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Abstract: Hemodynamic response function (HRF) has played an important
role in many recent functional magnetic resonance imaging (fMRI) based brain
studies where the main focus is to investigate the relationship between stimuli
and the neural activity. Standard statistical analysis of fMRI data usually
calls for a “canonical” model of HRF, but it is uncertain how well this fits
the actual HRF. The objective of this paper is to exploit the experimental
designs by modeling the stimulus sequences using stochastic point processes.
The identification of the stimulus-response relationship will be conducted in
the frequency domain, which will be facilitated by fast Fourier transforms
(FFT). The usefulness of this approach will be illustrated using both simulated
and real human brain data. Under regularity conditions, it is shown that the
estimated HRF possesses an asymptotic normal distribution.
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1. Introduction

Consider a statistical problem in which data are acquired by applying stimuli at
times τ1 < τ2 < · · · and simultaneously a varying response Y (t) is recorded. Sup-
pose it is desired to conduct the associated statistical inference based on the model:

(1.1) Y (t) =
∑

j

h(t − τj) + ε(t),

where h(·) is an unknown function and ε(t) is a stationary, zero mean, noise series
with power spectrum given by sεε(·). It is assumed that the function h(t) = 0 for
t < 0 and will have finite duration.

This type of problem has played an important role in the fields of psychology,
neurobiology, neurology, radiology, biomedical engineering, and many others, where
data acquisition is carried out in functional magnetic resonance imaging (fMRI) ex-
periments. As a noninvasive technique, fMRI allows us to study dynamic physiologi-
cal processes at a time scale of seconds. The basis of fMRI is the Blood Oxygenation
Level Dependent (BOLD) effect [40]. Due to differential magnetic susceptibility of
oxygenated (oxygen-rich) hemoglobin and deoxygenated hemoglobin, the BOLD
effect reflects the changes in hemodynamics which in turn yields greater MRI in-
tensity when brain activity increases (see [30]). It is this hemodynamic response
to the underlying neuronal activity that makes the fMRI signal in brain areas of
activation a blurred and delayed version of the stimuli. Figure 1 shows the recorded
BOLD signals (solid line) triggered by a single event (dashed line on the left panel)
and a sequence of consecutive of stimuli (dashed line on the right panel), respec-
tively. Both of them show the blur-and-delay effect caused by the hemodynamic
response.

Fig 1. Left Panel: The recorded BOLD signal (solid line) triggered by a single event (dashed line).
Right Panel: The recorded BOLD signal (solid line) triggered by a typical block-design sequence
(dashed line).
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In practice, the BOLD effect is modeled through the convolution of the stimulus
sequence X(·) and a hemodynamic response function (HRF) h(·) given by

(1.2) BOLD(t) = h ⊗ X(t) =
∫

h(t − u)X(u)du,

whose discrete time version is represented by model (1.1). Typically, an fMRI
dataset consists of a 3D grid of voxels, each containing a time series of measurements
that reflect brain activity. For each of roughly 200,000 voxels that lie inside the brain
images, we wish to carry out the estimation of the HRF which will subsequently
be applied to infer those voxels that were activated under certain experimental
conditions.

The rest of this paper is organized as follows. Our estimate is described in Sec-
tion 2, which is based on frequency domain methods applied to the point processes
and ordinary time series. A brief survey of HRF modeling is provided in Section 3.
Section 4 illustrates the performance of our proposed method through a simulated
data analysis. For the purpose of comparison, a real fMRI data set is analyzed
using the proposed method and a popular fMRI tool in Section 5. Discussions and
concluding remarks are given in Section 6. Proofs are given in the last section of
the paper.

2. A Frequency Domain Method for Estimating HRF

Model (1.1) has the structure of a linear time invariant system carrying the stimuli
X(t) onto an response time series Y (t). These models are generally studied by the
frequency domain methods based on cross-spectral analysis (see [10]).

Define the system transfer function by

H(f) =
∑

u

h(u) exp(−iuf), f ∈ R.

Define the finite Fourier transform of Y (t) by

ϕT
0 (f) ≡ ϕT

Y (f) =
T −1∑
t=0

exp(−ift)Y (t)

with a similar definition for ϕT
ε (f), f ∈ R. Also, define

ϕT
1 (f) ≡ ϕT

X(f) =
T −1∑
t=0

exp(−ift)X(t) =
∑

j

exp(−ifτj), f ∈ R,

the last sum is over the available stimuli before time T − 1. It follows from (1.1)
that

(2.1) ϕT
0 (f) = H(f)ϕT

1 (f) + ϕT
ε (f), f ∈ R.

