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Multivariate regression through affinely

weighted penalized least squares

Rudolf Beran

University of California, Davis

Abstract: Stein’s [In Proceedings of the Third Berkeley Symposium on Math-
ematical Statistics and Probability 1 (1956) 197–206 University of California
Press] asymptotically superior shrinkage estimator of p univariate means may
be rederived through adaptive penalized least squares (PLS) estimation in a
regression model with one nominal covariate. This paper treats adaptive PLS
estimators for p unknown d-dimensional mean vectors, each of which depends
on k0 scalar covariates that may be nominal or ordinal. The initial focus is
on complete regression designs, not necessarily balanced : for every k0-tuple of
possible covariate values, at least one observation is made on the corresponding
mean vector. The results include definition of suitable candidate classes of PLS
estimators in multivariate regression problems, comparison of these candidate
estimators through their estimated quadratic risks under a general model that
makes no assumptions about the regression function, and supporting asymp-
totic theory as the number p of covariate-value combinations observed tends to
infinity. Empirical process theory establishes that: (a) estimated risks converge
to their intended targets uniformly over large classes of candidate PLS esti-
mators; (b) a candidate PLS estimator that minimizes estimated risk within
such a class has risk that converges to the minimal possible risk within the
class. Extension of the results to incomplete regression designs is outlined. The
Efron-Morris [Journal of the American Statistical Association 68 (1973) 117–
130] and Beran [Annals of the Institute of Statistical Mathematics 60 (2008)
843–864] estimators for multivariate means in balanced complete designs are
seen as special cases.

There arises a problem of finding the reasons for applicability of the mathematical
theory of probability to the phenomena of the real world. — A. N. Kolmogorov

1. Introduction

This paper treats estimation in a very general multivariate regression model that
relates d-dimensional mean responses to k0 scalar covariates. To define the model,
consider first the multivariate linear model

(1.1) Y = CM + E,

where M is a p × d matrix whose rows are unknown mean vectors, Y is a n × d
data matrix, each of whose rows is an observation on one of the mean vectors, and
E is an n × d matrix of random errors with means zero. We assume for now that
the design is complete: there is a least one row in Y that constitutes an observation
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with error on each row in M . Thus n ≥ p. The n×p matrix C is the data-incidence
matrix of zeroes and ones that suitably maps the rows of M into the rows of Y .
Thus, C is of full rank p and C ′C is a diagonal matrix that reports the number of
observations taken on the successive rows of M .

In fixed-effects regression, each d-dimensional row vector in M depends on k0
non-random covariates. The k-th covariate, where 1 ≤ k ≤ k0, assumes pk dis-
tinct real values xk,1 < xk,2 < · · ·xk,pk

. Let I denote the set of all k0-tuples
i = (i1, i2, . . . , ik0) such that 1 ≤ ik ≤ pk for 1 ≤ k ≤ k0. These k0-tuples index all
possible combinations of the covariate values. Without loss of generality, we order
the p =

∏k0

k=1 pk elements of index set I in mirrored dictionary order: ik0 serves as
the first “letter” of the word, ik0−1 as the second “letter”, and so forth.

Let

(1.2) xi = (x1,i1 , x2,i2 , . . . , xk0,ik0
), i ∈ I.

The 1× d row vectors of M have the form

(1.3) Mi = f(xi), i ∈ I,

where f is an unknown function. This statement puts no restrictions in the row
vector Mi beyond asserting that the covariate-value combination xi determines its
value. Without any loss of generality, the p×d mean matrix M in (1.1) is obtained
by stacking the {Mi} vertically as i runs through successive values of the ordered
index set I.

The strong Gauss-Markov regression model for the data Y consists of the preced-
ing three paragraphs plus the assumption that the elements of the error matrix E
are independent, identically distributed random variables with variance 1 and finite
fourth moment. Because the value of the matrix M is unrestricted by (1.3), it is
natural to estimate M by the least squares estimator M̂ls = C+Y = (C ′C)−1C ′Y .
On the other hand, to gain insight into the function f in (1.3) and to improve
(hopefully) on the risk of M̂ls through unarticulated bias-variance trade-off, ap-
plied statisticians have often restricted f to relatively simple function classes before
fitting the model.

