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Minimax �q risk in �p balls

Cun-Hui Zhang1,∗

Rutgers University

Abstract: This paper provides an extension of earlier results on minimax
estimation of a high-dimensional sparse vector to even more sparse vectors.
Specifically, an approximation of the minimax �q risk is obtained and thresh-
old estimators are proved to achieve the minimax risk within an infinitesimal
fraction in all small �p balls.
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1. Introduction

This paper concerns the estimation of a high-dimensional vector with a standard
normal error. The multivariate normal distribution is a primary model in many
areas in statistics, including compound decision theory and empirical Bayes, admis-
sibility, adaptive nonparametric estimation, variable selection and multiple testing.

The estimation of a vector under the �q loss can be viewed as a compound
decision problem in which the problems of estimating the individual components of
the vector are combined. The fundamental idea of the compound decision theory
and empirical Bayes (Robbins, 1951, 1956) is that the compound risk of individual
problems can be substantially reduced by making individual decisions based on
data from all problems involved. This has been proven to hold even in cases where
the individual problems are independent.

For the estimation of a vector with standard normal error, the optimal invariant
estimator can be improved upon under the �2 loss in spaces of dimension three or
higher (Stein, 1956; James and Stein, 1961). This improvement is achieved by linear
shrinkage of the optimal invariant estimator towards zero with an adaptive factor.
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The linear shrinkage approach was further developed in many directions, including
admissibility (Brown, 1966, 1971), minimax Bayes methods with harmonic priors
(Strawderman, 1971, 1973), and an linear empirical Bayes interpretation (Efron
and Morris, 1972, 1973). We refer to Zhang (2003) for further discussion.

Linear shrinkage has important implications in nonparametric statistics since an
infinite-dimensional parameter can be represented by its coefficients in a suitable
basis. In nonparametric regression, an application of linear shrinkage estimators
to blocks of coefficients of an unknown smooth regression function yields sharp
adaptive (simultaneous asymptotic) minimax estimators of a regression function in
Sobolev balls of all sizes and degrees of smoothness (Efromovich and Pinsker, 1984,
1986).

Linear shrinkage has its limitations. Rate adaptive minimax estimation (within a
constant factor to minimax) in classes of regression functions with inhomogeneous
smoothness (e.g. discontinuity) can be attained by thresholding the estimated co-
efficients in a wavelet basis, but not by linear shrinkage (Donoho and Johnstone,
1995; Johnstone and Silverman, 2005). This phenomenon is due to the fact that at
certain crucial resolution levels, the wavelet coefficients of such functions belong to
small �p balls, only for some p < 2, and linear estimators in such small �p balls are
not of minimax rate under the �2 loss (Donoho and Johnstone, 1994; Johnstone,
1994).

The advantages of threshold estimators over the linear ones demonstrate that
the possible gain of compounding statistical decision problems may not fully mate-
rialize if one confines to a small parametric class of procedures. The objective of the
original empirical Bayes approach (Robbins, 1951, 1956), called general empirical
Bayes (Robbins, 1983), is to approximate the performance of an oracle Bayes rule.
This oracle Bayes rule provides the minimum compound risk among all separable
procedures, or equivalently applications of deterministic decision functions to all
data points. Since threshold and linear estimators are all separable, the general
empirical Bayes aims at a smaller benchmark risk than those of the linear and
threshold approaches. Consequently, sharper results can be achieved in principle in
the general empirical Bayes approach, provided a sufficiently accurate estimate of
the oracle Bayes rule or its prior. In nonparametric regression, sharp adaptive min-
imax estimation in classes of regression functions with inhomogeneous smoothness
are attained by general empirical Bayes, but not by linear or threshold methods
(Zhang, 2005).

Nonparametric regression demonstrates the advantages of the linear shrinkage,
adaptive threshold and general empirical Bayes approaches, but the core of the
problems is still the estimation of a high-dimensional vector. The focus of this
paper is the estimation in �p balls under the �q loss. In the difficult case of p < q,
(rate or sharp) adaptive minimax estimation is achieved with threshold (Donoho
and Johnstone, 1995; Johnstone and Silverman, 2004; Abramovich et al, 2006)
and general empirical Bayes methods (Zhang, 1997; Brown and Greenshtein, 2009;
Jiang and Zhang, 2009; Zhang, 2009) when the radius of the �p balls falls into
certain ranges. The limitation on the range of adaptive estimation is not only due
to the difficulty of finding accurate adaptive threshold levels or estimates of the
oracle prior, but also to an incomplete understanding of the minimax risk in very
small �p balls. This second gap is closed in this paper.