Now let mf denote the integer m ∈ {0, 1, . . . , T − 1} such that 2πm/T is closest
to the (angular) frequency f ∈ (0, π/2). Let K denote a positive integer. Then, for
smooth H(·),

(2.2) ϕT
0

(
2π

T
(mf + k)

)
≈ H(f)ϕT

1

(
2π

T
(mf + k)

)

+ ϕT
ε

(
2π

T
(mf + k)

)
, k = 0, ±1, . . . , ±K,
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hold for the 2K + 1 nearest frequencies around f of the form 2π(mf + k)/T . Thus
a reasonable estimate of H(f) can be obtained by regressing ϕT

0 (2π(mf +k)/T ) on
ϕT

1 (2π(mf + k)/T ) for k = 0, ±1, . . . , ±K, which is given by

(2.3) Ĥ(f) = ŝ01(f)/ŝ11(f), f ∈ R,

where

ŝjj′ (f) = (2K + 1)−1
K∑

k=−K

s̃jj′

(
2π

T
(mf + k)

)
,(2.4)

s̃jj′ (f) = (2πT )−1ϕT
j (f)ϕT

j′ (f), f ∈ R, j, j′ ∈ {0, 1}.(2.5)

Here a is the conjugation of a ∈ C. This is similar to the linear regression setting
and therefore the residual sum of squares (RSS) is given by

(2.6) ŝεε(f) =
2K + 1

2K + 1 − 1
(
ŝ00(f) − ŝ01(f)ŝ−1

11 (f)ŝ10(f)
)
.

Note that

ŝεε(f) ∝ ŝ00(f)
(
1 − |ŝ01(f)|2

ŝ11(f)ŝ00(f)

)
= ŝ00(f)(1 − R2

01(f)),

where

|R̂01(f)|2 =
|ŝ01(f)|2

ŝ00(f)ŝ11(f)
, f ∈ R,

is the squared coherence, which lies between 0 and 1, the closer it is to 1 the stronger
is the linear relationship between the two series.

Let sεε(·) denote the power spectrum of the noise series. It can be shown that (see
Section 7) the estimate Ĥ(f) is asymptotically complex normal with mean H(f)
and variance sεε(f)/Kŝ11(f). And Ĥ(f1), Ĥ(f2), . . ., Ĥ(fM ) are asymptotically
independent normal for distinct f1, f2, . . ., fM [7].

In practice, we use a smoother estimate known as window estimate by observing
that (2.4) can be written more generally as

(2.7) ŝjj′ (f) =
∑
k �=0

b−1W

(
b−1

(
f − 2πk

T

))
s̃jj′

(
2πk

T

)
, f ∈ R,

where W (·) is a non-negative function called the weight or window function, and
b ≡ bT ↘ 0 is the smoothing parameter. It has been shown that (2.7) has better
sampling properties than (2.4) as an estimate of the cross-spectrum of the bivariate
time series. See [10] and Section 7. From now on, our estimate of H(f) will be based
on (2.3) and (2.7).

We remark that when j = j′, then (2.5) becomes

(2.8) s̃jj(f) = (2πT )−1ϕT
j (f)ϕT

j (f) = (2πT )−1|ϕT
j (f)|2, f ∈ R,

which is the periodogram of the series Y (t) when j = 0, or of the series X(t) when
j = 1. The periodogram is an important statistic in spectral time series analysis.

Under certain conditions, R̂01(f) is asymptotically normal with mean R01(f)
and variance proportional to constant (1 − R2

01(f))/(Tb). Moreover, if R01(f) = 0,
then

(2.9) F (f) =
c|R̂01(f)|2

1 − |R̂01(f)|2
∼ F2,2c,
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where c = (bT/γ) − 1 and γ =
∫

λ2 with λ being the lag-window generator [39].
This result can be used to test for a response to the stimulus by computing

a test statistic for significant activation F (fa) at the fundamental frequency of
activation fa. Under the null hypothesis of no activation, the F -statistic at the
fundamental frequency of activation, F (fa), has an F distribution with 2 and 2c
degrees of freedom. Large values of F (fa) indicate a large effect at the fundamental
frequency.