This paper develops a formal risk improvement strategy that puts no restrictions
on f or M : devise a large class of candidate penalized least squares estimators for
M that tentatively express competing suppositions about f ; and let the data choose
the candidate estimator that has smallest estimated risk. All risk and estimated risk
calculations are done under the unrestricted model where f is completely unknown.
This point of view—keeping the model as general as is feasible—may be traced back
to Stein [12]. The introduction to his paper treats the asymptotic risks of competing
shrinkage estimators for p univariate means, as p tends to infinity, without imposing
any restrictions on the unknown mean vector.

Section 7 sketches how the assumption of a complete design and the assump-
tions on the errors E may be weakened. These extensions matter for data analysis.
Section 8 develops a data example.

2. Candidate penalized least squares estimators

Let y = vec(Y ), m = vec(M), e = vec(E) and C̃ = Id ⊗ C, where Id is the d × d
identity matrix. Equivalent to (1.1) is the equation

(2.1) y = C̃m+ e.
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The least squares estimator of m is m̂ls = C̃+y = vec(M̂ls).
Let S be an index set of fixed finite cardinality. Let {Qs : s ∈ S} be a set of p×p

symmetric, positive semidefinite penalty matrices. Useful constructions of these are
described later in Section 4. Let N = {Ns : s ∈ S} be a set of d × d symmetric,
positive semidefinite affine penalty weights.

Let | · | denote the Frobenius matrix norm: |A|2 = tr(A′A) = tr(AA′) for any
matrix A. The penalized least squares criterion for estimating m is

(2.2) G(m,N) = |y − C̃m|2 +m′Q(N)m, Q(N) =
∑
s∈S

(Ns ⊗Qs).

Equivalently,

(2.3) G(m,N) = |Y − CM |2 +
∑
s∈S

|Q1/2
s MN1/2

s |2.

Factorizations of Qs and Ns other than matrix square roots may be substituted
into (2.3).

The candidate penalized least squares (PLS) estimator of m is

(2.4) m̂pls(N) = argmin
m∈Rpd

G(n,N) =
[
C̃ ′C̃ +Q(N)

]−1
C̃ ′y.

The inverse exists because C and hence C̃ are of full rank. For each choice of Q(N),
the candidate m̂pls(N) has the form of a generalized ridge estimator.

Let η = C̃m = E(y), the expectation being taken under the strong Gauss-Markov
model described in Section 1. The candidate PLS estimator of η is

(2.5) η̂pls(N) = C̃m̂pls(N) = C̃
[
C̃ ′C̃ +Q(N)

]−1
C̃ ′y.

For each choice of Q(N), the candidate η̂pls(N) is a symmetric linear estimator of
η in the sense of Buja, Hastie and Tibshirani [5].

For univariate means and observations, when d = 1, the affine penalty weights
{Ns} become non-negative scalars. The foregoing definitions then yield candidate
PLS estimators for univariate means using multiple quadratic penalties weighted by
non-negative weights. In general, univariate PLS estimators based on one or more
quadratic penalty terms are biased. We take the purpose of biased estimation to be
trade-off between bias and variance so as to reduce quadratic risk in estimating η.
Studies of biased linear estimators for η when d = 1 include ridge regression (Hoerl
and Kennard [9]), shrinkage estimators for complete balanced multi-way layouts
with nominal covariates (Stein [13]), monotone shrinkage estimators for abstract
one-way layouts (Beran and Dümbgen [4]), ordered linear smoothers (Kneip [10]),
fitting a smooth trend factor in field experiments (Green, Jennison and Seheult
[8]), and multiple penalty PLS estimators in Wood [16] and in Beran [1, 2]. The
scope of penalized least squares estimation goes well beyond smoothing over ordinal
covariates. For example, through suitable construction of the penalty matrices,
Beran [1] closely approximated, by an adaptive PLS estimator, Stein’s [13] superior
shrinkage estimator for a complete balanced multi-way ANOVA layout.

When d > 1, non-negative scalar penalty weights are naturally replaced with
positive semidefinite penalty matrices, as in (2.2) and (2.3). Results on these mul-
tivariate PLS estimators of m and η for d > 1 seem sparse. Beran [3] studied, in
effect, the special case where the design is complete with an equal number of obser-
vations taken on each d-dimensional mean vector and the penalty matrices {Qs} are
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mutually orthogonal, orthogonal projections. In this scenario, the inverse matrix in
(2.4) and (2.5) can be calculated algebraically and the candidate PLS estimators
have an elementary form that greatly facilitates their study and use. The present
paper considers more general penalty matrices and unbalanced designs. Treated are
constructions of penalty matrices, adaptive choice of the affine penalty weights by
minimizing estimated risk, and asymptotics that support such adaptation.