In the rest of the paper, we state and further discuss the main results in Section 2
and provide their proofs in Section 3.

The following notation will be used throughout the paper: For x = (x1, . . . , xn) ∈
R

n, ‖x‖p,n = (n−1
∑n

i=1 |xi|p)1/p is the length-normalized �p norm, with the usual
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extension to 0 < p < 1, and ‖x‖0,n = #{i : xi �= 0}/n; ‖Z‖p = (E|Z|p)1/p is
the Lp norm of random variables Z; x ∧ y = min(x, y), x ∨ y = max(x, y) and
x+ = x ∨ 0; �x� is the largest integer lower bound of x, and 	x
 is the smallest
integer upper bound of x; an ≈ bn means an = (1 + o(1))bn, and an � bn means
an/bn → 0; E[X; A] =

∫
A

XdP for all random variables X and events A; t(x) =
(t(x1), . . . , t(xn)) for maps t(·) in R.

2. Minimax risk for sparse vectors

Suppose we observe a multivariate normal vector X ∼ N(θ, In) under Pθ with an
unknown θ ∈ R

n. The �q risk of an estimator δ = δ(x) = (δ1(x), . . . , δn(x)) is

Rq,n(θ, δ) = Eθ

∥∥δ(X) − θ
∥∥q

q,n
=

1
n

n∑
i=1

Eθ

∣∣δi(X) − θi

∣∣q.
For vector classes Θ ⊂ R

n, the maximum and minimax �q risks are respectively

Rq,n(Θ, δ) = sup
θ∈Θ

Rq,n(θ, δ), Rq,n(Θ) = inf
δ∈B

Rq,n(Θ, δ),

where B is the collection of all estimators (all Borel maps in R
n). Our objective

is to study the minimax �q risk in �p balls. Since the simpler case of p > q is
well understood (Donoho and Johnstone, 1994; Johnstone, 1994), we confine our
investigation to 0 ≤ p ≤ q, q ≥ 1 and C > 0. These restrictions on (q, p, C) are in
effect throughout the sequel without explicitly repeating the statement. We consider
the strong and weak �p balls in separate subsections.

2.1. Strong �p balls

The strong �p ball with a length-normalized radius C is

Θp,C,n = {θ : ‖θ‖p,n ≤ C}.

Since Θp,C,n is commonly referred to as the (regular) �p ball, we omit the word
“strong” in the rest of the paper.

For threshold levels λ > 0, let sλ(x) = sgn(x)(|x| − λ)+ be the soft-threshold
estimator and hλ(x) = xI{ |x| > λ} be the hard threshold estimator. Consider �p

balls with p > 0 and small length-normalized radii Cp
n → 0. Let λn =

√
2 log(1/Cp

n).
Under the additional condition nCp

n/λp
n → ∞, Donoho and Johnstone (1994) proved

Rq,n(Θp,Cn,n) ≈ Rq,n(Θp,Cn,n , sλn) ≈ Cp
nλq−p

n ,(2.1)

and analogous results for p = 0 and the hard threshold estimator at a slightly larger
threshold level. This requires the radii of the �p ball be small, but not too small.
Theorem 1 below removes this additional condition by covering all small �p balls.
Moreover, Theorem 1 is uniform in (q, p, C).