The estimate of the impulse response function h(·) is then given by

ĥ(u) =
1
Q

Q∑
q=0

Ĥ

(
2πq

Q

)
exp

(
i
2πuq

Q

)
,

where Q ≡ QT denotes a sequence of positive integers tending to ∞ with T .
Under certain conditions, (ĥ(u1), . . . , ĥ(uJ)) is asymptotically normal with mean
(h(u1), . . . , h(uJ )) and covariance matrix

2π

bT

∫
W (λ)2dλ · 1

Q2

∫
exp

(
i(uj − uk)λ

) sεε(λ)
s11(λ)

dλ, j, k = 1, 2, . . . , J.

See Section 7 for more details.

3. A Brief Survey of HRF Modeling

The basis of model (1.1) is the linearity of BOLD fMRI responses when multiple
stimuli are presented in succession. This was first studied by Boynton et al. [6].
The linearity arises from the fact that a stimulus induces the neural activity in a
specific region of the brain. This then brings blood flow changes (hemodynamics)
in that region, while BOLD fMRI responses are measured from these blood flow
changes. In addition to giving this clear picture of how BOLD fMRI works, the linear
transform model is important in two respects. Firstly, the assumption of linearity
of the fMRI response and neural activity makes it possible to determine changes
in neural activity by the amplitude changes in hemodynamic response. Secondly,
this linear transform model also shows that when multiple stimuli are presented in
succession, the hemodynamic response would be the summation of the individual
responses generated by the single stimulus respectively.

Modeling the relationship between the fMRI response and stimuli is a key step
towards detecting fMRI activity. Standard statistical analysis is carried out based
on the following model:

(3.1) Y (t) = β
∑

j

h(t − τj) + ε(t),

where the HRF h(·) is pre-specified and β is a voxel specific parameter, to be
utilized for testing fMRI activity [15, 21, 23, 24, 31, 33, 43]. The assumptions made
about the shape of the HRF vary among different methods. Some of them are very
stringent, while others are relatively more flexible. Typically, a “canonical” HRF
is employed to process fMRI data. Some studies have reported variation in the
shape of the HRF across subjects [2, 4], and within the same subject across regions
[11, 32, 38].

Detecting fMRI activity has also been evolved from using block-designs (where
the stimulus times τi occur consecutively to form a block) to event-related fMRI
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(ER-fMRI) designs [41]. In the latter case, stimuli (or events) are applied for short
bursts in a stochastic manner. The recorded BOLD fMRI signals measure transient
changes in brain activity associated with discrete events. This feature makes ER-
fMRI a useful tool to estimate the change in the MR signal triggered by neuronal
activity.

As an early study of ER-fMRI, Dale and Buckner [16] correlated the selective
averaging (or time averaging) data and the fixed HRF induced data in a voxelwise
manner. Friston et al. [24] employed a Poisson function with a fixed parameter for
the HRF. In the general linear model (GLM) framework, Friston et al. [22] esti-
mated the HRF by two given temporal basis functions. To enhance its flexibility,
this idea was extended by Josephs et al. [31] to include more basis functions. These
are very important contributions since the basis sets allow one to estimate an HRF
of arbitrary shape for different events at different voxels of the brain, and at the
same time the inferences can be easily made. Many studies on modeling HRF have
since focused on the refinement and improvement of the basis sets idea. For exam-
ple, Woolrich et al. [44] introduced a technique by applying some constraints to
avoid nonsensical HRF, which is a big problem when using simple basis functions.
More recently, Lindquist and Wager [34] proposed another method, using three su-
perimposed inverse logistic functions, to model the HRF. This paper also described
some of the most popular HRF modeling techniques, such as smooth finite impulse
response (FIR) filter [29], canonical HRF with time and dispersion derivatives [14]
and the canonical SPM HRF [25]. A flexible method based on splines has been
considered by Zhang et al. [47].

From a Bayesian perspective, Genovese [26] and Gössl et al. [28] proposed to
model the HRF by a number of parameters and prior distributions are given to each
parameter. See also Woolrich et al. [44] and Lindquist and Wager [34]. Inferences
of the parameters were then made at each voxel using Markov Chain Monte Carlo
(MCMC) techniques. The disadvantage of these methods is the slow performance
of general MCMC techniques for the inferences.

