap samples from a well chosen smoothed version of the
empirical cumulative hazard function. Durot [2] studies the supremum distance
between two estimators of the cumulative hazard and obtains critical values using
the exponential distribution. An alternative approach to this testing problem is
developed in [10]. There an integral-type test statistic is introduced and a bootstrap
approach is used to determine approximate critical values. This approach is shown
to be less conservative than methods based on the exponential distribution and
less anticonservative than the method proposed in [13]. In order to prove that the
bootstrap method described in [10] works well, estimators for a locally monotone
hazard rate are needed for generating bootstrap samples, that are smooth and
uniformly consistent on the interval of monotonicity and behave properly near the
boundary of the interval of monotonicity.

In this paper we concentrate on the nonparametric least squares method to esti-
mate a locally monotone hazard rate and discuss smooth and non-smooth versions
of this approach. It is well-known that the “raw” least-squares or maximum likeli-
hood method yields inconsistent estimates at the boundary (this will also be seen in
Section 2). Following an approach introduced in the context of density estimation
in [27, 28], we introduce a penalty at the endpoints in the least squares criterion. In
Theorem 2.1 in Section 2 the asymptotically optimal penalization constants, min-
imizing an asymptotic mean squared error criterion, are determined. The optimal
order of the penalization constants turns out to be n−2/3, if n is the sample size
and it is assumed that the hazard is strictly increasing on the interval of interest.
This result is in line with the results derived in [17] for the penalized least squares
estimator in monotone regression. Somewhat different recommendations were given
in [27, 28], where penalization constants of the order (logn)/n and 1/

√
n were used,

respectively (see also Remark 2.2).
There are several methods that can be used to construct smooth estimators based

on a basic non-smooth monotone estimator discussed in Section 2. One method that
automatically leads to monotone estimators, is kernel smoothing. In Section 3 this
method is described and the resulting estimator is shown to be asymptotically
normally distributed. Moreover, both locally and globally optimal bandwidths are
determined for estimating the hazard rate.

In Section 4 smooth estimates based on penalizing the estimates of Section 2 are
studied. The penalization uses an integral over the square of the derivative of the
hazard, as used in [26] and [20]. We show that full minimization of the penalized
criterion yields a uniformly consistent estimate of the hazard, but gives inconsistent
estimates of the derivative of the hazard at the boundary points, since the deriva-
tives tend to zero at the boundary, as in [26] and [20]. We remedy the latter difficulty
by introducing two boundary conditions in order to get consistent estimates of the
derivative of the hazard, also at the boundary points. Having consistent estimates
of the derivative of the hazard is important in generating bootstrap samples for
finding critical values of (isotonic) tests for monotone hazards in the setting of [10].

2. Monotone least-squares estimates of the hazard

Suppose we have a sample X1, . . . , Xn from a distribution function F0 on [0,∞),
with density f0 and hazard function h0. This latter function characterizes the dis-
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tribution function F0, which can be seen by the relation

h0(x) = − d

dx
log(1− F0(x)) =

f0(x)

1− F0(x)

with inverse

F0(x) = 1− exp

(
−
∫ x

0

h0(y) dy

)
.

If one wants to estimate the hazard h0 under the restriction that it is monotone
on the interval [0, a], one of the simplest estimates is the least squares estimate ĥn,
which minimizes the quadratic criterion

(2.1) 1
2

∫ a

0

h(x)2 dx−
∫
[0,a]

h(x) dHn(x),

under the restriction that h is monotone. Here Hn is the empirical cumulative
hazard function

Hn(x) = − log{1− Fn(x)}, x < max
i

Xi,

and Fn is the empirical distribution function of the sample X1, . . . , Xn. The ra-
tionale behind this criterion function is that Hn will be close to H0 (defined as∫ x

0
h0(y) dy) asymptotically and that h �→ 1

2

∫ a

0
h(x)2 dx −

∫ a

0
h(x) dH0(x) is mini-

mized by taking h = h0 (which can be seen by ‘completing the square’). Another
option is to use maximum likelihood methods, but in view of our restriction of
the monotonicity hypothesis to an interval, this method has more complications
in the present case, so we will concentrate on least squares methods in this paper.
For specificity, we shall consider the hypothesis that h is nondecreasing on [0, a],
although similar methods can be used if the hypothesis is that h is nonincreasing
on [0, a] or monotone on a compact interval not including zero.

The solution of the problem of minimizing (2.1) is well-known, and found in the
following way. Construct the so-called cusum diagram, consisting of the point (0, 0),
and the points(

X(i),Hn(X(i)−)
)
, 1 ≤ i ≤ n, X(i) < a, (a,Hn(a−)) ,

where theX(i) are the order statistics of the sample, and where we assumeX(n) > a.

Then the solution ĥn of the minimization problem is given by the left-continuous
derivative of the greatest convex minorant of this cusum diagram.

To illustrate the behavior of the estimators in this paper, we introduce the family
of hazards {h(d) : d ∈ [−1, 1]}, also considered in [13]. The corresponding distribu-
tion functions on (0,∞) are given by

(2.2) F (d)(x) = 1− exp
{
−1

2x− 5
2

{
1
4

(
x− 3

4

)4
+
(
3
4

)3
x
}
− 1

3dx
3 + 5

8

(
3
4

)4}
.

If d > 0 we get a strictly increasing hazard; if d < 0, the hazard is decreasing on(
3

4
− 2

15
d− 2

15

√
d2 − 45

4
d,

3

4
− 2

15
d+

2

15

√
d2 − 45

4
d

)

and if d = 0 the hazard has a stationary point at x = 3/4. See Figure 1 for some
hazards and corresponding densities in this family.



Monotone hazard estimation 177

Fig 1. The left panel shows the hazard functions h(d) for d = −1,−0.75,−0.50,−0.25 (dashed),
d = 0 (full curve) and d = 0.25, 0.50, 0.75, 1 (dotted) corresponding to distribution functions
(2.2). The stationary points are shown by the large dots. The right panel shows the corresponding
densities.

Remark 2.1. Note that we need the constant 5
8 (

3
4 )

4 in the exponent to make the
distribution function zero at the left endpoint 0, but that this constant is missing
in the formula given below (4.1) on p. 1121 in [13].

A picture of the cusum diagram and its greatest convex minorant for a sample of

size n = 100 from the distribution function F (1) on the interval [0,
(
F (1)

)−1
(0.95)]

and the corresponding estimate of the hazard function are shown in Figure 2.
The lemma below shows that on intervals that stay away from the boundary

points 0 and a, the hazard estimator is uniformly consistent.

Lemma 2.1. Suppose 0 ≤ αn, βn → 0 as n → ∞. Let h0 be continuous and
nondecreasing on [0, a]. Then for each 0 < δ < a/2,

(2.3) sup
[δ,a−δ]

|ĥn(x)− h0(x)| → 0 with probability one.

