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A counterexample concerning the

extension of uniform strong laws to

ergodic processes

Terrence M. Adams1 and Andrew B. Nobel∗,2

Department of Defense and University of North Carolina, Chapel Hill

Abstract: We present a construction showing that a class of sets C that is
Glivenko-Cantelli for an i.i.d. process need not be Glivenko-Cantelli for every
stationary ergodic process with the same one dimensional marginal distribu-
tion. This result provides a counterpoint to recent work extending uniform
strong laws to ergodic processes, and a recent characterization of universal
Glivenko Cantelli classes.

1. Introduction and result

Let X = X1, X2, . . . be an independent, identically distributed sequence of random
variables defined on an underlying probability space (Ω,F , P ) and taking values
in a measurable space (X ,S). The strong law of large numbers ensures that, for
every set C ∈ S, the sample averages n−1

∑n
i=1 IC(Xi) converge almost surely to

P (X ∈ C). A countable family C ⊆ S is said to be a Glivenko-Cantelli class for X
if the discrepancy

Δn(C : X) = sup
C∈C

∣∣∣∣∣ 1n
n∑

i=1

IC(Xi)− P (X ∈ C)

∣∣∣∣∣
tends to zero almost surely as n tends to infinity. In other words, C is a Glivenko-
Cantelli class if the relative frequencies of sets in C converge uniformly to their
limiting probabilities. The notion of a Glivenko-Cantelli class extends in an obvi-
ous way to uncountable families C under appropriate measurability conditions. For
simplicity, we restrict our attention to countable classes C in what follows.

The discrepancy Δn(C : X) plays an important role in the theory of machine
learning and empirical processes (cf. [4, 5, 9, 10]). Necessary and sufficient condi-
tions under which a family of sets C is a Glivenko-Cantelli class for an i.i.d. process
X were first established by Vapnik and Chervonenkis [11], and later strengthened
by Talagrand [8]. In both cases the conditions are combinatorial, and place limits
on the ability of the family C to separate points in the trajectory of X.

The ergodic theorem extends the classical strong law of large numbers to the
larger family of ergodic processes, and it is natural to consider uniform laws of
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large numbers in the ergodic setting as well. A stationary process X = X1, X2, . . .
with values in (X ,S) is ergodic if for each k ≥ 1 and every A,B ∈ Sk,

lim
n→∞

1

n

n−1∑
i=0

P
(
Xk

1 ∈ A,Xi+k
i+1 ∈ B

)
= P

(
Xk

1 ∈ A
)
P
(
Xk

1 ∈ B
)
,

where Xj
i denotes the tuple (Xi, . . . , Xj) when i ≤ j. Let C ⊆ S be a countable

family of sets. Extending the definition above, we will say that C is Glivenko-Cantelli
for X if Δn(C : X) → 0 with probability one as n tends to infinity.

Although necessary and sufficient conditions analogous to those of [8, 11] are not
known in the general ergodic case, there has been some recent progress in regards
to sufficiency and universality. Adams and Nobel [1] showed that if C has finite
Vapnik-Chervonenkis (VC) dimension, then C is Glivenko-Cantelli for every ergodic
processX. Extensions to families of real-valued functions with finite VC-major, VC-
graph, and fat-shattering dimensions can be found in [1, 2]. In a subsequent paper,
Adams and Nobel [3] showed that classes of sets with finite VC dimension have finite
bracketing numbers. In recent work, von Handel [12] has obtained generalizations of
these results, and has established connections between universal Glivenko-Cantelli
classes, covering numbers, and bracketing numbers. His principal result has the
following immediate corollary: if C is Glivenko-Cantelli for every i.i.d. process, then
C is Glivenko-Cantelli for every stationary ergodic process. In other words, the
Glivenko-Cantelli property extends from the family of i.i.d. processes to the family
of stationary ergodic processes.

In light of these results, it is natural to ask if the Glivenko-Cantelli property can
be extended from a single i.i.d. processX to a related family of dependent processes.
On the positive side, Nobel and Dembo [7] showed that if C is Glivenko-Cantelli
for an i.i.d. process X, then C is Glivenko-Cantelli for every beta-mixing (weakly
Bernoulli) process Y with the same one dimensional marginal distribution, regard-
less of the mixing rate. In contrast with this result, we show below that a class C
that is Glivenko-Cantelli for an i.i.d. processX need not be Glivenko-Cantelli for ev-
ery stationary ergodic process with the same one dimensional marginal distribution
as X. In general then, extension of the Glivenko-Cantelli property from the i.i.d.
setting to the ergodic one requires consideration of multiple marginal distributions.

In what follows, let [0, 1) be the half-open unit interval, equipped with its Borel
subsets B and Lebesgue measure λ.