The above methods are referred to as the time-domain methods. We now consider
the frequency-domain approach. Assuming a periodic stimulus design, fMRI time
series analysis can be greatly simplified in the frequency domain, which is more
natural as the problem of modeling the relationship between the response and the
stimuli is reduced to a few parameters related to the stimulus frequency information.
One of the first frequency domain approaches is given by Lang and Zeger [33], who
used model (3.1) along with a two-parameter gamma function to model the HRF.
The two parameters vary at different voxels and hence the estimated HRF varies
from voxel to voxel. It was reported that this approach has an identifiability problem
of the parameters. The issue was addressed in Marchini and Ripley [37] using a fixed
HRF approach.

We remark that a common theme among the time-domain methods for testing
activity is the two-step procedure: the extra step is required for modeling paramet-
rically the temporal noise series. This will affect the power of the test. While the
above frequency approaches avoided the noise modeling part, they lack the ability
to address: (1) the varying HRF issue and (2) different types of stimulus designs.
Moreover, the linear transformed model of fMRI response has not been tested and
some studies [16, 30] reported the presence of non-linearity.

In Section 2, we described a regression approach based on model (1.1) for ad-
dressing these problems. The application of point processes to model the stimuli
is novel in the HRF modeling literature. The procedure is also greatly simplified.
Namely, it enables us to estimate the HRF directly and simultaneously test the lin-
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earity assumption in a single step. The idea of using point processes can be traced
back to the work of Brillinger [8, 9] who applied this to identification problems that
emerged in neurophysiological neural spike train analysis.

4. Simulated Numerical Results for HRF estimation

We illustrate the usefulness of our procedure in a simulated study. Here we use one
of the HRF’s from the literature [16, 27] to generate the response. The stimulus
sequence contains a brief trial (1 second) intermixed with events “on” or “off”
(Figure 2a). In this experiment, each trial lasts for 18 seconds and there are sixteen
runs. So the “average” (because of the random “on” or “off”) frequency of the
event is 18/288 = 0.0625. The estimated power spectrum (Figure 2b) and the
frequency of the event are precisely estimated. The second peak corresponds to the
frequency of every other event. In the first experiment (Figure 3a-b), the response
is given by Y (t) = a

∫
h(t − u)X(u)du + ε(t) with a = 0.5 and the noise ε is

generated from an AR(1) with coefficient 0.7: ε(t) = 0.7ε(t − 1) + z(t), z(t) ∼
N(0, .32). In the second experiment (Figure 3c-d), the noise is generated from an
ARMA(2,2): ε(t)−0.8897ε(t−1)+0.4858ε(t−2) = z(t)−0.2279z(t−1)+0.2488z(t−
2), z(t) ∼ N(0, .32). The AR(1) time series model was chosen to represent the
default settings in Statistical Paramtric Mapping (SPM) [21] and FMRIB Software
Library (FSL) [43], while the ARMA case was mainly for testing the strengths of our
method under other types of correlated structures. The coefficients were selected to
illustrate the performance of the procedure under moderate serially correlated noise.
Large coherency at the stimulus frequency of 0.0625 indicates that the activation is
strong, and there is some linearity in the response and the stimulus series. This is
also confirmed by the highly significant F -statistics (Figures 4a-d). The significant
level is a dashed line that sits near the bottom of the graph. The variability of
the proposed estimate is illustrated in Figures 5a-c using various noise levels with
SD=0.3, 0.5. We remark that the number of runs (=16) used in these simulations
is based on recently published articles.

We further apply the procedure to examine the main application of fMRI to de-
tect regions of activation. These are illustrated in Figures 6, 7. In these experiments,

Fig 2. (a) Plot of the stimulus series (16 trials) with on-off pattern stimuli (every 18 seconds).
The whole duration lasts about 16 × 18 = 288 seconds. (b) The estimated power spectrum provides
frequency of the occurred events. The frequency associated with the first peak is about 18/288 =
0.0625. The second peak gives frequency of every other event, etc.
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Fig 3. The fMRI responses. In these experiments, the responses are generated from Y (t) =

(0.5)
∫

h(t − u)X(u) du + ε(t) with ε(t) = 0.7ε(t − 1) + z(t), z ∼ N(0, .32) in (a) and (b); ε(t) −
0.8897ε(t − 1) + 0.4858ε(t − 2) = z(t) − 0.2279z(t − 1) + 0.2488z(t − 2), z ∼ N(0, .32) in (c) and
(d). The stimuli are the same as in Figure 2.