For 0 < C < 1, define

rq,n(Θp,C,n) = max
θ∈Θp,C,n

n∑
i=1

|θi|q ∧ λq

n
=

{
{(m − 1)λq + μq }/n, p > 0
mλq/n, p = 0,

(2.2)

where λ > 0, 0 ≤ μ ≤ λ and integer m ≥ 1 are functions of (p, C, n) given by{
λ =

√
2 log(1/Cp), m = 	nCp/λp
, μ = nCp − (m − 1)λp, if p > 0

m = �nC�, λ =
√

2 log(n/m), μ = 0, if p = 0.
(2.3)
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Theorem 1. Let p′ = p for p > 0, p′ = 1 for p = 0, 1 ≤ q∗ < ∞ and ηn → 0+.
Then,

sup
q,p,C

{∣∣∣Rq,n(Θp,C,n)
rq,n(Θp,C,n)

− 1
∣∣∣ : q ≤ q∗, Cp′

≤ ηn

}
→ 0,(2.4)

and at the threshold level λ = λp,C =
√

2 log(1/Cp′ ),

sup
q,p,C

{∣∣∣ Rq,n(Θp,C,n)
Rq,n(Θp,C,n, sλ)

− 1
∣∣∣ : q ≤ q∗,

1
n

≤ Cp′
≤ ηn

}
→ 0.(2.5)

Moreover, (2.5) holds for the hard threshold estimator hλ′ at the threshold level
λ′ = λ + ‖Z‖2q + (q + 1)(log λ)/λ, where Z ∼ N(0, 1).

Theorem 1 asserts that the minimax �q risk in small �p balls is uniformly ap-
proximated by (2.2) and achieved with threshold estimators. The optimal threshold
estimator is 0 (i.e. λ = ∞) for Cp′

< 1/n. The approximation can be viewed as
a discrete version of (2.1), since rq,n(Θp,Cn,n) ≈ Cp

nλq−p
n for nCp

n/λp
n → ∞. For

nCp
n/λp

n = O(1), this discretization is necessary. For nCp
n � 1, Cp

nλq−p
n does not

approximate the minimax risk since rq,n(Θp,Cn,n) = Cq
nnq/p−1 is of smaller order.

The approximation (2.1) was proved using the risk of a Bayes estimator with
an i.i.d. prior as a lower bound. This requires a weak law of large numbers for
Bernoulli(n, Cp

n/λp
n) variables, or equivalently nCp

n/λp
n → ∞, to ensure that the

parameter vector is in the target class Θp,Cn,n with large prior probability.
The proof of Theorem 1 also uses the risk of a Bayes estimator as a lower bound

for the minimax risk, but the prior is the uniform distribution over all permutations
of a sparse vector in Θp,C,n. Thus, the parameter vector is in Θp,C,n with prior prob-
ability one. However, the Bayes risk becomes more complicated. Our approximation
of the Bayes risk turns out to require an upper bound for the posterior probability
mass at zero. Since this upper bound is of independent interest, we state it in a
proposition under a general distributional assumption in Subsection 2.3.

2.2. Weak �p balls

In this subsection we consider �q risk in the (Marcinkiewicz) weak �p balls

Θ∗
p,C,n =

{
θ : max

k
|θ|(k)(k/n)1/p ≤ C

}
, 0 < p < q,

where |θ|(1) ≥ · · · ≥ |θ|(n) are the ordered values of |θi|.
Let λn =

√
2 log(1/Cp

n). For p < q = 2 Johnstone (1994) proved

R2,n(Θ∗
p,Cn,n) ≈ R2,n(Θ∗

p,Cn,n , sλn) ≈ {2/(2 − p)}Cp
nλ2−p

n(2.6)

under the condition Cp
n → 0 and nCp/λp � (log n)3, and an analogous result

for the hard threshold estimator. Theorem 2 below extends his results to general
Cp → 0 and q.

For 0 < C < 1, let λ =
√

2 log(1/Cp) and define

rq,n(Θ∗
p,C,n) = max

θ∈Θ∗
p,C,n

n∑
i=1

|θi|q ∧ λq

n
=

1
n

n∑
k=1

min
{
Cq(n/k)q/p, λ

}
.(2.7)
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Theorem 2. Let 0 < p < q < ∞ be fixed and ηn → 0+. Then,

sup
Cp ≤ηn

∣∣∣Rq,n(Θ∗
p,C,n)

rq,n(Θ∗
p,C,n)

− 1
∣∣∣ → 0,(2.8)

and at the threshold level λ = λp,C =
√

2 log(1/Cp),

sup
n−1≤Cp ≤ηn

∣∣∣ Rq,n(Θ∗
p,C,n)

Rq,n(Θ∗
p,C,n, sλ)

− 1
∣∣∣ → 0.(2.9)

Moreover, (2.9) holds for the hard threshold estimator hλ′ at the threshold level
λ′ = λ + ‖Z‖2q + q(log λ)/λ, where Z ∼ N(0, 1).