Proof. The argument is similar to that in Theorem 3 in [6]. First note that Hn

converges to H0 uniformly on [0, a] almost surely by the Glivenko Cantelli theorem.

Fig 2. The (unpenalized) cusum diagram and its greatest convex minorant (left panel) and the
corresponding least squares estimate of the hazard (right panel) for a sample of size n = 100 from

the distribution function F (1) on the interval [0,
(
F (1)

)−1
(0.95)]. The real hazard is the dashed

curve in the right panel.
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Since a.s. for any ε > 0, H0 − ε ≤ Ĥn ≤ Hn ≤ H0 + ε on [0, a] for all n sufficiently
large (since Ĥn is the greatest convex minorant of Hn and H0 − ε is a.s. a convex
minorant of Hn for n sufficiently large), Ĥn converges to H0 uniformly on [0, a]
almost surely.

Now fix x ∈ (0, a). Then for each ε > 0 such that (x− ε, x+ ε) ⊂ [a, b], we have

by definition of ĥn

Ĥn(x)− Ĥn(x− ε)

ε
≤ ĥn(x) ≤

Ĥn(x+ ε)− Ĥn(x)

ε
.

The left hand side converges a.s. to (H0(x) −H0(x − ε))/ε; the right hand side to
(H0(x+ ε)−H0(x))/ε. Since ε was chosen arbitrarily, this shows (by continuity of

h0 on [0, a]) that ĥn(x) → h0(x) w.p. 1. Uniform convergence on [δ, a − δ] follows

by monotonicity of both ĥn and h0 and continuity of h0 on [0, a].

It is well-known that this estimate has the undesirable feature of being inconsis-
tent at the boundary points 0 and a, and indeed one notices in Figure 2 that the
estimate ĥn(0) is too low and the estimate ĥn(a) is too high. In fact, it immediately

follows from the representation of ĥn that ĥn = 0 on (0, X(1)) for all n. To remedy
a similar problem in the context of maximum likelihood estimation of a monotone
density, [27, 28] suggest to introduce a penalty at the endpoints. We also use that
method in the present situation.

To this end, we introduce the penalized cusum diagram, consisting of the point
(0, 0), and the points

(2.4)
(
X(i),Hn(X(i)−) + αn

)
, X(i) < a, (a,Hn(a−) + αn − βn) ,

where αn and βn are nonnegative penalty parameters. The left derivative of the
present cusum diagram minimizes the criterion

(2.5) 1
2

∫ a

0

h(x)2 dx−
∫
[0,a]

h(x) dHn(x)− αnh(0) + βnh(a),

over all nondecreasing functions h on [0, a]. Consistency of the resulting estimator
on [δ, a− δ] is obtained by following the proof of Lemma 2.1. This characterization

of the estimator also leads to consistency of ĥn at the boundary points 0 and a.
Moreover, the optimal order of convergence to zero of the parameters αn and βn

which is important in order to get a feeling for what to do in practice, can be
determined. In [27] it is suggested to take a related penalty of order (log n)/n and
in [28] to take a penalty of order 1/

√
n. One of the statements in the theorem below

is that, under the assumption that h0 stays away from zero and is strictly increasing
on [0, a], the optimal penalty is of order n−2/3. This rate was also found in [17] for
penalized least squares monotone regression.

Theorem 2.1. Let h0 be nondecreasing on [0, a] with strictly positive and contin-
uous (one-sided) derivatives at 0 and a. Let 0 ≤ αn, βn → 0. Then:

(i) For each 0 < δ < a, with probability one, for all n sufficiently large

ĥn(0) = inf
x∈[0,δ]

Hn(x) + αn

x
and ĥn(a) = sup

x∈[a−δ,a]

Hn(a)− βn −Hn(x)

a− x
.

(ii) The asymptotically MSE optimal rates for the penalization parameters are
αn, βn ∼ n−2/3.
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(iii) Let W be standard Brownian motion on [0,∞). Taking αn = αn−2/3 and
bn = βn−2/3,

(2.6) n1/3(ĥn(0)− h0(0))
D−→ inf

t>0

(
W (h0(0)t)

t
+

α

t
+ 1

2h
′
0(0)t

)
and

n1/3(ĥn(a)− h0(a))
D−→ inf

t>0

(
W (h0(a)t)

t
+

β

t
+ 1

2h
′
0(a)t

)
(iv) The asymptotically MSE-optimal choices for the penalization parameters are

αn = αn−2/3 and βn = βn−2/3 where α > 0 is the minimizer of

Emin
t>0

{
1
2h

′
0(0)t+ {α+W (h0(0)t)} /t

}2
,

and β > 0 is the minimizer of

Emin
t>0

{
1
2h

′
0(a)t+ {β +W (h0(a)t)} /t

}2
.

Proof. We concentrate on the situation at x = 0 with αn as penalty parameter. The
right boundary at x = a with penalty parameter βn can be dealt with similarly.

(i) Fix δ > 0. The local assumption on h0 near zero implies that x �→ H0(x)/x
is strictly increasing on (0, a]. Hence

(2.7) inf
x∈[δ,a]

H0(x)

x
=

H0(δ)

δ
>

H0(δ/2)

δ/2
.

For convenience, write H̃n = Hn+αn1(0,∞)−βn1[a,∞). By the uniform convergence

of H̃n to H0 on [0, a], x �→ H̃n(x)/x converges to x �→ H0(x)/x uniformly on [δ/2, a].
Combined with (2.7), this shows that with probability one, for all n sufficiently large

inf
x∈[δ,a]

H̃n(x)

x
>

H̃n(δ/2)

δ/2
, implying ĥn(0) = inf

x∈[0,δ]

Hn(x) + αn

x
.

(ii) Let (αn) be given and (δn) be a sequence with 0 < δn → 0 and nδn → ∞ as
n → ∞. Consider the localized and centered process

t �→ Hn(δnt)−H0(δnt)

δnt
+

αn

δnt
+

H0(δnt)

δnt
− h0(0) = Vn(t)

and note that

ĥn(0)− h0(0) = inf
t>0

Vn(t).

For fixed t,

(2.8) Vn(t) = (nδn)
−1/2Wn(t)

t
+

αn/δn
t

+ 1
2h

′
0(0)δnt+

1
2 (h

′
0(ξn)− h′

0(0))δnt,

where 0 ≤ ξn ≤ δnt and Wn(t) is an asymptotically non-degenerate random vari-
able. Moreover, for W standard Brownian Motion on [0,∞),

(2.9) Wn(t) =

√
n

δn
(Hn(δnt)−H0(δnt))

D−→W (h0(0)t)
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in D([0,∞)) endowed with the topology of uniform convergence on compacta. Ig-
noring the (asymptotically negligible) last term in (2.8), we see that balancing the
two deterministic terms yields δn ∼ √

αn; taking δn converging either faster or
slower to zero than this, will lead to a slower rate of convergence of Vn to zero.

