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Accurate approximations

to the distribution of a statistic testing

symmetry in contingency tables

John E. Kolassa∗ and Hema Gayat Bhagavatula

Rutgers University

Abstract: This manuscript examines this task of approximating significance
levels for a test of symmetry in square contingency tables. The null sampling
distribution of this test statistic is the same as that of the sum of squared
independent centered binomial random variables, weighted by their separate
sample size; each of these variables may be taken to have success probability
half. This manuscript applies an existing asymptotic correction to the stan-
dard chi-squared approximation to the distribution of the quadratic form of a
random vector confined to a multivariate lattice, when the quadratic form is
formed from the inverse variance matrix of the random vector. This manuscript
also investigates non-asymptotic corrections to approximations to this distri-
bution, when the separate binomial sample sizes are small.
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1. Introduction

Consider a square table of random counts Xjk, for j, k ∈ {1, . . . , d}, such that

(X11, X12, . . . , X1d, X21, X22, . . . , X2d, . . . , Xd1, Xd2, . . . , Xdd)

has a multinomial distribution, and let πjk denote the cell probability correspond-
ing to Xjk. Bowker (1948) introduces statistic for testing the null hypothesis that
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πjk = πkj for all j and k, vs. the unrestricted alternative, of the form W =∑d−1
j=1

∑d
k=2(Xjk − Xk,j)2/(Xjk + Xkj). As long as πjk > 0 for all j �= k, then,

as X.. =
∑d

j=1

∑d
k=1 Xjk increases,

(1) P [W ≤ w] .= Gm(w)

for m = d(d − 1)/2, and Gm the χ2
m distribution function, where the subscript

refers to the degrees of freedom. Here .= represents an order of accuracy generally
adequate for most practical problems, subject to sufficiently large Xjk + Xkj .

When some of the off-diagonal probabilities πjk are small, and X.. only moderate,
the above χ2 approximation may not be sufficiently adequate. This manuscript
investigates two improvements to this approximation. The first of these adjusts for
discreteness of the distribution of W , and the second exploits simplifications arising
when the denominator of some summands of W are small.

Let T = (X12, X13, · · · , Xd−2d−1, Xd−2d, Xd−1d) and let N denote

(X12 + X21, X13 + X31, · · · , Xd−2d−1 + Xd−1d−2, Xd−2d + Xdd−2, Xd−1d + Xdd−1).

Let m = (d − 1)d/2. Then for each l ∈ {1, . . . , m}, Tl ∼ Bin(1/2, Nl), and

(2) W =
m∑

l=1

(Tl − Nl/2)2/(Nl/4).

Hence Bowker’s test of symmetry can be recast as a multivariate binomial testing
task; this more general problem will be addressed in the remainder of the pa-
per. Krampe and Kuhnt (2007) perform this test conditionally on the value of N;
we test conditionally as well. Specifically, if we define H(w;N) = P [

∑m
l=1(Tl −

Nl/2)2/(Nl/4) ≤ w], then the balance of this paper concerns evaluating H(w;N).
This test might be performed exactly (Krampe and Kuhnt, 2007), but some very
popular statistical packages lack this functionality (Oster, 2003). Ludbrook (2008),
Oster and Hilbe (2008a), and Oster and Hilbe (2008b) review abilities of various
commercial software packages to perform exact inference in a similar, but not iden-
tical, setting.

2. An approximation to the distribution function of a score test
for binomial testing

Let E = {t|t�Σ−1t ≤ w} be the elliptical set of t giving rise to W ≤ w. Kolassa
(2006) reviews the multivariate Edgeworth series, which allows the approximation
of probabilities of sets like E , as long as T satisfies regularity conditions.

When T has a lattice distribution, approximating probabilities of elliptical re-
gions becomes tricky. Bhattacharya and Rao (1976) review approximations to prob-
abilities for events described in terms of random vectors confined to a multivariate
lattice, and Yarnold (1972) addresses the problem of evaluating this approximation
for convex sets, and in particular for standardized ellipses. The Yarnold approxi-
mation is the χ2 approximation plus the difference between the actual number of
points in the ellipse and the volume of the ellipse divided by the volume of a unit
cube of the lattice, times the normal approximation to the density at each point on
the ellipse boundary. Specifically, suppose T arises as the mean of n independent
and identically distributed random vectors having a finite sixth moment and con-
fined to a unit lattice, standardized so that the variance matrix of T is fixed as n
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increases. Then

(3) H(w;N) ≈ Gm(w) + (N(w) − V (w))
exp(−w/2)

(2π)m/2 detΣ1/2
,

where N(w) is the number of vectors of integers m such that m + y ∈ E ,

V (w) =
(πw)m/2 detΣ1/2

Γ(m/2 + 1)

is the volume of E , and ≈ represents a uniform absolute error of O(n−1) as n
increases. Kolassa (2003) reviews this approximation, as applied to score tests for
discrete regression models.

In the present context, when applying Bowker’s test, (3) may be simplified.
The matrix Σ is a diagonal matrix with N/4 on its diagonal. Hence detΣ1/2 =∏m

l=1(Nl/4), and

E = {t|
m∑

l=1

(2Tl − Nl)2/Nl ≤ w}.

Let M be the least common multiple of {Nl|l = 1, . . . , m}, and let Rl = M/Nl.
Then E = {t|

∑m
l=1 Rl(2Tl − Nl)2 ≤ Mw}. Hence the discontinuities in W can be

located exactly via integer arithmetic.