3. Loss, risk, estimated risk, and adaptation

Let η̂ be any estimator of η = E(y) = C̃m. Define the normalized quadratic loss of
any estimator η̂ of η to be

(3.1) L(η̂, η) = p−1|η̂ − η|2.

The risk of η̂ is then

(3.2) R(η̂, η) = EL(η̂, η),

where the expectation is calculated under the strong Gauss-Markov model of Sec-
tion 1. The least squares estimator η̂ls = C̃m̂ls = C̃C̃+y has risk R(η̂ls, η) = d.

The candidate PLS estimator η̂pls(N) can be put into a canonical form that

assists subsequent analysis. Recall that C̃ = Id ⊗ C is of full rank pd. Let

(3.3) Ũ = C̃
(
C̃ ′C̃

)−1/2
.

Evidently Ũ is nd × pd with Ũ ′Ũ = Ipd and C̃ ′C̃ is a pd × pd diagonal matrix
whose diagonal elements record systematically the number of observations on each
component of m. Because C̃ and Ũ have the same range space, η = C̃m = Ũξ, with
ξ = Ũ ′η. Let z = Ũ ′y. From (2.5) follows a canonical form for η̂pls(N):

(3.4) η̂pls(N) = ŨS(N)z, S(N) =
[
Ipd +

(
C̃ ′C̃

)−1/2
Q(N)

(
C̃ ′C̃

)−1/2]−1
.

The matrix S(N) is symmetric with eigenvalues in [0, 1]. Its effect in (3.4) is to
transform z to a new orthogonal coordinate system, shrink the coefficients in that
system toward zero, then transform back to the z coordinate system.

The quadratic loss of candidate estimator η̂pls(N) is thus

(3.5) L
(
η̂pls(N), η

)
= p−1|η̂pls(N)− η|2 = p−1|S(N)z − ξ|2.

Let T (N) = S2(N) and T̄ (N) = [Ipd − S(N)]2. From (3.5), the risk of candidate
estimator η̂pls is

(3.6) r(N, η) = EL
(
η̂pls(N), η

)
= p−1 tr

[
T (N) + T̄ (N)ξξ′

]
.

The strong Gauss-Markov assumptions made on the error matrix E entail that
E(z) = 0 and Cov(z) = Ipd. An unbiased estimator of ξξ′ is zz′−Ipd. As in Mallows
[11], this circumstance motivates estimating the risk r(N, η) by the estimated risk

(3.7) r̂(N) = p−1 tr
[
T (N) + T̄ (N)

(
zz′ − Ipd

)]
.

Let N denote the set of penalty weight matrices N = {Ns : s ∈ S} under consider-
ation. For a rich choice of N , the estimated risk converges, as p tends to infinity, to
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both the risk and loss of η̂pls(N), uniformly over all N ∈ N . This point is developed
later in Section 6.

Uniform convergence justifies using estimated risks as surrogates for risks in
selecting the penalty weight matrices. The adaptive PLS estimators of η and m are
defined to be

(3.8) η̂apls = η̂pls(N̂), m̂apls = m̂pls(N̂), where N̂ = argmin
N∈N

r̂(N).

4. Penalty matrices

This section describes a construction that penalizes separately the mean effects and
interactions in the MANOVA decomposition of M . The {Qs : s ∈ S} are defined
as tensor-product penalty matrices that, suitably weighted, express the possible
unimportance of certain interactions or main effects among the means and the
possible smoothness in the dependence of these means on ordinal covariates.

4.1. The MANOVA decomposition

The following algebra gives the orthogonal projections that define the multivariate
analysis of variance (MANOVA) decomposition of a complete k0-way layout of
means into overall mean, main effects, and interactions. For 1 ≤ k ≤ k0, define the

pk × 1 unit vector uk = p
−1/2
k (1, 1, . . . , 1)′ and the pk × pk matrices

(4.1) Jk = uku
′
k, Hk = Ipk

− uku
′
k.