We actually proved the uniformity of (2.8) and (2.9) in (q, p, C) for q −p ≥ ε∗ > 0
and q ≤ q∗ < ∞. However, for very small �p balls, an extension of our proof to
q − p → 0+ involves the posterior probability for a uniform prior on permutations
of a vector with a greater number of small nonzero elements than the case covered
by our method.

2.3. Posterior for a uniform prior over permutations of a sparse
parameter vector

Let f(x|θ) be a family of density functions with respect to a certain σ-finite measure
ν(dx). Let En be probability measures under which

X|Θ ∼
n∏

i=1

f(xi|Θi), Pn

{
Θ = (ci1 , . . . , cin)

}
=

1
n!

,(2.10)

for all permutations {i1, . . . , in} = {1, . . . , n}, where c1, . . . , cn are fixed with cm+1 =
· · · = cn = 0 for a certain 1 ≤ m < n. Define

ξM =
1
m

m∑
i=1

∫ {
f(x|ci) − Mf(x|0)

}
+
ν(dx).

Proposition 1. Let n > m ≥ 1 and En be as in (2.10) with cm+1 = · · · = cn = 0.
Suppose f(x|cj) are absolutely continuous with respect to f(x|0), j ≤ m. Then,

En

(
Pn

{
Θ1 �= 0

∣∣X}
)2

≤ m

n

( Mm

n − m + 1
+ ξM

)(
1 +

Mm

n − m + 1
+ ξM

)m−1

, ∀ M > 0.(2.11)

Recently, Greenshtein and Ritov (2009) used the uniform prior on the permu-
tations to derive an approximate risk equivalence between the class of separable
decision rules and the more general class of all permutation invariant decision rules.
Although their result does not require a large proportion of zero components with
the unknown vector, it does not apply to the worst case scenario in �p balls where
the maximum magnitude of the components diverges to infinity.
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3. Proofs

Proof of Proposition 1. Let hj(x) = f(x|cj)/f(x|0). For 0 ≤ k1 ≤ k2 ≤ k3 ≤ n with
k1 ≤ m < n, let k = (m − k1) ∧ (k3 − k2) and define

S(X; k1, k2, k3) =
(m − k1 − k)!

m!

∑
(i1,...,ik1+k)∈Λ1(k1,k2,k3)

∑
(j1,...,jk)∈Λ2(k2,k3)

hi1(X1) · · · hik1
(Xk1)hik1+1(Xj1) · · · hik1+k

(Xjk
),

where Λ1(k1, k2, k3) is the set of all vectors of distinct indices {i1, . . . , ik1+k } ⊂
{1, . . . , m} and Λ2(k2, k3) is the set of all vectors of strictly ordered indices k2 <
j1 ≤ · · · ≤ jk ≤ k3. Note that the average is taken over Λ1(k1, k2, k3) but the
summation, not the average, is taken over Λ2(k2, k3). Let J = En

(
Pn

{
Θ1 �= 0

∣∣X}
)2

as in (2.11). By (2.10) and the exchangeability of X1, . . . , Xn,

J =
(

n

m

)−1

E0
S2(X; 1, 1, n)
S(X; 0, 0, n)

(3.1)

=
(

n

m

)−1(
n − 1
m − 1

)
E0S(X; m, m, m)

S(X; 1, 1, n)
S(X; 0, 0, n)

=
m

n

m∑
k=1

(
m − 1
k − 1

)(
n − m

m − k

)
Jk,

where Jk = E0S(X; m, m, m)S(X; k, m, 2m − k)/S(X; 0, 0, n) for products sharing
k indices in the numerator. Let h̃i(x) = (hi(x) − M)+. Since hi(x) ≤ M + h̃i(x),

Jk = E0
S(X; k, n − m + k, n)S(X; k, m, 2m − k)