Using this choice, Vn(t) = OP

(
n−1/2α

−1/4
n

)
+O

(
α
1/2
n

)
. This shows that starting

off with αn ∼ n−2/3 leads to the fastest rate of convergence of Vn(t) to zero.
(iii) We now take δn = n−1/3 and αn = αn−2/3 with α > 0. Also using (i)

and the local assumption on h0 near zero leads for any ν > 0 to the approximate
asymptotic representation

n1/3
(
ĥn(0)− h0(0)

)
= inf

t∈(0,νn1/3]
n1/3Vn(t)

= inf
t∈(0,νn1/3]

(
Wn(t)

t
+

α

t
+ 1

2h
′
0(0)t

)
,

where ignoring the last term in (2.8) is justified because ν can be chosen arbitrarily
small (0 ≤ ξn ≤ ν). In Lemma A.1 in the appendix we show that by taking M > 0
sufficiently large and ε > 0 sufficiently small,

n1/3
(
ĥn(0)− h0(0)

)
= inf

t∈(ε,M ]

(
Wn(t)

t
+

α

t
+ 1

2h
′
0(0)t

)
with arbitrarily high probability. Together with (2.9), and the fact that for Brownian
Motion on [0,∞)

inf
t>0

(
W (h0(0)t)

t
+

α

t
+ 1

2h
′
0(0)t

)
= inf

t∈(ε,M ]

(
W (h0(0)t)

t
+

α

t
+ 1

2h
′
0(0)t

)
with arbitrarily high probability by taking ε > 0 sufficiently small and M > 0 suffi-
ciently large, this leads to (2.6). Finally, the optimal asymptotically MSE-optimal
value for α in (iv) is obtained by minimizing the expectation of the square of the
right hand side of (2.6) as a function of α.

Remark 2.2. Theorem 2.1 gives the optimal penalization constants for the case
that the hazard is strictly increasing on [0, a]. The situation is quite different if,
e.g., the hazard is constant on [0, δ] for some δ > 0. In view of (2.8), the linear
(in t) terms are not present, and in order to make Vn(t) as small as possible, δn
should not tend to zero and αn should be chosen of the order n−1/2. So in this case
the type of scaling used in [28] seems the more natural type of scaling. The limit
behavior of the greatest convex minorant which one gets in this case (for α = 0)
is analyzed in [4], whereas the limit situation for the case that the greatest convex
minorant corresponds to a strictly convex function (where n−2/3 is the natural scale
of the penalization constants) is analyzed in [5].

Remark 2.3. For 0 < x < a, it can be shown, using arguments similar to those
used in [3] that under the assumption that h′

0 is continuous and strictly positive
at x,

n1/3

(
2f0(x)

h0(x)2h′
0(x)

)1/3 (
ĥn(x)− h0(x)

)
D−→2V,

where V = argmaxt
(
W (t)− t2

)
, with W standard two-sided Brownian Motion, has

the Chernoff distribution ([1] and [11]). This asymptotic distribution is the same as
that of the MLE of an increasing hazard function as given in Theorem 6.1 in [21].
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Having uniform consistency on arbitrarily large intervals in [0, a] staying away
from the boundary and consistency at the boundary points, monotonicity can be
used to get uniform consistency of ĥn on the whole interval [0, a]. We prove a
somewhat stronger (not sharp but easy to prove) uniform rate result, that is needed
in the proof of Theorem 4.2.

Corollary 2.1. Under the conditions of Lemma 2.1 and Theorem 2.1,

(2.10) sup
[0,a]

|ĥn(x)− h0(x)| = OP (n
−1/4).

Proof. For x ∈ [n−1/4, a− n−1/4],

ĥn(x) ≤
Ĥn(x+ n−1/4)− Ĥn(x)

n−1/4

≤ n1/4
(
Ĥn(x+ n−1/4)−H0(x+ n−1/4)− Ĥn(x) + Ĥ0(x)

)
+ n1/4

(
H0(x+ n−1/4)−H0(x)

)
≤ 2n1/4 sup

[0,a]

|Ĥn(y)−H0(y)|+ h0(x) + n−1/4 sup
[0,a]

h′
0(y)

= h0(x) + Tn,

where Tn = OP (n
−1/4), not depending on x. Similarly, ĥn(x)− h0(x) ≥ −Tn. This

leads to the inequality sup[n−1/4,a−n−1/4] |ĥn(x) − h0(x)| ≤ Tn. For x ∈ [0, n−1/4],
we have

ĥn(x) ≤ ĥn(n
−1/4)− h0(n

−1/4) + h0(n
−1/4)− h0(x) + h0(x)

≤ h0(x) + Tn + n−1/4 sup
[0,a]

h′
0(y)

and, using Theorem 2.1 part (iii),

ĥn(x) ≥ ĥn(0)− h0(0) + h0(0)− h0(x) + h0(x)

= h0(x) +OP (n
−1/3)− n−1/4 sup

[0,a]

h′
0(y)

leading to sup[0,n−1/4] |ĥn(x)−h0(x)| = OP (n
−1/4). For [a−n−1/4, a] the result can

be derived in the same way. Combining the three rate results for the suprema leads
to (2.10).

Taking αn = n−2/3 and βn = 2n−2/3 we obtain Figure 3, for the same sample
as used in Figure 2, where one notices that the value of h(0) has gone up and the
value of h(a) has gone down.

3. Monotone kernel estimates of the hazard

Now suppose we have an initial (non-smooth) monotone estimate of the hazard

ĥn on [0, a], like the least squares estimate of the hazard, obtained by minimizing
(2.1), or the penalized least squares isotonic estimator, obtained by minimizing (2.5)
under the restiction that h is nondecreasing. One way of constructing a smooth
estimate of the hazard based on ĥn is to use kernel smoothing. A kernel estimate
with bandwidth b > 0 of the hazard is given by:

h̃n(x) =

∫
Kb(x− y) dĤn(y) =

∫
Kb(x− y) ĥn(y) dy,

(3.1)
Kb(u) = b−1K(u/b),
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Fig 3. The penalized cusum diagram and its greatest convex minorant (left panel) and the pe-
nalized least squares estimate of the hazard (right panel) for a sample of size n = 100 from the

distribution function F (1) on the interval [0,
(
F (1)

)−1
(0.95)]. The real hazard is the dashed curve

in the right panel.

where K is a kernel with compact support, like the triweight kernel

K(u) =
35

32
{1− u2}31[−1,1](u).