Fig 4. (a) and (c): The estimated coherency function with pointwise confidence intervals. Large
coherence values at the event frequencies indicate the perfect linear time invariant system used in
this simulation. (b) and (d): The F -test for coherency with the dashed-line showing the significance
level. (a) and (b) have the same conditions as (a) and (b) of Figure 3; similarly for (c) and (d).
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Fig 5. (a) 95% variation bands (VB) are obtained from estimates of the HRF using 100 random
samples simulated from the model by trimming off the 2.5% at both ends. (b) Same as in (a)
except the noise SD has increased to 0.5. This clearly indicates the variance of the proposed
estimate depends on the variance of the noise. (c) Same as in (b) but doubling the number of
runs. This illustrates the variance of the estimate is inversely proportional to the duration of the
experiment. In these experiments, the responses are generated from Y (t) =

∫
h(t−u)X(u) du+ε(t)

with ε ∼ ARMA(2, 2). The parameters are the same as in Figure 3.

the responses are generated from

Y (t) = a

∫
h(t − u)X(u) du + ε(t),

with varying a to show contrast of the regions so that the sub-region has a higher
value of a. The noise component is ARMA(2,2), the same as in the previous ex-
periment with SD=0.3. The regions of activation are clearly captured (Figure 6)

Fig 6. Estimated region of activation. In these experiments, the responses are generated from
Y (t) = a

∫
h(t − u)X(u) du + ε(t) with a = 0.1 outside and a = 1.0 inside the sub-region,

respectively. There are two slices with different region sizes and locations. Each slice is 8 × 8. (a)
and (c) are the true regions, (b) and (d) are the estimated regions. The noise ε is generated from
an ARMA(2,2). The stimuli are the same as in Figure 2.
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Fig 7. Estimated region of activation with varying contrast ratios. In these experiments, the
responses are generated from Y (t) = a

∫
h(t − u)X(u) du + ε(t) with a = 0.2, 0.3, 0.4, 0.5 outside

the sub-region and a = 1.0 inside the sub-region. The noise ε is generated from an ARMA(2,2).
These results illustrate that accuracy of the estimates depends on the signal-to-noise (or contrast)
ratio: The contrast ratio is proportional to 1/a. (a) Here a = 0.2 implies that the signal is weaker
than that in Figure 6, but the contrast is still high and so the estimated region can still be clearly
identified. (b) The contrast here is weaker with a = 0.3. (c) Weaker contrast with a = 0.4, and
(d) fuzzy region due to the weakest contrast used in this experiment.

when the contrast ratio is high. The effect of the contrast ratio on the detection of
region of activation is depicted in Figure 7. It is evident that the level of detection
depends on the contrast ratio.

5. A Real Data Analysis

5.1. Experiment Paradigm and Data Description

In this study, an fMRI data set was obtained from one human subject performing
a predefined event sequence as visually instructed. The stimulus sequence includes
two different events: right-hand and left-hand finger tapping. Each finger tapping
movement lasted around 1 second. The order of the sequence was predefined in a
random way. To avoid the overlapping of consecutive events, the time interval be-
tween two successive events was randomly selected from Uniform[18, 22]. A typical
sequence of stimuli is {R, L, R, R, L, L}.

During the experiment, 47 MR scans were acquired on a modified 3T Siemens
MAGNETOM Vision system. Each acquisition consisted of 49 contiguous slices.
Each slice contained 64 × 64 voxels. Hence there were 64 × 64 × 49 voxels from each
scan. The size of each voxel is 3mm × 3mm × 3mm. Each acquisition took 2.9388
seconds, with the scan to scan repetition time (TR) set to be 3 seconds.
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5.2. Analysis and Results

The data set was preprocessed using SPM5 [21]. The preprocessing included re-
alignment, slice timing correction, coregistration and spatial smoothing. We then
analyzed the processed data set using both our proposed method and SPM5. When
using SPM5, we used a canonical HRF with time and dispersion derivatives to
model the hemodynamic response [25] and its functional form is shown in Figure 5.
A t-statistic map was generated to show the activations triggered by the stimuli
and part of them is shown on the first row of Figure 8.

When using the proposed method to detect which regions of the brain were
activated by the finger tapping movements, we generated a spatial color map of
the p-value for each voxel. The p-values were calculated based on the test defined
by (2.9). Thus the activation regions are identified by the F statistics that are
significant. The p-map generated this way is shown on the second row in Figure 8.

The four image slices represent the spatial maps of the right-hand activation.
The red areas illustrate activated brain regions. Brighter color indicates higher
intensity. Our p-maps demonstrate the classic brain activation patterns during hand
movement as described above. However, the t-maps of the same four slices generated
using SPM5 do not show any activation, as seen from the first row of Figure 8.