For each k, the symmetric, idempotent matrices Jk and Hk have rank (or trace) 1
and pk − 1 respectively. They satisfy JkHk = 0 = HkJk and Jk +Hk = Ipk

. They
are thus orthogonal projections that decompose Rpk into two mutually orthogonal
subspaces of dimensions 1 and pk − 1 respectively.

Let S denote the set of all subsets of {1, 2, . . . , k0}, including the empty set ∅.
The cardinality of S is 2k0 . For every set s ∈ S, define the pk × pk matrix

(4.2) Ps,k =

{
Jk if k /∈ s,

Hk if k ∈ s.

Define the p× p Kronecker product matrix

(4.3) Ps =

k0⊗
k=1

Ps,k0−k+1.

The foregoing discussion implies that:

• Ps is symmetric, idempotent for every s ∈ S.
• If s �= ∅, the rank (or trace) of Ps is

∏
k∈s(pk − 1). The rank (or trace) of P∅

is 1.
• If s1 and s2 are two different sets in S, then Ps1Ps2 = 0 = Ps2Ps1 .
•

∑
s∈S Ps = Ip.

Consequently, the {Ps : s ∈ S} are orthogonal projections that decompose Rp into
2k0 mutually orthogonal subspaces.
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The MANOVA decomposition of M is the identity

(4.4) M =
∑
s∈S

PsM.

Here P∅M is the overall mean term in the decomposition. If s is nonempty, PsM
is the main effect or interaction term defined by the factors k ∈ s. The submodels
considered in classical MANOVA are defined by constraining M to satisfy PsM = 0
for every s in a specified subset of S. The choice of the subset identifies the main
effects or interaction terms that vanish in the submodel.

4.2. A class of tensor-product penalty matrices

An annihilator for factor k is a matrix Ak with pk columns such that Akuk = 0.
The rows of Ak are contrasts, selected to quantify departures from hypothetical
dependence of the means on the levels of covariate k. How to devise the {Ak}
suitably for ordinal and nominal covariates is addressed in a Section 5. Here we
describe how to build tensor-product penalty matrices {Qs} once the covariate
annihilators {Ak} have been chosen.

Let

(4.5) Qs,k =

{
Jk if k /∈ s,

A′
kAk if k ∈ s,

a pk × pk matrix. Define the p× p Kronecker product matrix

(4.6) Qs =

k0⊗
k=1

Qs,k0−k+1.

Note that the MANOVA projection Ps defined in (4.3) arises as the special case of
Qs when each Ak = Hk.

Suppose that the spectral representation of A′
kAk is

(4.7) A′
kAk =

pk∑
j=1

λk,jπk,j ,

where the {πk,j} are rank 1 eigenprojections corresponding to the eigenvalues 0 =
λk,1 ≤ · · · ≤ λk,pk

. Note that πk,1 = uku
′
k. From (4.7) and (4.5),

(4.8) Qs,k =

pk∑
j=1

γs,k,jπk,j ,

where

(4.9) γs,k,j =

⎧⎪⎨
⎪⎩
1 if j = 1 and k /∈ s,

0 if j ≥ 2 and k /∈ s,

λk,j if k ∈ s.

Recall from Section 1 the index set I of ordered k0-tuples

(4.10) I =
{
. . .

{{
(i1, i2, . . . , ik0) : 1 ≤ i1 ≤ p1

}
, 1 ≤ i2 ≤ p2

}
, . . . , 1 ≤ ik0 ≤ pk0

}
.
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For every s ∈ S, let Is = {i ∈ I : ik = 1 if k /∈ s and ik ≥ 2 if k ∈ s}. Thus,
i = (i1, i2, . . . , ik0) ∈ Is if and only if s = {k : ik ≥ 2}. Evidently I =

⋃
s∈S Is and

Is1 ∩ Is2 = ∅ whenever s1 �= s2.
For every i ∈ I, let

(4.11) πi =

k0⊗
k=1

πk0−k+1,ik , γs,i =

k0∏
k=1

γs,k0−k+1,ik .

Then,

(4.12) Qs =

k0⊗
k=1

Qs,k0−k+1 =
∑
i∈Is

γs,iπi,

where, for every i ∈ Is,

(4.13) γs,i =

{
1 if s = ∅,∏

k∈s λs,ik if s �= ∅.