S(X; 0, 0, n)
(3.2)

≤ E0
S(X; k, n − m + k, n)S(X; k, m, 2m − k)

S(X; 0, 0, n − m + k)

=
∑

{i1,...,ik } ⊂ {1,...,m}
E0

hi1(X1) · · · hik
(Xk)S(X; k, m, 2m − k)

{m!/(m − k)!}S(X; 0, 0, n − m + k)

≤
k∑

j=0

(
k

j

)
Mk−jE0

YjS(X; m, m, m)
S(X; 0, 0, n − m + k)

=
k∑

j=0

(
k

j

)
Mk−jE0Yj

(
n − m + k − j

m − j

)−1
S(X; j, j, n − m + k)
S(X; 0, 0, n − m + k)

,

where Yj =
∑

{i1,...,ij } ⊂ {1,...,m} h̃i1(X1) · · · h̃ij (Xj)/{m!/(m − j)!}. Let {ξ̃1, . . . , ξ̃j }
be a random subset of {E0h̃i(X1), i ≤ m}. Since the sum for S(X; j, j, n − m + k)
is taken over a smaller index set that the sum for S(X; 0, 0, n − m + k),

E0Yj
S(X; j, j, n − m + k)
S(X; 0, 0, n − m + k)

≤ E0Yj = E0

j∏
i=1

ξ̃i ≤ (E0ξ̃1)j = ξj
M

due to the negative correlation between ξ̃j and
∏j−1

i=1 ξ̃i. Moreover,(
n − m

m − k

)(
n − m + k − j

m − j

)−1

≤ mk−j/(n − m + 1)k−j , 0 ≤ j ≤ k ≤ m.
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Inserting the above upper bounds into (3.2) and then (3.2) to (3.1), we find

J ≤ m

n

m∑
k=1

(
m − 1
k − 1

)(
n − m

m − k

) k∑
j=0

(
k

j

)
Mk−j

(
n − m + k − j

m − j

)−1

ξj
M

≤ m

n

m∑
k=1

(
m − 1
k − 1

) k∑
j=0

(
k

j

)( Mm

n − m + 1

)k−j

ξj
M

=
m

n

( Mm

n − m + 1
+ ξM

)(
1 +

Mm

n − m + 1
+ ξM

)m−1

.

This completes the proof. �

The following lemma provides upper bound for the �q risk of threshold estimators.

Lemma 1. Let θ ∈ R, Z ∼ N(0, 1) and ‖Z‖p = (E|Z|p)1/p.
(i) Let sλ(x) = sgn(x)(|x| − λ)+ be the soft threshold estimator. Then,

E
∣∣sλ(Z + θ) − θ

∣∣q ≤ min
{

|θ|q, E|Z − λ|q
}

+ 2Γ(q + 1)ϕ(λ)/λq+1.

(ii) Let hλ(x) = xI{ |x| ≤ λ} be the hard threshold estimator. Then,

E
∣∣hλ(Z + θ) − θ

∣∣q ≤ min
{
(1 + e−λ2/16)|θ|q, (λ + q/λ)q + ‖Z‖q

q

}
+E

[
|Z|q; |Z| > λ − ‖Z‖2q

]
.

Proof. Let ϕ(x) = e−x2/2/
√

2π. Since

∂

∂θ

∫ ∣∣∣sλ(x + θ) − θ
∣∣∣qϕ(x)dx = q|θ|q−1

∫ λ−θ

−λ−θ

ϕ(x)dx ∈ [0, qθq]

for θ > 0 and Rq(θ, λ) is an even function of θ,

E
∣∣sλ(Z + θ) − θ

∣∣q ≤ min
{

|θ|q, E|Z − λ|q
}

+ E(|Z| − λ)q
+.

This proves part (i) since E(Z − λ)q
+/ϕ(λ) =

∫ ∞
0

xqe−λx−x2/2dx ≤ Γ(q + 1)/λq+1.
For the hard threshold estimator,

E
∣∣hλ(Z + θ) − θ

∣∣q = |θ|q + E
[

|Z|q − θq; |Z + θ| > λ
]

≤ |θ|q + E
[

|Z|q; |Z| > θ ∨ (λ − θ)+
]
.