Note that monotonicity of h̃n follows from monotonicity of ĥn. This property is
not shared by the direct kernel estimator for h0 that is obtained by taking the
empirical cumulative hazard function Hn instead of Ĥn in (3.1). Also the kernel
estimators considered in [25], which are ratios of kernel estimators of the density
f0 and estimators of the survival function 1− F0, are not monotone in general. An
alternative representation of our kernel estimate is

h̃n(x) =

∫
Kb(x− y)

∫ y

−∞
dĥn(u) dy =

∫∫
u<y

Kb(x− y) dy dĥn(u)

=

∫ x+b

u=−∞

∫ x+b

y=u

Kb(x− y) dy dĥn(u) =

∫ x+b

u=−∞
IK((x− u)/b) dĥn(u)

for x ∈ [0, a], where

IK(u) =

∫ u

−∞
K(w) dw =

⎧⎪⎪⎨⎪⎪⎩
0 , u < −1,∫ u

−1

K(w) dw, u ∈ [−1, 1],

1 , u > 1.

Note that this yields:

h̃′
n(x) = h̃′

n(x) =

∫
Kb(x− y) dĥn(y),

so we also have an estimate of the derivative of the hazard.
Going in the other direction, we have the following estimate of the cumulative

hazard function:

H̃n(x) = b

∫
z∈[0,x+b]

JK((x− z)/b) dĥn(z),
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where

JK(u) =

∫ u

−∞
IK(v) dv =

⎧⎪⎪⎨⎪⎪⎩
0, u < −1,∫ u

−1

(u− v)K(v) dv, u ∈ [−1, 1],

u, u > 1.

We now have:

H̃n(x) = Ĥn(x− b) + b

∫ x+b

x−b

JK((x− z)/b) dĥn(z)

= Ĥn(x− b) +

∫ x+b

x−b

ĥn(z)

∫ (x−z)/b

−1

K(v) dv dz

=

∫ x+b

x−b

Ĥn(z)Kb(x− z) dz.

As the estimate for the density on [0, a], we can take:

(3.2) f̃n(x) = h̃n(x) exp{−H̃n(x)}.

For x ∈ (0, a), we have the following asymptotic result for h̃n(x).

Theorem 3.1. Let h̃n be the kernel estimate of the hazard function on [0, a], defined
by (3.1). Moreover, let h0 be twice continuously differentiable, and let h0 and h′

0 be
both strictly positive on [0, a], where h′

0(0) and h′
0(a) are defined as right and left

derivatives, respectively. Then:

(i) If we choose a bandwidth bn such that n1/5bn → ν ∈ (0,∞), as n → ∞, we
have for each x ∈ (0, a):

n2/5{h̃n(x)− h0(x)} D−→ N(μ0(ν), σ
2
0(ν)),

where

(3.3) μ0(ν) =
1
2ν

2h′′
0(x)

∫
u2K(u) du, σ2

0(ν) =
h0(x)

2

νf0(x)

∫
K(u)2 du.

(ii) The asymptotically locally optimal bandwidth is given by

(3.4) bn,locopt = bn,locopt(x) =

{
h0(x)

2
∫
K(u)2 du

f0(x)h′′
0(x)

2
{∫

u2K(u) du
}2

}1/5

n−1/5.

The bandwidth, minimizing the asymptotic global least squares criterion

1

ν

∫ a

0

h0(x)
2

f0(x)
dx

∫
K(u)2 du+ 1

4ν
4

{∫
u2K(u) du

}2 ∫ a

0

h′′
0(x)

2 dx,

is given by

(3.5) νn,globopt · n−1/5 =

{∫ a

0
h0(x)

2/f0(x) dx
∫
K(u)2 du∫ a

0
h′′
0(x)

2 dx
{∫

u2K(u) du
}2

}1/5

n−1/5.
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Proof. (i): We get:∫
Kbn(x− y) dĤn(y)

=

∫
Kbn(x− y) dHn(y) +

∫
Kbn(x− y) d(Ĥn −Hn)(y)

=

∫
Kbn(x− y) dHn(y) +

∫
{Ĥn(y)−Hn(y)}

1

b2n
K ′((x− y)/bn) dy

=

∫
Kbn(x− y) dHn(y) +

1

bn

∫ {
Ĥn(x− bnu)−Hn(x− bnu)

}
K ′(u) dy

=

∫
Kbn(x− y) dHn(y) +OP (n

−7/15 logn),

where we use that

sup
x∈[0,a]

|Ĥn(x)−Hn(x)| = OP (n
−2/3 logn).

This result is related to that in [14] for the concave majorant of the empirical
distribution based on a sample from a concave distribution function. It can be
proved along the lines of [19]. Moreover,∫

Kbn(x− y) dHn(y) =

∫
Kbn(x− y) dH0(y) +

∫
Kbn(x− y) d(Hn −H0)(y).

Define

W̃n(u) =
√
n/bn

(
Hn(x+ bnu)−Hn(x)−H0(x+ bnu) +H0(x)

)
=

√
n/bn

{
− log

(
1− Fn(x+ bnu)

1− Fn(x)

)
+ log

(
1− F0(x+ bnu)

1− F0(x)

)}
=

√
n/bn

{
− log

(
1− Fn(x+ bnu)− Fn(x)

1− Fn(x)

)
+ log

(
1− F0(x+ bnu)− F0(x)

1− F0(x)

)}
=

√
n/bn

{
− log

(
1− Tn(u)

1− Fn(x)

)
+ log

(
1− tn(u)

1− F0(x)

)}
=

√
n/bn

{
Tn(u)

1− Fn(x)
− tn(u)

1− F0(x)

}
+ oP (1)

=
√
n/bn

Tn(u)− tn(u)

1− F0(x)
+
√

n/bn (Tn(u)− tn(u))
Fn(x)− F0(x)

(1− F0(x))(1− Fn(x))

+
√

n/bntn(u)
Fn(x)− F0(x)

(1− F0(x))(1− Fn(x))
+ oP (1)

=
√
n/bn

Tn(u)− tn(u)

1− F0(x)
+ oP (1),

where the order terms are uniform for u in compact sets. Using that√
n/bn (Tn(u)− tn(u)) =

∫
b−1/2
n

(
1[0,x+bnu](y)− 1[0,x](y)

)
d
√
n(Fn − F0)(y)

D−→
√

f0(x)W (u),
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where W is standard two-sided Brownian motion on R, we obtain

W̃n(u)
D−→

√
f0(x)

1− F0(x)
W (u)

D
=

h0(x)√
f0(x)

W (u).