This is a spectral representation of Qs.
Note that the {πi : i ∈ I} are mutually orthogonal rank 1 projections with∑
i∈I πi = Ip. Moreover, the MANOVA projection Ps defined in (4.3) has the

property Ps =
∑

i∈Is
πi, a spectral representation. From these facts and the spectral

representation of Qs in (4.12) follows

(4.14) PsQ
1/2
s = Q1/2

s Ps = Q1/2
s and Ps1Qs2 = Qs2Ps1 = 0 if s1 �= s2.

From this and the MANOVA decomposition (4.4) ofM , it follows that the quadratic
penalty in the PLS criterion (4.4) satisfies

(4.15)
∑
s∈S

|Q1/2
s MN1/2

s |2 =
∑
s∈S

|Q1/2
s (PsM)N1/2

s |2.

Thus, the tensor-product penalty matrix Qs defined in this section acts only on the
MANOVA component PsM .

4.3. Simplification for balanced complete designs

In a balanced complete design, n0 ≥ 1 observations are taken for each of the
covariate-value combinations {xi : i ∈ I}. Consequently, C ′C = n0Ip. The least
squares estimator of m is then

(4.16) m̂ls =
(
C̃ ′C̃

)−1
C̃ ′y = n−1

0 C̃ ′y.

Using (2.4),

(4.17) m̂pls(N) =
[
C̃ ′C̃ +Q(N)

]−1
C̃ ′y =

[
Ipd + n−1

0 Q(N)
]−1

m̂ls.

The spectral representation (4.12) of Qs, the definition of Q(N) in (2.2), and the
previously noted fact

∑
i∈I πi = Ip yield

(4.18) Ipd + n−1
0 Q(N) =

∑
s∈S

∑
i∈Is

[(
Id + n−1

0 γs,iNs

)
⊗ πi

]
.
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Hence, for a balanced complete design,

(4.19) m̂pls(N) =
∑
s∈S

∑
i∈Is

[(
Id + n−1

0 γs,iNs

)−1 ⊗ πi

]
m̂ls.

In matrix form,

(4.20) M̂pls(N) =
∑
s∈S

∑
i∈Is

πiM̂ls

(
Id + n−1

0 γs,iNs

)−1
.

This class of candidate PLS estimators enriches significantly the class of multiple
affine shrinkage estimators studied in Beran [3] because (4.20) has p summands,
where p goes to infinity in the asymptotics to be described in Section 6. Nevertheless,
the risk and estimated risk of M̂pls(N) still retain the additive structure seen in that

paper, thereby greatly simplifying construction of the adaptive estimator M̂apls. For

large p, the Efron-Morris [7] estimator coincides with a special case of M̂apls in a
balanced complete one-way layout: Q1 is set to be the identity matrix. Beran ([3],
p. 854) gives details.

5. Constructing covariate annihilators

To complete the construction of candidate PLS estimators, it remains to devise
annihilators that work in the world of data. The guiding idea behind construction
of annihilator Ak is this: nearly zero values of AkM should express plausible restric-
tions on how M depends on covariate k. It will be necessary to distinguish between
nominal covariates and ordinal covariates.

Covariate k is nominal. The values of a nominal covariate are labels that can
be permuted freely without loss of information. The corresponding candidate PLS
estimators should therefore be invariant under permutations of nominal levels. This
consideration prompts setting Ak = Hk for every k, the latter being defined in (4.1).
This choice of Ak will be called the flat annihilator for covariate k, a term suggested
by the constant spectrum of the reduced singular value decomposition of Hk. With
Ak = Hk, it follows from (4.5) that Qs,k = Ps,k.

Consider the special case where every factor in the layout is nominal. Using the
flat annihilator for each factor entails Qs = Ps for every subset s ∈ S. In this case,
the candidate PLS estimator η̂pls(N) interpolates among all possible MANOVA
submodel fits to the complete layout. The MANOVA submodel fits themselves are
limit points of this set of candidate PLS estimators.

Covariate k is ordinal. Suppose first that the ordered values of covariate k,
arranged as the column vector ck = (xk,1, xk,2, . . . , xk,pk

)′, are equally spaced. To
have the candidate PLS estimator η̂pls(N) favor a fit that is locally polynomial of
degree h0 − 1 in the values of covariate k, we take Ak equal to the h0-th difference
operator of column dimension pk.