Since E
[

|Z|q; |Z| > θ ∨ (λ − θ)+
]

≤ |θ|q
√

P {|Z| > λ/2} for |θ| > ‖Z‖2q,

E
∣∣hλ(Z + θ) − θ

∣∣q ≤ |θ|q + E
[

|Z|q; |Z| > λ − ‖Z‖2q

]
+ |θ|qe−λ2/16.(3.3)

For θ > λ + q/λ, (∂/∂θ) log{(θ/λ)qe−(θ−λ)2/2} = q/θ − θ + λ < 0, so that

E
∣∣hλ(Z + θ) − θ

∣∣q = E|Z|q + E(|θ|q − |Z|q)I{|Z + θ| < λ}
≤ E|Z|q + |θ|qP {|Z| > θ − λ}
≤ E|Z|q + |θ|qe−(θ−λ)2/2

≤ E|Z|q + (λ + q/λ)q.(3.4)

The combination of (3.3) and (3.4) yields part (ii).
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Proof of Theorem 1. We first treat the case p > 0. Let 0 < η∗
n < 1 be the solution

of

nη∗
n

{log(1/η∗
n)}q∗+3

= 1.(3.5)

Since (2.1) holds uniformly in (q, p, C) for q < q∗ and η∗
n ≤ Cp ≤ ηn, we assume

ηn ≤ η∗
n without loss of generality.

Taking the average of the �q loss, we find by Lemma 1 (i) that

Rq,n(θ, sλ) ≤ 1
n

n∑
i=1

min
{

|θi|q, E|Z − λ|q
}

+ 2Γ(q + 1)ϕ(λ)/λq+1.

Let {λ, m, μ} be functions of (p, C, n) as in (2.3). Since λ ≥
√

2 log(1/ηn) → ∞ and
ϕ(λ) = Cp/

√
2π, E|Z − λ|q ≈ λq and

Rq,n(Θp,C,n, sλ) ≤ (1 + o(1)) max
θ∈Θp,C,n

n∑
i=1

|θi|q ∧ λq

n
+ O(Cp/λ)(3.6)

uniformly in (q, p, C) for q ≤ q∗ and Cp ≤ ηn. Since |x|q is convex in |x|p, the
maximum in (3.6) is attained with as many points |θi| = λ as possible. This is the
solution with θ = c, where

c1 = · · · = cm−1 = λ, cm = μ, cm+1 = · · · = cn = 0.(3.7)

For this solution, the maximum in (3.6) is
∑n

i=1 cq
i /n = rq(Θp,C,n). For m > 1,

2rq(Θp,C,n) ≥ (m/n)λq ≥ Cpλq−p � Cp/λ. For m = 1, 1 ≤ μp = nCp ≤ λp, so
that rq(Θp,C,n) = μq/n = Cpμq−p � Cp/λ. Thus, by (3.6)

sup
0<p≤q≤q∗,Cp ≤ηn

(Rq,n(Θp,C,n, sλp,C
)

rq,n(Θp,C,n)
− 1

)
+

→ 0.(3.8)

Now we derive a lower bound for p > 0. Let 0 < γ < 1 and Pn be a probability
under which X ∼ N(θ, In) conditionally on Θ = θ and Θ is a uniform random
vector over the permutations of γc with the c in (3.7). For vectors w = {w1, w2, w3}
with wj ≥ 0 and w1 + w2 + w3 = 1, define

fq(λ, μ, w) = min
a

{∣∣a − λ
∣∣qw1 +

∣∣a − μ
∣∣qw2 + |a|qw3

}
.