Next we plot the estimated HRFs at voxels which are shown to be activated ac-
cording to Figure 8. Figure 9 displays the estimated HRFs for voxels (with F > 20)
selected from primary motor cortex (PMC). Figure 10 displays the estimated HRFs
in cerebellum, and Figure 11 shows the estimated HRFs in the supplementary motor
area (SMA). These figures were obtained by first computing the F -statistics (2.9)
followed with the selection of those voxels with the F values greater than 20. This
threshold was chosen to adjust for the multiple comparison effect and was carried
out by computing the F statistics over those voxels that are known to be not ac-
tivated by the stimuli. For example, we used the WFU PickAtlas software [36] to
generate a region of interest (ROI) mask in the cerebro spinal fluid area of the

Fig 8. The four related slices that contain the areas activated by right-hand finger tapping. The
first row consists of the t-maps generated by SPM5 and they do not show any activation. The
second row contains the p-maps generated by the proposed method. The first slice indicates the
activated areas in cerebellum. The second slice contains basal ganglia. The third slice contains
supplementary motor area (SMA) and the fourth slice shows primary motor cortex (PMC).
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Fig 9. The histogram for the F -stat and the HRF estimates in the primary motor cortex (PMC)
area with F > 20. Each finger-tapping task lasted around 1 second. The order of the sequence
was predefined in a random way. The time interval between two successive events was randomly
selected from Uniform (18,22). Each acquisition took 2.9388 seconds, with the scan to scan rep-
etition time (TR) set to 3 seconds.

Fig 10. The histogram for the F -stat and the HRF estimates in the cerebellum area with F > 15.

Fig 11. The histogram for the F -stat and the HRF estimates in the cerebellum area with F > 15.
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brain. Then we computed the F statistics over this area, followed with a density
estimate (e.g., kernel method, or simply histogram) to select the thresholding value.
There are about 20,000 voxels in the cerebro spinal fluid area which can be used to
calibrate the null distribution for detecting fMRI activity.

All of them have the form that agrees with empirical experience. It is well es-
tablished that the contralateral cerebral hemisphere motor areas such as primary
motor cortex (PMC), and ipsilateral cerebellar areas, play dominant roles in motor
functions in normal human subjects [1, 3, 17, 19]. Our new methods validate un-
equivocally this known motor activation pattern with single finger movement in a
single subject, whereas traditional SPM5 failed to do so. Adequate imaging analysis
techniques to demonstrate the involvement of those structures during motor func-
tion is superior important. PMC is the primary brain region directly controlling
human movement, whereas basal ganglia and cerebellum modulate its functions
through a number of cortical motor associated areas of the brain (such as SMA).
Dysfunctions of these structures have been known to cause a variety of movement
disorders such as Parkinson’s disease and cerebellar ataxia [1]. Our methods might
provide “higher resolution” statistical analysis methods for clinicians and neurosci-
entists to define the roles of these structures in disease stages using fMRI.

5.3. Implications

(1) We demonstrated that our method handles statistical issues related to event-
related experiments well. (2) It is nonparametric in the sense that the functional
form of HRF is not specified a priori. Hence it is an useful diagnostic tool for other
approaches that may be biased because of misspecification of HRF. (3) Variation
of HRF in the brain has been under active research [18], and the nonparametric
approach offers a systematic way to study the variation without requiring HRF to
have the same shape over all voxels. (4) The linear relationship specified through
the BOLD signal can be examined statistically by carrying out a formal test of
the hypothesis. This is important in verifying the linearity assumption employed in
SPM [20, 23, 24, 45] in the process of constructing the T -map. (5) It is relatively
easy to interpret the results using our approach as no prior specification of HRF is
required (as is done in SPM [21]/FSL [43]/AFNI [15]).