Explicitly, consider the (g − 1) × g matrix Δ(g) = {δuw} in which δu,u = 1,
δu,u+1 = −1 for every u and all other entries are zero. Define recursively

(5.1) D(1, pk) = Δ(pk), D(h, pk) = Δ(pk−h+1)D(h−1, pk) for 2 ≤ h ≤ pk−1.

Evidently the (pk−h0)×pk matrix Ak = D(h0, pk) accomplishes h0-th differencing
and annihilates powers of ck up to power h0 − 1 in the sense that

(5.2) Akc
h
k = 0 for 0 ≤ h ≤ h0 − 1.
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The notation chk denotes the vector (xh
k,1, x

h
k,2, . . . , x

h
k,pk

)′. Moreover, in row i of Ak,
the elements not in columns i, i+ 1, . . . , i+ h0 are zero.

More generally, if the means are expected to behave locally like a polynomial
of degree h0 − 1 in factor k but the factor levels in ck are not necessarily equally
spaced, we define Ak as follows. The h0-th order local polynomial annihilator Ak is a
(pk−h0)×pk matrix characterized through three conditions: First, for every possible
i, all elements in the i-th row of Ak that are not in columns i, i+1, . . . i+h0 are zero.
Second, Ak satisfies the orthogonality constraints (5.2). Third, each row vector in
Ak has unit length. These requirements are met by setting the non-zero elements
in the i-th row of Ak equal to the basis vector of degree h0 in the orthonormal
polynomial basis that is defined on the h0+1 design points (xk,i, . . . , xk,i+h0). The
R function poly accomplishes this computation.

When the components of ck are equally spaced, this construction of Ak reduces to
a multiple of the h0-th difference annihilator described in the preceding paragraph.

6. Asymptotic theory

The two theorems in this section concern the loss, risk, and estimated risk of the
estimators η̂pls(N) and η̂apls defined in (3.4) and (3.8) respectively. We ask the
reader to recognize that almost every quantity in this paper depends on p. To avoid
burdensome notation, we generally omit the subscript p.

The notation for loss, risk and estimated risk is that in Section 3. The affine
penalty weights N = {Ns : s ∈ S} are restricted to positive semidefinite symmetric
matrices with bounded spectral norm. To this end, for every finite b > 0, define

(6.1) N ∈ N (b) if and only if max
s∈S

|Ns|spec ≤ b.

Theorem 6.1. Assume that the strong Gauss-Markov model holds. Let W (N) de-
note either the loss L(η̂pls(N), η) or the estimated risk r̂(N) of η̂pls(N). For every
finite a > 0 and b > 0,

(6.2) lim
p→∞

sup
p−1|η|2≤a

E sup
N∈N (b)

|W (N)− r(N, η)| = 0.

Proof idea. The argument has three steps: First is to show that, for everyN ∈ N (b),
the difference W (N)−r(N, η) converges in probability to zero as p tends to infinity.
Second, using empirical process theory, is to show that supN∈N (b) |W (N)−r(N, η)|
converges in probability to zero. Third is to use uniform integrability to establish
(6.2). The condition that |Ns|spec ≤ b ensures that every element of Ns lies in the
compact interval [−b,−b]. The full proof is an algebraically detailed extension of
the argument given for the univariate case in Theorem 3 of Beran [2].

Theorem 6.1 shows that the loss, risk, and estimated risk of candidate estimator
η̂pls(N) converge together as p tends to infinity. The uniformity of this convergence
over all N ∈ N (b) makes estimated risk a trustworthy surrogate for either loss
or risk when consulting the data regarding a good choice of the affine penalty
weights N . The next theorem expresses this point formally.

Refining definition (3.8) for the theorem statement, let N̂ = argminN∈N (b) r̂(N)

and the adaptive estimator η̂apls = η̂pls(N̂). Let Ñ = argminN∈N (b) r(N, η) denote
the corresponding oracle choice of N ∈ N (b).
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Theorem 6.2. Assume that the strong Gauss-Markov model holds. For every finite
a > 0 and b > 0,

(6.3) lim
p→∞

sup
p−1|η|2≤a

|R(η̂apls, η)− r(Ñ , η)| = 0.

Moreover, if V denotes either the loss L(η̂apls, η) or risk R(η̂apls, η) of η̂apls, then

(6.4) lim
p→∞

sup
p−1|η|2≤a

E|r̂(N̂)− V | = 0.