Take bn = νn−1/5 and note that

n2/5

∫
Kbn(x− y) d (Hn −H0) (y)

= n2/5b−1
n

∫
K

(
x− y

bn

)
d (Hn −H0) (y)

= n2/5b−1
n

∫
K (u) d (Hn −H0) (x+ bnu) = ν−1/2

∫
K (u) dW̃n(u)

D−→ h0(x)√
νf0(x)

∫
K(u) dW (u)

D
= N

(
0,

h0(x)
2

νf0(x)

∫
K(u)2 du

)
.

The asymptotic bias is given by

n2/5

∫
Kb(x− y)h0(y) dy − h0(x) = n2/5

∫
K(u) {h0(x+ bnu)− h0(x)} du

∼ 1
2h

′′
0(x)ν

2

∫
u2K(u) du.

So we obtain

n2/5
{
h̃n(x)− h0(x)

}
D−→ N

(
μ0(ν), σ

2
0(ν)

)
,

where μ0(ν) and σ2
0(ν) are given in (3.3). The last two statements of the theorem

follow easily by setting the derivative with respect to ν equal to zero in, respectively,
the local and global criterion.

Pictures for n = 100 of h̃n, its derivative h̃′
n and the density f̃n for the cor-

responding functions at the right end of the family (2.2) are shown in Figure 4,
where the globally optimal bandwidth for the hazard, given in (3.5) is used. The
same pictures for the left end of the family (where the hazard is not monotone),
are shown in Figure 5.

Fig 4. The left picture shows the estimates ĥn (dotted) and h̃n (solid curve) of the hazard h(1)

(of the family {h(d) : d ∈ [−1, 1]}, dashed) for a sample of size n = 100 on the 95% percentile

interval [0,
(
F (1)

)−1
(0.95)]. The middle and right picture show the corresponding derivatives of

the hazard rates and the corresponding densities.
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Fig 5. From left to right the isotonic estimates ĥn (dotted) and h̃n (solid curve) of the hazard
h(−1) (of the family {h(d) : d ∈ [−1, 1]}, dashed) for a sample of size n = 100, and the real hazard

h(−1) (dashed) on the 95% percentile interval [0,
(
F (−1)

)−1
(0.95)]; the corresponding derivatives

of the hazard rates and the corresponding densities, where we compare in the right panel the
estimate of the density with the density, obtained from the isotonic projection of the underlying
hazard h(1).

For purposes of bootstrapping of the test statistics in [10], a crucial feature is
that the estimate of the derivative of the hazard stays away from zero, also at the
boundary points. This behavior can be shown under the hypotheses of Theorem 3.1,
even at the boundary points. To obtain a consistent estimate of the derivative at
the boundary points, one could introduce a boundary kernel. For example, near the
left boundary point one could take:

h̃′
n(x) = α(x/b)

∫
Kb(x− y) dĥn(y) + β(x/b)

∫
x− y

b
Kb(x− y) dĥn(y)

where Kb(u) = b−1K(u/b),

and α(x/b) and β(x/b) are chosen in such a way that, if y ∈ [0, 1],

α(y)

∫ y

−1

K(u) du+ β(y)

∫ y

−1

uK(u) du = 1 and

α(y)

∫ y

−1

uK(u) du+ β(y)

∫ y

−1

u2K(u) du = 0,

and where α(y) = 1, β(y) = 0, if y > 1. This will indeed lead to consistent estimates
of the derivative of the hazard at the boundary, but the disadvantage is that the
relation between h̃n and its derivative via derivatives and integrals of the kernel,
which we used above, is lost. In generating the bootstrap samples in [10], using a
kernel estimate of the hazard, boundary kernels were not used for estimating the
derivative at the boundary, since it did not lead to significantly different results,
and destroyed the simple relation between the hazard and its derivative via the
kernel.

4. Smooth estimates of the hazard, based on penalization

Another approach to obtain a smooth monotone estimate of the hazard is that of
penalized least squares; see e.g. [26] and [20]. Let λ ≥ 0 be a penalty parameter and
define the smooth penalized local least squares estimator of h on [0, a] as minimizer
of

(4.1) Φλ(h) =

∫ a

0

(h(x)− ĥn(x))
2 dx+ λ

∫ a

0

h′(x)2 dx
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over the set of differentiable functions h on [0, a], where ĥn is the monotone (on [0,a])
piecewise constant estimate that minimizes (2.5) in Section 2. Our first lemma gives
the minimizer of Φλ over the class of smooth functions on [0, a] under boundary
constraints at 0 and a.

Lemma 4.1. Let κ1, κ2 ∈ R. Then the unique minimizer of Φλ over all smooth
functions on [0, a] such that h(0) = κ1 and h(a) = κ2 exists and is given by

(4.2) h(x) = h1(x) + c1e
−x/

√
λ + c2e

−(a−x)/
√
λ,

where

(4.3) h1(x) =
1
2λ

−1/2

∫ a

0

e−|y−x|/
√
λĥn(y) dy,

and c1 and c2 are chosen such that h satisfies the imposed boundary constraints.

Proof. Writing

I(h) =

∫ a

0

G(x, h, h′) dx =

∫ a

0

{
h(x)− ĥn(x)

}2
dx+ λ

∫ a

0

h′(x)2 dx,

we get Euler’s differential equation

Gh − d

dx
Gh′ = 0,

we wish to solve under under the boundary conditions h(0) = κ1 and h(a) = κ2.
This results in the second order differential equation

(4.4) h′′(x) = λ−1
{
h(x)− ĥn(x)

}
with boundary constraints.

A particular solution to (4.4) is given by (4.3). Adding the solutions to the homo-
geneous equation multiplied by constants c1 and c2 respectively, the unique solution
to the boundary value problem is obtained by choosing c1 and c2 appropriately in
(4.2).

Remark 4.1. Observe that h1 in (4.3) can be viewed as a kernel-smoothed version

of ĥn in the sense of Section 3, with kernel function K(x) = 1
2 exp(−|x|) and

bandwidth b =
√
λ. In particular this shows h1 to be monotone. Moreover, for

λ ↓ 0 and c1, c2 bounded as λ ↓ 0, h defined in (4.2) is merely a boundary-corrected
version of h1. In that case the asymptotic behavior of h on closed intervals excluding
the boundary points 0 and a is completely determined by that of h1.

As an immediate consequence of Lemma 4.1, the minimizer of Φλ without bound-
ary restrictions can be identified, as well as the minimizer under the natural bound-
ary constraints h(0) = ĥn(0) and h(a) = ĥn(a). This latter boundary constraints

are natural in view of the consistency of ĥn at 0 and a.

Corollary 4.1. The unique minimizer ȟn of Φλ over all smooth functions on [0, a]
exists is given by (4.2) with c1 equal to

(4.5) č1 =

∫ a

0
(ĥn(x)− h1(x) +

√
λh′

1(x))e
−x/

√
λ dx

√
λ{1− e−2a/

√
λ}

.
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and c2 equal to

(4.6) č2 =

∫ a

0
(ĥn(x)− h1(x)−

√
λh′

1(x))e
−(a−x)/

√
λ dx

√
λ{1− e−2a/

√
λ}

.