Theorem 1.1. There exist stationary processes X and Y with values in [0, 1) and
a countable family D of Borel subsets of [0, 1) such that

(a) X is independent with Xi ∼ λ

(b) Y is ergodic with Yj ∼ λ

(c) Δn(D : X) → 0 with probability 1 but Δn(D : Y) ≥ 1/2 with probability 1 for
each n ≥ 1.

The ergodic process Y in the theorem is defined by the repeated application of
a fixed, Lebesgue measure preserving transformation T : [0, 1) → [0, 1) known as
the von Neumann-Kakutani adding machine. An iterative construction of T via the
method of cutting and stacking is outlined below; a more detailed presentation may
be found in Friedman [6]. The sets in D are unions of intervals used to construct T ,
and are chosen in such a way that they are mutually independent under Lebesgue
measure. Arguments of Dudley [5] show that Δn(D : X) → 0 with probability one,
while the construction of the sets in D ensures that Δn(D : Y) ≥ 1/2.
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Proof. We define a transformation T : [0, 1) → [0, 1) in an iterative fashion using
a sequence of ordered intervals, known as columns. The intervals in each column
can be viewed as a stack, with each interval lying directly below the interval to
its right. Let the initial column C0 = {[0, 1)}. For k ≥ 0 define a new column
Ck+1 as follows. First, split each interval in Ck in half, creating two stacks with
the same height, but half the width, of the stack defined by Ck. Then, place the
right stack on top of the left. Thus, ordering intervals in the column from top to
bottom, C1 = {[0, 1/2), [1/2, 1)} and C2 = {[0, 1/4), [1/2, 3/4), [1/4, 1/2), [3/4, 1)}.
In general Ck contains 2k dyadic intervals of length 2−k. The transformation T
maps each point x ∈ [0, 1) into the point directly above it in one of the columns
Ck. The definition of the columns ensures that this assignment is consistent across
columns, and that T is defined for every point in [0, 1). It is easy to see that T
is measurable, and that T preserves the (Lebesgue) measure of dyadic intervals.
Thus T is measure preserving, and one may show in addition that T is ergodic (see
Friedman [6] for more details).

The sets D1, D2, . . . in D are constructed inductively from the intervals used to
define T . Let D1 = [0, 1) and k1 = 1. Suppose that for some m ≥ 2 the set Dm−1

has been defined as a union of intervals in the column Ckm−1 . Choose integers
lm, rm ≥ 1 such that (2m)−1 ≤ 2lm 2−rm ≤ m−1. Let km = km−1 + rm, and define
Dm to be the top 2lm 2km−1 intervals of Ckm .

The definition of Dm ensures that λ(Dm) = 2lm · 2−rm so that (2m)−1 ≤
λ(Dm) ≤ m−1. The construction of the columns Ck ensures that the intervals
defining Dm−1 appear in a regular fashion among the intervals in the column
Ckm . (In particular, the intervals in Dm−1 appear 2lm times among the intervals
defining Dm.) One may readily show that Dm is independent of Dm−1, and of
D1, D2, . . . , Dm−2 as well. Define D = {Dm : m ≥ 1}.

Let X = X1, X2, . . . ∈ [0, 1) be any i.i.d. sequence with Xi ∼ λ. Using the bounds
on λ(Dm) above, arguments like those in Proposition 7.1.6 of Dudley [5] show that,
for every 0 < ε < 1,

∑
n≥2/ε

∑
m≥1

P

(∣∣∣∣∣n−1
n∑

i=1

IDm(Xi)− λ(Dm)

∣∣∣∣∣ > ε

)
< ∞.

It follows from the first Borel-Cantelli lemma that Δn(D : X) → 0 with prob-
ability one. Using independence of the sets Dm one may also show that the ε
bracketing numbers of D are infinite if ε < 1/2. See Dudley [5] for more de-
tails.

Define a (deterministic) process Y = Y0, Y1, . . . on ([0, 1),B, λ) by letting Yi(x) =
T ix, where T i denotes the i-fold composition of the transformation T with itself.
As T is measure preserving and ergodic, the process Y is stationary and ergodic,
and moreover Yi ∼ λ. For each m ≥ 2, let D′

m contain the “bottom” lm 2km−1 inter-
vals comprising Dm. The sets D′

1, D
′
2, . . . are independent, and the lower bound

on λ(Dm) ensures that λ(D′
m) ≥ (4m)−1. Thus

∑
m≥2 λ(D

′
m) = ∞, and the

second Borel-Cantelli lemma implies that λ({D′
m i.o.}) = 1. Fix n ≥ 1 and let

x ∈ {D′
m i.o.}. Then there exists m ≥ 3 such that x ∈ D′

m and lm 2km−1 > n. The
definition of D′

m and T ensure that T jx ∈ Dm for j = 1, . . . , n, and as λ(Dm) < 1/2
we find that Δn(D : Y) ≥ 1/2 at x. It follows that Δn(D : Y) ≥ 1/2 with proba-
bility one for each n ≥ 1.
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