Proof. We show that (6.2) in Theorem 6.1 implies

(6.5) lim
p→∞

sup
p−1|η|2≤a

E|Z − r(Ñ , η)| = 0,

where Z can be L(η̂apls, η) or r̂(N̂). The three limits to be proved in (6.3) and (6.4)
follow immediately from (6.5).

First, (6.2) with W (N) = r̂(N) entails

(6.6) lim
p→∞

sup
p−1|η|2≤a

E|r̂(N̂)− r(Ñ , η)| = 0, lim
p→∞

sup
p−1|η|2≤a

E|r̂(N̂)− r(N̂ , η)| = 0.

Hence, (6.5) holds for Z = r̂(N̂) and

(6.7) lim
p→∞

sup
p−1|η|2≤a

E|r(N̂ , η)− r(Ñ , η)| = 0.

Second, (6.2) with W (N) = L(η̂pls(N), η) gives

(6.8) lim
p→∞

sup
p−1|η|2≤a

E|L
(
η̂pls(N̂), η

)
− r(N̂ , η)| = 0.

Because η̂apls = η̂pls(N̂), this and (6.7) establish the remaining case in (6.5).

By (6.3), the risk of the adaptive PLS estimator η̂apls converges to the risk of the

oracle estimator η̂pls(Ñ), which achieves minimum risk over the class of candidate

estimators {η̂pls(N) : N ∈ Nb}. By (6.4), the plug-in risk estimator r̂(N̂) converges

to the actual risk or loss of η̂apls. Through r̂(N̂), we estimate the extent to which
adaptation over the class of candidate PLS estimators reduces risk for the data on
hand.

7. Extensions

We outline two extensions of the theory in this paper that are desirable to make
adaptive PLS estimators useful for data analysis. The first addresses correlation
within observation vectors, which is seen in the data treated in Section 8. The
second treats multivariate regression in incomplete layouts, when observations are
not available for all combinations of the covariate values.
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7.1. Correlation and heteroscedasticity within observation vectors

More realistic for data analysis than model (1.1) is

(7.1) Y = CM + EΣ1/2,

where Σ is a d× d positive definite covariance matrix and the error matrix E is as
before. In this model, the rows of Y each have covariance matrix Σ. In the vectorized
notation of Section 2, model (7.1) is equivalent to

(7.2) yΣ = ηΣ + e,

where

(7.3) yΣ =
(
Σ−1/2 ⊗ Ip

)
y, ηΣ =

(
Σ−1/2 ⊗ Ip

)
η.

If we treat yΣ as the observation vector, this is the model already considered in
this paper. The estimation procedure is then:

• Estimate ηΣ by the adaptive PLS estimator η̂Σ,apls constructed from yΣ;

• Estimate η by η̂apls = (Σ1/2 ⊗ Ip)η̂Σ,apls; and m by m̂apls = C̃+η̂pls.

The asymptotic theory in Section 6 maps over to this procedure when the loss
function for any estimator η̂ of η is

(7.4) p−1(η̂ − η)′
(
Σ−1 ⊗ Ip

)
(η̂ − η) = p−1|η̂Σ − ηΣ|2,

where η̂Σ = (Σ−1/2 ⊗ Ip)η̂.

In practice, Σ is unknown and must be replaced by an estimator Σ̂ to mimic the
foregoing construction of η̂apls. Some remarks on this extension:

• If Σ̂ is consistent for Σ, the asymptotics in Section 6 can be extended to
show that loss and estimated risk converge together in probability. Stronger
conditions on Σ̂, not easily verified for practical constructions, seem necessary
to obtain strict analogs of Theorems 6.1 and 6.2 that also address convergence
of risk.

• The least squares estimator Σ̂ls = (n − p)Y ′(In − CC+)Y , available when
n > p, is consistent for Σ when n− p tends to infinity.

• In the absence of adequate replication, pooling may provide a useful estimator
of Σ: fit a plausible linear submodel for M by least squares and construct the
least squares estimator of Σ associated with this submodel fit. This estima-
tor will be consistent if its bias tends to zero in the asymptotics. Obviously
replication is more trustworthy than pooling in estimating Σ.