The minimizer h̄n of Φλ under the boundary constraints h(0) = ĥn(0) and h(a) =

ĥn(a) is given by (4.2) with

(4.7) c1 = c̄1 =
ĥn(0)− h1(0)−

{
ĥn(a)− h1(a)

}
e−a/

√
λ

1− e−2a/
√
λ

,

and

(4.8) c2 = c̄2 =
ĥn(a)− h1(a)−

{
ĥn(0)− h1(0)

}
e−a/

√
λ

1− e−2a/
√
λ

.

Proof. The parameters č1 and č2 are found by differentiating the criterion Φλ eval-
uated at (4.2) with respect to c1 and c2. Differentiation w.r.t. c1 yields∫ a

0

{h(x)− ĥn(x)−
√
λh′(x)}e−x/

√
λ dx = 0

and differentiation w.r.t. c2 yields∫ a

0

{h(x)− ĥn(x) +
√
λh′(x)}e−(a−x)/

√
λ dx = 0,

where the dependence on c1 and c2 in the equations is implicit via h and h′. From
this (4.5) and (4.6) follow. To get (4.7) and (4.8), c1 and c2 are chosen in (4.2) to
satisfy the imposed boundary constraints.

The major part of the asymptotic behavior of the smoothness-penalized estima-
tors are related to the asymptotics of h1. The lemma below establishes uniform
consistency of h1.

Lemma 4.2. Let ĥn be the (possibly boundary-penalized) least squares estimator
of Section 2, where αn, βn ↓ 0. Let h1 be defined by (4.3). Then, for λ = λn ↓ 0 and
(logn)2λ → 0, we have for all 0 < δ < a/2

sup
[δ,a−δ]

|h1(x)− h0(x)| = OP (n
−1/4).

If, moreover, αn and βn satisfy the conditions of Corollary 2.1, then for x = 0 and
x = a h1(x) → 1

2h0(x) with probability one.

Proof. Note that for each x ∈ [δ, a− δ]

|h1(x)− h0(x)|

= 1
2λ

−1/2

∣∣∣∣∫ a

0

e−|x−y|/
√
λĥn(y) dy −

∫ ∞

−∞
e−|x−y|/

√
λh0(x) dy

∣∣∣∣
≤ sup

[δ,a−δ]

|ĥn(z)− h0(z)|+ 1
2λ

−1/2h0(x)

(∫ 0

−∞
+

∫ ∞

a

)
e−|x−y|/

√
λ dy

≤ sup
[δ,a−δ]

|ĥn(z)− h0(z)|+ 1
2h0(a)

(∫ −x/
√
λ

−∞
+

∫ ∞

(a−x)/
√
λ

)
e−|v| dv

≤ sup
[δ,a−δ]

|ĥn(z)− h0(z)|+ h0(a)

∫ ∞

δ/
√
λ

e−v dv → 0



Monotone hazard estimation 189

in probability as n → ∞, where the upper bound is uniform in x ∈ [δ, a− δ]. Here
we use Lemma 2.1.

Now consider x = 0. We have

h1(0) =
1
2λ

−1/2

∫ a

0

e−y/
√
λĥn(y) dy = 1

2

∫ a/
√
λ

0

ĥn(y
√
λ)e−y dy → 1

2h0(0)

a.s. as n → ∞. For x = a the result follows analogously.

In the lemma below, we investigate the asymptotics of the constants c1 and c2 in
Lemma 4.1 as λ = λn ↓ 0.

Lemma 4.3. Let ĥn be the boundary-penalized least squares estimator of Section 2.
Let αn and βn be of the order n−2/3. Then, for λ ↓ 0,

c̄1 = ĥn(0)− h1(0) + oP (e
−a/

√
λ), c̄2 = ĥn(a)− h1(a) + oP (e

−a/
√
λ)

and

č1 =

∫ a/
√
λ

0

e−xĥn(x
√
λ) dx+

(4.9)

−
∫ a/

√
λ

x=0

e−x

∫ x

y=0

ĥn(y
√
λ)e−(x−y) dy dx+ oP (1) and

č2 =

∫ a/
√
λ

0

e−xĥn(a− x
√
λ) dx+

(4.10)

−
∫ a/

√
λ

x=0

e−x

∫ x

y=0

ĥn(a− y
√
λ)e−(x−y) dy dx+ oP (1).

Consequently, for λ ↓ 0 and under the conditions of Corollary 2.1, č1, c̄1
p−→ 1

2h0(0)

and č2, c̄2
p−→ 1

2h0(a).

Proof. For c̄1 and c̄2 the result immediately follows from (4.7) and (4.8) and Corol-
lary 2.1. For č1 note that

λ−1/2h1(x)− h′
1(x)

=
1

2λ

∫ a

0

ĥn(y)e
−|x−y|/

√
λ dy +

1

2λ

∫ x

0

ĥn(y)e
−(x−y)/

√
λ dy(4.11)

− 1

2λ

∫ a

x

ĥn(y)e
(x−y)/

√
λ dy =

1

λ

∫ x

0

ĥn(y)e
−(x−y)/

√
λ dy,

implying (4.9). Using that

λ−1/2h1(x) + h′
1(x) =

1

λ

∫ a

x

ĥn(y)e
(x−y)/

√
λ dy,

(4.10) follows similarly. The last statements on the convergence in probability of
the ci’s use Lemma 4.2. For č1, note that the second term in (4.9) can be written
as∫ a/

√
λ

0

e−2x

∫ x

0

ĥn(y
√
λ)ey dy dx =

1

2

∫ a/
√
λ

0

ĥn(y
√
λ)

(
e−y − ey−2a/

√
λ
)
dy.
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Fig 6. The left panel shows the estimates ĥn (dotted), ȟn (solid curve) of the hazard h(1) (of the
family {h(d) : d ∈ [−1, 1]}) for a sample of size n = 100, and the real density h(1) (dashed) on
the 95% percentile interval [0, (F (1))−1(0.95)]; the corresponding derivatives of the hazard rates
and the densities are shown in the middle- and right picture.

Pictures for n = 100 of the estimates of ȟn, its derivative ȟ′
n and the density

f̌n are shown in Figure 6, where λ = 0.10. The same pictures for (the boundary-
constrained) h̄n are shown in Figure 7.

These pictures suggest that h̄ behaves better than ȟ. The following two results
confirm this asymptotically. Theorem 4.1 shows that ȟn and h̄n both estimate h0

uniformly consistently. Theorem 4.2 states that h̄′
n does estimate h′

0 consistently
on the interval [0, a], whereas ȟ′

n is inconsistent at the boundaries 0 and a.