The minimum above is always attained at an a satisfying |a|qw3 ≤ |λ|qw1 + |μ|qw2.
Thus, since 0 ≤ μ ≤ λ, for w1 + w2 ≤ ε1

fq(λ, μ, w) ≥
{∣∣λ(1 − ε2)

∣∣qw1 +
∣∣μ − λε2

∣∣qw2, w1 > 0∣∣μ(1 − ε2)
∣∣qw2, w1 = 0,

(3.9)

where ε2 = {ε1/(1 − ε1)}1/q. Since (Xi, Θi), i ≤ n, are exchangeable random vectors
under En, the marginal �q risk of the Bayes estimator Θ̂ is

En

∥∥Θ̂ − Θ
∥∥q

q,n
= En|Θ̂1 − Θ1|q = Enfq(γλ, γμ, ŵ),(3.10)

where ŵ = (ŵ1, ŵ2, ŵ3) gives the posterior probabilities at {γλ, γμ, 0} for Θ1.
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Since Θ is a random permutation of γc with the c in (3.7), Enŵ1 = (m − 1)/n
and Enŵ2 = 1/n. Let {ε1, ε2} be related small constants as in (3.9) and define

ε = ε(γλ, m, γμ) = (n/m)En(ŵ1 + ŵ2)2.(3.11)

The Chebyshev inequality gives En

[
ŵ1 + ŵ2; ŵ1 + ŵ2 > ε1

]
≤ (m/n)ε/ε1. It follows

from (3.9), (3.10) and the above calculations of the posterior that for m > 1

En

∥∥Θ̂ − Θ
∥∥q

q,n
≥ γqEn

[∣∣λ(1 − ε2)
∣∣qŵ1 +

∣∣μ − λε2
∣∣qŵ2; ŵ1 + ŵ2 ≤ ε1

]
≥ γq

{∣∣λ(1 − ε2)
∣∣qEnŵ1 +

∣∣μ − λε2
∣∣qEnŵ2

−λqEn

[
ŵ1 + ŵ2; ŵ1 + ŵ2 > ε1

]}
≥ γq

{∣∣λ(1 − ε2)
∣∣q(m − 1)/n +

∣∣μ − λε2
∣∣q/n − λq(m/n)ε/ε1

}
.

For m = 1, ŵ1 = 0 due to Θ1 ∈ {0, γμ}, so that the second part of (3.9) gives

En

∥∥Θ̂ − Θ
∥∥q

q,n
≥ γq

{∣∣μ(1 − ε2)
∣∣q/n − μq(1/n)ε/ε1

}
.

Since rq,n(Θp,C,n) = λq(m − 1)/n + μq/n, we find that in either cases

ε(γλ, m, γμ) = o(1) ⇒
En

∥∥Θ̂ − Θ
∥∥q

q,n

rq,n(Θp,C,n)
≥ γq + o(1)(3.12)

and the uniformity on the left-hand side implies the uniformity of o(1) on the right.
Since En

∥∥Θ̂−Θ
∥∥q

q,n
≤ Rq,n(Θp,C,n) ≤ Rq,n(Θp,C,n, sλ), it remains to prove that

the ε(γλ, m, γμ) in (3.11) is uniformly small for 0 < p ≤ q ≤ q∗ and Cp ≤ ηn for
each fixed 0 < γ < 1, where {λ, m, μ} are functions of (p, C, n) as in (2.3).

By Proposition 1 and (3.11),

ε(γλ, m, γμ) =
n

m
En

(
Pn

{
Θ1 �= 0

∣∣X})2

≤
( Mm

n − m + 1
+ ξM

)(
1 +

Mm

n − m + 1
+ ξM

)m−1

, ∀ M > 0,

where ξM =
∫

{ϕ(x − γλ) − Mϕ(x)}+dx(m − 1)/m+
∫

{ϕ(x − γμ) − Mϕ(x)}+dx/m
in view of (3.7). With the c in (3.7) define

λ0 = max
i≤n

(
ci ∨

√
2 log log n

)
=

{
λ, m > 1
μ ∨

√
2 log log n, m = 1.

(3.13)

We pick M = exp(γλ2
0/2). Since ϕ(x − γλ0)/ϕ(x) = exγλ0−γ2λ2

0/2, ϕ(x − γλ0) ≥
Mϕ(x) iff xγλ0 − γ2λ2

0/2 ≥ γλ2
0/2, iff x ≥ (1 + γ)λ0/2. It follows that

ξM ≤
∫

{ϕ(x − γλ0) − Mϕ(x)}+dx

≤ P {N(γλ0, 1) > (1 + γ)λ0/2} ≤ e−(1−γ)2λ2
0/8.