7.2. Incomplete designs

Typical in multivariate regression problems with k0 covariates is multivariate re-
sponse data collected on an incomplete array, a proper subset of a complete k0-way
of covariate-value combinations. The data incidence matrix C is then not of full
rank. The matrix inverse may not exist in definitions (2.4) and (2.5) of candidate
PLS estimators. To handle this, we may replace the penalty matrix Q(N) by the
necessarily full rank matrix

(7.5) Qε(N) = Q(N) + εIp, ε > 0.



44 R. Beran

In practice, a choice such as ε = 10−6 seems to work well, shrinking the fit slightly
towards zero and stabilizing the numerical computations.

The construction of adaptive PLS estimators using Qε(N) and their risk asymp-
totics in incomplete designs parallel those already given for complete designs. The
methodology yields adaptive PLS estimators m̂apls and η̂ over the complete k0
array—a fitted regression function that extrapolates to missing values. The risk of
this estimator is assessed only at design points where observations are available.
For a full discussion of the univariate case d = 1, see Beran [2].

8. Data example

The data matrix Y in this case study is 52 × 3. Row i of Y reports the grape
yields harvested in three different years from row i of a vineyard with 52 rows of
grapevines. The data is taken from Chatterjee, Handcock and Simonoff [6]. The
grape yields, measured in lugs of grapes harvested from each row, are plotted in
Figure 1, using a different plotting character for each of the three years. Both
year-to-year and row-to-row changes in viticulture affect the observed yields. The
analysis seeks to find possible patterns in the row harvest yields that persist across
the three years. The notation used is that of the preceding theoretical sections.

It is fundamental to recognize that probability models serve, in this paper and
elsewhere, as a mathematical device for testing statistical procedures on interesting
fake data. The theoretical understanding of a statistical procedure so gained is akin
to the role of basic science in developing medical procedures—useful and important
but by no means the whole story. Experiments on lab animals and clinical trials
on humans are essential in medicine. Trials of statistical procedures on data in
the world around us are equally necessary in statistics. The vineyard data are
not certifiably random in the sense of axiomatic probability theory. In applying
adaptive PLS estimators to this data, we recall Tukey’s [15] remark: “In practice,
methodologies have no assumptions and deliver no certainties.”

Note that the harvest data is intrinsically discrete, the vineyard rows having
physical existence. The data is treated as a one-way layout with trivariate responses
that depend on a single ordinal covariate (vineyard row number). Here, p = n = 52,

Fig 1. Vineyard data and linearly interpolated adaptive PLS fit to the trivariate grape yields.
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d = 3, and k0 = 1. For a one-way layout, the index set S defined in Section 4 is

(8.1) S =
{
∅, {1}

}
and

(8.2) I = {i : 1 ≤ i ≤ p}, I∅ = {1}, I{1} = {i : 2 ≤ i ≤ p}.

On the hypothetical conjecture that mean responses may vary smoothly in locally
linear manner, we set the annihilator A1 to be the second-difference matrix. The
eigenvectors of A′

1A1, ordered from smallest to largest eigenvalue, give the orthogo-
nal basis O that generates the spectral representations of the two penalty matrices
{Qs : s ∈ S}.

In the absence of replication, we estimate Σ from the residuals after the least
squares fit of Y to the first 20 columns of O—a pooling strategy. This yields

(8.3) Σ̂ =

⎛
⎝0.994 0.191 0.160
0.191 1.782 −.268
0.160 −.268 3.054

⎞
⎠ ,

which indicates slightly correlated heteroscedasticity across the three years.
For numerical simplicity, we restrict the class of candidate PLS estimators by

forcingN∅ = 0. Then the candidate PLS estimators do not shrink the mean response
vector. Adaptation is accomplished by minimizing estimated risk over all positive
semidefinite affine penalty weights N{1}. The Cholesky factorization of N{1} is a
convenient parametrization in performing the minimization.

The estimated risks of η̂apls and of η̂ls are, respectively, 0.364 and 3. The reduc-
tion in estimated risk achieved over the least squares fit by adaptive PLS is more
than eightfold. The points in Figure 1 are the harvest yields, which coincide with
the least squares estimator M̂ls for M . The solid lines in the figure join the points
that represent M̂apls. They are purely a visual device to guide the eye. Large dips

in M̂apls occur in the outer vineyard rows and near row 33; smaller fluctuations
occur elsewhere. These point to possible variations in soil fertility or irrigation and
to climate stress on the outer vineyard rows.
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