Theorem 4.1. Let αn, βn  n−2/3, let ĥn be the nondecreasing minimizer of (2.5),
and let λ = λn → 0 as n → ∞. Furthermore, assume that h0 is continuously
differentiable on (0, a), with finite right and left limits at 0 and a, respectively.
Then, if ȟn and h̄n are the minimizers of Corollary 4.1, we have for each x ∈ [0, a]:

sup
[0,a]

|ȟn(x)− h0(x)|
p−→ 0 and sup

[0,a]

|h̄n(x)− h0(x)|
p−→ 0, n → ∞.

Theorem 4.2. Let h̄nand ȟn be the boundary constrained minimizers of Corol-
lary 4.1. Then, under the conditions of Theorem 4.1 and n1/2λn → ∞, we have for
each 0 < δ < a/2 that

sup
[δ,a−δ]

|ȟ′
n(x)− h′

0(x)|
p−→ 0 and

(4.12)
sup

[δ,a−δ]

|h̄′
n(x)− h′

0(x)|
p−→ 0, n → ∞.

Fig 7. The same pictures as in Figure 6, but based on the boundary constrained h̄n instead of ȟn.
Note that the boundary-penalized ĥn is the same in the left and middle picture. Hence the better
behavior of h̄n is only due to the boundary constraints on h̄n and not to the boundary constraints
on ĥn.
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Moreover, ȟ′
n(0)

p−→ 0 and h̄′
n(0)

p−→ h′
0(0).

5. Discussion

In the context of testing the hypothesis of monotonicity of a hazard rate, a bootstrap
approach to approximate critical values of an L1 test statistic is introduced in
[10]. This approach is shown to work provided the resampling distribution has a
monotone hazard that also behaves well close to the boundaries of the interval of
monotonicity.

In this paper, various estimators of monotone hazard rates are defined and stud-
ied asymptotically. E.g., a plain (non-smooth) monotone LS estimator with incon-
sistent boundary behavior (in the spirit of [24]), a boundary-penalized LS estima-
tor that is uniformly consistent (in the spirit of e.g. [27], [17] and [18]), a kernel-
smoothed version of the basic monotone LS estimator (like in [7]) and a related
estimator that is based on adding a smoothness penalty to the LS criterion (see
[26]).

As indicated, methods applied in this paper have also been applied in the context
of other estimation problems. These approaches can also be used in many other
estimation settings, in particular for models where the data are censored.

Appendix A

Lemma A.1. Let Wn be as defined in (2.9) and assume the conditions of Theo-
rem 2.1. Consider the process

[0, νn1/3) � t �→ Ṽn(t) = n1/3Vn(t) =
Wn(t)

t
+

α

t
+ 1

2h
′
0(ξn)t,

where ξn ∈ [0, ν]. Then, by choosing ε > 0 sufficiently small and M > 0 sufficiently
large, for all large n

(A.1) inf
t∈[0,ε]

Ṽn(t) > Ṽn(1) and inf
t∈[M,νn1/3]

Ṽn(t) > Ṽn(1)

with probability arbitrarily close to one. This implies that with probability arbitrarily
close to one for all large n

inf
t∈[0,νn1/3]

Ṽn(t) = inf
t∈(ε,M ]

Ṽn(t).

Proof. From (2.9) it follows that Ṽn(1) = OP (1). Also from (2.9), we have that for
any ε > 0,

inf
[0,ε]

Wn(t)
D−→ inf

[0,ε]
W (h0(0)t) =

D −
√

h0(0)ε|Z|,

where Z ∼ N(0, 1). Hence, with probability arbitrarily close to one, inf [0,ε] Wn(t) >
−α/2, implying

|Ṽn(t)| ≥
α+ infs∈[0,ε] Wn(s)

ε
≥ α

2ε
for t ∈ (0, ε],

proving the first statement in (A.1).
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For the second statement, it suffices to show that for any C, the probability

P
(

inf
[M,νn1/3]

Ṽn(t) < C
)
≤

νn1/3∑
j=M

P
(

inf
[j,j+1]

Ṽn(t) < C
)

can be made arbitrarily small by taking M > 0 sufficiently large. Fix C > 0 and
take M > 0 sufficiently large such that for all t ≥ M , (t + 1) − α/C − 1

4h
′
0(0)t

2 <
−1

5h
′
0(0)t

2. Then, using that h′
0(x) ≥ 1

2h
′
0(0) on [0, ν] and taking j ≥ M ,

inf
[j,j+1]

Ṽn(t) < C ⇒ ∃t ∈ [j, j + 1] : Ṽn(t) < C

⇒ ∃t ∈ [j, j + 1] : Wn(t) < Ct− α− 1
4Ch′

0(0)t
2 ≤ −1

5Ch′
0(0)t

2

⇒ ∃t ∈ [j, j + 1] : n2/3|Hn(n
−1/3t)−H0(n

−1/3t)| > 1
5Ch′

0(0)j
2

⇒ ∃t ∈ [j, j + 1] : n2/3|Fn(n
−1/3t)− F0(n

−1/3t)| > 1
10Ch′

0(0)j
2

where in the last implication we use that | log(1 − u) − log(1 − v)| ≤ 2|u − v| for
0 ≤ u, v ≤ 1/2. Using Markov’s inequality, we obtain for j ≥ M

P

(
inf

[j,j+1]
Ṽn(t) < C

)
≤ P

(
sup

[j,j+1]

n2/3
∣∣∣Fn(n

−1/3t)− F0(n
−1/3t)

∣∣∣ > Ch′
0(0)j

2

10

)

≤
n4/3E sup[j,j+1]

∣∣Fn(n
−1/3t)− F0(n

−1/3t)
∣∣2(

1
10Ch′

0(0)j
2
)2

≤ 100
n4/3E sup[j,j+1]

∣∣Fn(n
−1/3t)− F0(n

−1/3t)
∣∣2

C2h′
0(0)

2j4
.

By maximal inequality 3.1(ii) in [15], the numerator in this expression is bounded
by C ′(j + 1), giving

P

(
inf

[M,νn1/3]
Ṽn(t) < C

)
≤

νn1/3∑
j=M

P

(
inf

[j,j+1]
Ṽn(t) < C

)
≤ 100C ′

C2h′
0(0)

2

∞∑
j=M

(j + 1)j−4

which can be made arbitrarily small by taking M sufficiently large.