3. Adjustments for small denominators

I first introduce some notation. For any set S ⊂ {1, . . . , m}, let TS and NS represent
T and N, with only those components retained with indices in S. Furthermore, let
#(S) represent the cardinality of S.

Note that when Nl = 0, hypotheses concerning the associated binomial prob-
abilities are not testable, and the contribution from Tl to W is undefined. Doc-
umentation for standard statistical software, (including SAS Institute Inc. (2010))
indicates that the programmers set such terms to zero in (2), but counts them when
calculating m in (1). I recommend omitting these observations from T, and from
the calculated degrees of freedom. That is, I define

(4) H(w;N) = H(w;NAc),

for A = {l|Nl = 0}, to remove the indeterminant terms arising from zero numerators
and denominators, and if (1) is used to approximate the distribution of W , then
entries with zero denominators are removed before calculating degrees of freedom.
Furthermore, for those l such that Nl = 1, the contribution to W is always 1. Let
B = {l|Nl = 1}. Note that

(5) H(w;N) = H(w − #(B);N(A ∪ B)c)

Furthermore, for indices l such that Nl = 2, then the contribution to W is 0 with
probability 1/2, and 2 with probability 1/2. and for indices l such that Nl = 3, then
the contribution to W is 1/3 with probability 3/4, and 3 with probability 1/4. Let
C = {l|Nl = 2}, and D = {l|Nl = 3}. Then

H(w;N) =
#(C)∑
j=0

#(D)∑
k=0

(
1
2

)#(C) (
3
4

)k (
1
4

)#(D)−k

×(6)

H(w − #(B) − 2j − 3k − 1
3
(#(D) − k);N(A ∪ B ∪C ∪D)c).
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It may happen that A ∪ B ∪ C ∪ D = {1, . . . , m}; in this case, N(A ∪ B ∪C ∪D)c is a
vector of zero length, and when H has a zero-component second argument we define

(7) H(w; ) =

{
0 if w < 0
1 if w ≥ 0

4. Results

In this section we compare the result of our approximation in four cases. The
first two of these cases involve binomial sample sizes small enough to merit the
use of Yarnold’s approximation of Section 2, but large enough not to require the
refinements of Section 3. The last two of these cases involve both the Yarnold
refinement and the exact convolution approach of Section 3.

4.1. Yarnold’s approximation

Yarnold approximations for two sets of binomial sample sizes are presented in Fig-
ures 1–4.

Figure 1 presents the Chi-square and Yarnold approximations with binomial
sample sizes 4,4,5, and Figure 2 shows the error of these two approximations. The
Yarnold approximation is far more accurate than is the standard Chi-square ap-
proximation.

Figure 3 presents the Chi-square and Yarnold approximations with binomial
sample sizes 8,9,10, and Figure 4 shows the error of these two approximations.
Again, the Yarnold approximation is far more accurate than is the standard Chi-
square approximation.

4.2. The addition of exact convolution

Yarnold approximations for two sets of binomial sample sizes are presented in Fig-
ures 5–8; additionally, these approximations also involve the correction for small
sample sizes. The first set of binomial observations exhibit the effect of dropping
the binomials with sample size one, and the second shows the effect of exactly
convolving the approximation for observations with larger samples with those for
sample sizes two and three.

Figure 5 presents the Chi-square and Yarnold approximations with binomial
sample sizes 1,4,4,5, both with and without the adjustment for the sample size 1
category, and Figure 6 shows the error of these approximations. The Yarnold and
small sample size adjustments each improve accuracy, and the combination is better
than either of the two approximations separately.

Figure 7 presents the Chi-square and Yarnold approximations with binomial
sample sizes 2,3,4,5, both with and without the adjustment for the sample sizes 2
and 3 category, and Figure 8 shows the error of these approximations. The Yarnold
and small sample size adjustments each improve accuracy, and the combination is
better than either of the two approximations separately.

5. Conclusion

We have investigated the problem of evaluation of symmetry in two-dimensional
tables, recast this problem as a more general question of tests of multiple binomial
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Fig 1. Approximate and Exact Distribution Functions for Tests of Multiple Binomial Parame-
ters.1

Fig 2. Errors in Distribution Function Approximations for Tests of Multiple Binomial Parame-
ters.

1The approximate and exact distribution functions are based on sample sizes of 4, 4, and 5.
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Fig 3. Approximate and Exact Distribution Functions for Tests of Multiple Binomial Parame-
ters.1

Fig 4. Errors in Distribution Function Approximations for Tests of Multiple Binomial Parame-
ters.

1The approximate and exact distribution functions are based on sample sizes of 8, 9, and 10.
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Fig 5. Approximate and Exact Distribution Functions for Tests of Multiple Binomial Parame-
ters.1

Fig 6. Errors in Distribution Function Approximations for Tests of Multiple Binomial Parame-
ters.

1The approximate and exact distribution functions are based on sample sizes of 1, 4, 4, and 5.
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Fig 7. Approximate and Exact Distribution Functions for Tests of Multiple Binomial Parame-
ters.1

Fig 8. Errors in Distribution Function Approximations for Tests of Multiple Binomial Parame-
ters.

1The approximate and exact distribution functions are based on sample sizes of 2, 3, 4, and 5.
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parameters, and provided approximations to p-values that are more accurate than
those commonly employed. This approximation combines an accurate approxima-
tion for the probabilities that lattice random vectors lie in an ellipse, and exact
convolution for binomial cells for which this exact convolution is easy. The result-
ing approximation is easy to apply, and far more accurate than are conventional
approximations.
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