5.4. Discussions

There are many ways to detect fMRI activity. The critical problem is to estimate
the statistical significance, which depends on the estimation of both the magnitude
of the response to the stimulus and the serial dependence of the time series and
especially on the assumptions made in that estimation. Nonparametric spectral
density estimation is shown to be self-calibrating and accurate when compared
to several other time-domain approaches [12, 13], SPM: [20, 23, 24, 45, 46]. In
particular, the spectral technique to detect periodic and event-related activations
has a distribution theory with significance levels down to 1 in 100,000, levels which
are needed when a whole brain image is under consideration. The technique is
especially resistant to high frequency artifacts that are found in some datasets and
it was demonstrated that time-domain approaches may be sufficiently susceptible
to these effects to give misleading results. Also, these techniques are capable of
detecting activations in clumps of a few (even one) voxel in periodic designs, yet
produce essentially no false positive detections at any voxels in null datasets [37].
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6. Concluding Remarks

It is now widely accepted that fMRI modeling requires flexible HRF modeling, with
the HRF varying spatially and between subjects. Flexibility in linear modeling has
been introduced with the use of basis functions [22]. However, basis functions suffer
from a number of limitations. They impose a hard constraint on the allowed HRF
shape and often the extent of the constraint is difficult to control and/or interpret.
To overcome these problems, we formulated a procedure based on model (1.1) and
FFT. The usefulness has been demonstrated empirically.

We remark that time-domain methods such as SPM [21], FSL [43], FIR [34, 35]
and local adaptive spline estimate [47] in modeling the HRF are generally very sensi-
tive to the linearity assumption and the error structures they employ. Any approach
proposed within the time-domain may have difficulty providing resistant estimates.
There is also no guarantee that the parametric noise model chosen will be suffi-
ciently flexible to capture the true form of the correlation structure even if artifacts
are removed and a model selection procedure is employed [18, 37]. Therefore signif-
icant loss in statistical efficiency can occur if these assumptions are invalidated. In
contrast, if these assumptions are valid then the use of a frequency approach will
result in a comparatively small loss in efficiency [10]. When considering voxel time
series from fMRI datasets there can be no guarantees that the correct time domain
approach has been chosen and a frequency approach seems the most prudent in
this context. It is often demonstrated that the assumptions of commonly proposed
time-domain models are not resistant to high frequency artifacts.

It is generally believed that the direct analysis of nonperiodic designs will not
be as simple as that of the periodic designs, since the response due to the stimulus
will be spread over a range of frequencies. Marchini and Ripley [37] suggested that
this may be addressed by combining their method with the iteratively reweighted
least squares [33] in the spectral domain and the basis functions [22]. However, this
method will not be easily extended to model the HRF discussed in this paper. By
formulating the problem using point processes, the frequency method advocated
by [37] can be easily generalized to handle event-related designs. We also observe
that our method is applicable to block designs since the stimuli can be put next to
each other to form a block. Thus this unified approach significantly improves the
estimation of the HRF described in [33, 37].

The flexible frequency approach proposed here acts as an insurance policy against
the results being badly affected by artifacts, and is guaranteed to be near-optimal
under all realistic operational conditions. It also offers a quick and accurate way
to check the calibration of the procedure. Further investigations will be carried out
for an extensive comparative study on these maps. A concern about our procedure
is the choice of weight function W (·) and bandwidth b given in (2.7). The former is
less crucial and it can be addressed by choosing one of the commonly used weight
functions described in Newton [39]. Bandwidth selection appears to be more serious
and it would seem to require adaptive methods such as cross-validation. Based
on our experience and the fact that the HRF (blood flow) is relatively smooth,
the choice of bandwidth therefore plays a less significant role. Nevertheless, we do
observe that the spectral properties of the stimuli can be closely examined by the
designs of the experimental protocols, which to some extent can help determine the
smoothness of the estimate of HRF. This project is currently underway along with
the use of splines for estimating the spectra.
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7. Sampling Properties of the Estimates

The sampling properties of the HRF estimate will rely on the spectral properties of
the stimulus X(t), which is a point process. They also depend on the spectral prop-
erties of the response Y (t) and the noise series ε(t), which are real-valued ordinary
stationary time series. Thus this section starts with a brief summary of the spectral
properties of stationary time series which will be denoted by X(t). This is followed
by a discussion of the cumulants, which are essential for establishing asymptotic
distributions of the estimates. Subsequent sections describe sampling properties of
various statistics involved in establishing the properties of HRF estimate.

7.1. Point Process

Consider a point process X(t) with points occurring at times 0 ≤ τ1 ≤ τ2 ≤ · · ·
with X(t) denoting the number of points in the interval (0, t]. When it exists, the
rate of the process at time t is given by

pX(t) = lim
v↓0

1
v
E
(
X(t + v) − X(t)

)
.

The expected number of points in the small interval (t, t+v] is given by pX(t)v+
o(v). Suppose orderliness, that is, the points of its realizations are isolated, multiple
points do not occur. Then dX(t) = 0 or 1 and one must have

P{dX(t) = 1} = pX(t) dt.