Proof of Theorem 4.1. For x ∈ [0, a], we have for hn either ȟn or h̄n,

|hn(x)− h0(x)|

=

∣∣∣∣∣ 12
∫ (a−x)/

√
λ

−x/
√
λ

ĥn(x+
√
λv)e−|v| dv+c1e

−x/
√
λ+c2e

−(a−x)/
√
λ−h0(x)

∣∣∣∣∣
≤ 1

2

∫ (a−x)/
√
λ

−x/
√
λ

|ĥn(x+
√
λv)− h0(x+

√
λv)|e−|v| dv

+ 1
2

∣∣∣∣∣
∫ (a−x)/

√
λ

−x/
√
λ

(h0(x+
√
λv)− h0(x))e

−|v| dv

∣∣∣∣∣
+

∣∣∣∣∣h0(x)

(
1
2

∫ (a−x)/
√
λ

−x/
√
λ

e−|v| dv − 1

)
+ c1e

−x/
√
λ + c2e

−(a−x)/
√
λ

∣∣∣∣∣
= I(1)n + I(2)n + I(3)n .
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First, observe that by Corollary 2.1 and the assumed smoothness of h0, for n → ∞

I(1)n ≤ sup
[0,a]

|ĥn(y)− h0(y)|
p−→ 0 and I(2)n ≤ 1

2 sup
[0,a]

|h′′
0(y)|λ

∫ ∞

0

v2e−v dv → 0,

where the upper bounds do not depend on x. Furthermore, note that

I(3)n =

∣∣∣∣∣−1
2h0(x)

(∫ −x/
√
λ

−∞
+

∫ ∞

(a−x)/
√
λ

)
e−|v| dv + c1e

−x/
√
λ + c2e

−(a−x)/
√
λ

∣∣∣∣∣
≤ |c1 − 1

2h0(x)|e−x/
√
λ + |c2 − 1

2h0(x)|e−(a−x)/
√
λ.

Therefore, for 0 ≤ x ≤ λ1/4 ≤ a/2, we have for

I(3)n ≤ |c1 − 1
2h0(0) +

1
2 (h0(0)− h0(x))|+ (|c2|+ 1

2h0(a))e
−a/2

√
λ

≤ |c1 − 1
2h0(0)|+ 1

2λ
1/4 sup

[0,a]

|h′
0(y)|+ (|c2|+ 1

2h0(a))e
−a/2

√
λ p−→ 0

by (4.9), where this upper bound is again independent of x ∈ [0, λ1/4]. For x ∈
[a− λ1/4, a] a similar argument yields an upper bound that does not depend on x
and converges to zero in probability. For λ1/4 ≤ x ≤ a− λ1/4, we have

I(3)n ≤ (|c1|+ 1
2h0(a))e

−1/λ1/4

+ (|c2|+ 1
2h0(a))e

−1/λ1/4

= OP (e
−1/λ1/4

),

again with an upper bound not depending on x. These inequalities, combined with
Lemma 4.3 lead to (4.12).

Proof of Theorem 4.2. Using the expression for h′
1 implicit in (4.11), we get for

x ∈ (0, a)

h′
1(x) =

1

2
√
λ

(∫ (a−x)/
√
λ

0

ĥn(x+ y
√
λ)e−y dy −

∫ x/
√
λ

0

ĥn(x− y
√
λ)e−y dy

)
.

Fix 0 < δ < a/2. Using Corollary 2.1,

(A.2) Vn = sup
x∈[0,a]

|ĥn(x)− h0(x)| = OP (n
−1/4),

we can write (for δ < x ≤ a/2; the situation a/2 ≤ x < a− δ is similar)

|h′
1(x)− h′

0(x)| ≤
∣∣∣∣∣
∫ x/

√
λ

0

(
h0(x+ y

√
λ)− h0(x− y

√
λ) + 2Vn

2
√
λ

− h′
0(x)

)
e−y dy

∣∣∣∣∣
+ h′

0(x)e
−x/

√
λ +

1

2
√
λ

∣∣∣∣∣
∫ (a−x)/

√
λ

x/
√
λ

ĥn(x+ y
√
λ)e−ydy

∣∣∣∣∣
≤ Vn√

λ
+ sup

[0,a]

h′
0(y)e

−δ/
√
λ +

ĥn(a)

2
√
λ
e−δ/

√
λ

+

∣∣∣∣∣
∫ x/

√
λ

0

(
(y − 1)h′

0(x) + y2
√
λ sup

[0,a]

|h′′
0(z)|

)
e−y dy

∣∣∣∣∣ .
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The first three terms in the upper bound are oP (1), uniformly in x, where we use
that λ does not converge to zero too rapidly. The same holds for the last term, since
it is bounded by

sup
[0,a]

h′
0(z)

∫ ∞

δ/
√
λ

|y − 1| e−y dy +
√
λ sup

[0,a]

|h′′
0(z)|

∫ ∞

0

y2 e−y dy.

Also using Lemma 4.3, this proves (4.12).
Now consider the situation at zero. First for the estimator ȟn. Note that, using

(4.11) and Lemma 4.3,

ȟ′(0) = h′
1(0)−

č1√
λ
+ oP (1)

=
1

2λ

∫ a

0

ĥn(x)e
−x/

√
λ dx+ oP (1) +

−1√
λ

∫ a/
√
λ

0

e−xĥn(x
√
λ) dx

+
1√
λ

∫ a/
√
λ

x=0

e−x

∫ x

y=0

ĥn(y
√
λ)e−(x−y) dy dx

=
−1

2
√
λ

∫ a/
√
λ

0

ĥn

(
x
√
λ
)
e−x dx

+
1√
λ

∫ a/
√
λ

x=0

e−x

∫ x

y=0

ĥn

(
y
√
λ
)
e−(x−y) dy dx

+ oP (1) = −1
2h

′
0(0) +

1
2h

′
0(0) + oP (1) = oP (1), n → ∞,

where we also use (A.2) to obtain the last line. So we get: ȟ′
n(0)

p−→ 0 for n → ∞,
which means that ȟ′

n is inconsistent at zero. The other boundary point a can be
treated in a similar way. Finally, consider the behavior of h̄′

n at zero. Using (4.11)
and Lemma 4.3, we get

h̄′
n(0) = h′

1(0)− λ−1/2c̄+ oP (1) = (h1(0)− c̄)/
√
λ+ oP (1)

= (2h1(0)− ĥn(0))/
√
λ+ oP (1)

= λ−1

∫ a

0

ĥn(y) e
−y/

√
λ dy − λ−1/2ĥn(0) + oP (1)

=

∫ a/
√
λ

0

ĥn(y
√
λ)− ĥn(0)√
λ

e−y dy + oP (1).

Using (A.2), note that∣∣∣∣∣
∫ a/

√
λ

0

ĥn(y
√
λ)− ĥn(0)√
λ

e−y dy − h′
0(0)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ a/

√
λ

0

(
h0(y

√
λ)− h0(0)√
λ

− h′
0(0)

)
e−y dy

∣∣∣∣∣+ Vn√
λ
+ oP (1) = oP (1),

under the assumptions of our theorem.
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