For m > 1, λ = λ0, M = C−γp and ξM = C(1−γ)2p/4. Thus, since m = 	nCp/λp
,

ε(γλ, m, γμ)(3.14)

≤
(2C(1−γ)p

λp − Cp
+ C(1−γ)2p/4

)
exp

{nCp

λp

(2C(1−γ)p

λp − Cp
+ C(1−γ)2p/4

)}
= (1 + o(1))η(1−γ)2

n exp
{

(1 + o(1))nη1+(1−γ)2/4
n

}
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uniformly over the (p, C, n). This provides the left side of (3.12) uniformly, since
ηn ≤ η∗

n with the η∗
n in (3.5). For m = 1 and μ >

√
2 log log n, λ0 = μ ≤ λ,

M ≤ eγλ2/2 ≤ C−γp and ξM ≤ e−(1−γ)2(log log n)/4. It follows that

ε(γλ, m, γμ) ≤ M

n
+ ξM ≤ C(1−γ)p

μp
+ (log n)−(1−γ)2/4 → 0.(3.15)

For m = 1 and μ ≤
√

2 log log n, λ0 =
√

2 log log n, M = (log n)γ and ξM ≤
e−(1−γ)2(log log n)/4, so that

ε(γλ, m, γμ) ≤ (log n)γ/n + (log n)−(1−γ)2/4 → 0.(3.16)

Thus, in all three cases, we proved ε(γλ, m, γμ) = o(1) uniformly for the (p, C, n)
under consideration. This completes the proof in the case of p > 0 in view of (3.8)
and (3.12), since Rq,n(Θ) ≤ Rq,n(Θ, sλ) for all Θ ⊂ R

n.
For p = 0, θ allows at more �nC� nonzero entries, so that C is effectively m/n.

The same proof follows through since the situation is simpler with μ = 0. This
completes the proof of the theorem for the soft threshold estimator.

Finally, we consider the hard threshold estimator. At the threshold level λ′ =
λ + ‖Z‖2q + q(log λ)/λ, the upper bound in Lemma 1 (ii) gives

E
∣∣hλ′ (Z + μ) − μ

∣∣q ≤ (1 + o(1))(|μ|q ∧ λq) + O(λ−1e−λ2/2)

uniformly for λ ≥
√

2 log(1/ηn) → ∞. Thus, (3.6) and then (3.8) follows with sλ

replaced by hλ′ . This completes the proof of the entire theorem. �

Proof of Theorem 2. Since Θ∗
p,C,n ⊃ Θp,C,n, the upper bound

Rq,n(Θ∗
p,C,n) ≤ (1 + o(1)) max

θ∈Θ∗
p,C,n

n∑
i=1

|θi|q ∧ λq

n
+ O(Cp/λ)

= (1 + o(1))rq,n(Θ∗
p,C,n)

is still valid. Thus, it suffices to derive the lower bound. We still assume (3.5) in
view of (2.6). The least favorable configuration is attained in (2.7) with

rq,n(Θ∗
p,C,n) =

n∑
j=1

cq
j

n
, c1 = · · · = cm−1 = λ, cj =

μ

j1/p
, j = m, . . . , n,

where μ = n1/pC and m = 	nCp/λp
. For fixed 0 < γ < 1 and integer k > 1, let
En be the probability under which X|Θ ∼ N(Θ, In) and Θ = (Θ1, . . . , Θn) is a
random permutation of γ(c1, . . . , ckm, 0 . . . , 0). The proof of Theorem 1 gives

(1 + o(1))γq
km∑
j=1

cq
j

n
≤ R(Θ∗

p,C,n) ≤ (1 + o(1))
n∑

j=1

cq
j

n

uniformly for all fixed 0 < γ < 1 and integer k > 1. Since cj = μ/j1/p for j > km,

n∑
j=km+1

cq
j

jq/p
≤ μq/(km)q/p−1

q/p − 1
=

mμq/mq/p

kq/p−1(q/p − 1)
≤

∑m
j=1 cq

j

kq/p−1(q/p − 1)
.

Thus, R(Θ∗
p,C,n) must be within an infinitesimal fraction of rq,n(Θ∗

p,C,n). �
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