The rate function pX(t) is seen to have an interpretation as a probability.
In the second-order case one defines the second-order product density as

pXX(t1, t2) = lim
v1,v2↓0

1
v1v2

E
(
X(t1 + v1) − X(t1)

)(
X(t2 + v2) − X(t2)

)
, t1 �= t2.

In view of the orderliness of the process, P{dX(t) = 1 and dX(t) = 1} = P{dX(t) =
1}, the case t1 = t2 can be included via

P{dX(t1) = 1 and dX(t2) = 1} = E
(
dX(t1)dX(t2)

)
=

(
pXX(t1, t2) + δ(t1 − t2)pX(t2)

)
dt1 dt2,

where δ(·) is the Dirac delta function: δ(·) ≥ 0 and
∫

δ(t)ϕ(t) dt = ϕ(0) for infinitely
differentiable real-valued function ϕ with compact support. It is useful to recall here
that δ is the (generalized) derivative of the Heaviside function: H(·) = 1(0,∞)(·).
See [42].

The covariance density of the process is defined by

qXX(t1, t2) = pXX(t1, t2) − pX(t1)pX(t2),

with the interpretation

cov{dX(t1), dX(t2)} =
(
qXX(t1, t2) + δ(t2 − t1)pX(t2)

)
dt1 dt2.

The conditional intensity of the process is defined by pXX(t)/pX(t) with the inter-
pretation

P{dX(t2) = 1 | dX(t1) = 1} =
(
pXX(t1, t2)/pX(t1)

)
dt2.
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A point process is said to be stationary when its probability properties are un-
affected by simple shifts of time. In this case one has

P{dX(t) = 1} = pX dt,

P{dX(t1) = 1 and dX(t2) = 1} =
(
pXX(t2 − t1) + δ(t2 − t1)pX

)
dt1 dt2,

cov{dX(t1), dX(t2)} =
(
qXX(t2 − t1) + δ(t2 − t1)pX

)
dt1 dt2.

By analogy with what is done in the ordinary time series case one may define the
power spectrum at frequency f by

sXX(f) =
1
2π

∫
e−ifu

(
cov{dX(t + u), dX(t)}/dt

)
du.

For multivariate process X(t) = {X1(t), . . . , Xm(t)}, it may be convenient to
consider

P{dXj(t) = 1} = Cj dt, j = 1, . . . , m,

and
cov{dXj(t + u), dXk(t)} = Cjk(du) dt, j, k = 1, . . . , m.

The power spectrum at frequency f is defined by

sjk(f) =
1
2π

∫
e−ifuCjk(du), j, k = 1, . . . , m.

7.2. Stationary Time Series

Let X(t) = (X1(t), . . . , Xr(t)), t = 0, 1, 2, . . . , denote a vector-valued stationary
time series. Set

Cjk(u) = cov{Xj(t + u), Xk(t)}, j, k = 1, . . . , r.

The power spectrum at frequency f is defined by

sjk(f) =
1
2π

∑
u

e−ifuCjk(u), f ∈ R, j, k = 1, . . . , r.

7.3. Cumulants and Spectra

Definition 1. Let X1, X2, . . . , Xr denote random variables with finite rth moment.
The rth order joint cumulant of X1, X2, . . . , Xr is defined by

cum(X1, X2, . . . , Xr) =
∑

(−1)p−1(p − 1)!
( ∏

j∈ν1

Xj

)
. . .

( ∏
j∈νp

Xj

)
,

where the summation extends over all partitions ν1, . . . , νp, p = 1, . . . , r of
{1, 2, . . . , r}.

Remarks.

1. When X1 = X2 = · · · = Xr, the definition gives the cumulant of order r of a
univariate random variable.
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2. cum(X1, X2, . . . , Xr) is also given by the coefficient of (i)rt1 . . . tr in the Taylor
series expansion of log(E exp i

∑r
1 Xjtj).

Given r time series X1(t), X2(t), . . . , Xr(t) with each having finite rth moment,
we define

C1,...,r(t1, t2, . . . , tr) = cum(X1(t1), X2(t2), . . . , Xr(tr)).

For stationary time series,

C1,...,r(t1, t2, . . . , tr) = C1,...,r(t1 − tr, t2 − tr, . . . , tr−1 − tr, 0),

which is a function of r − 1 variables. In this case, the rth order cumulant spectrum,
s1,...,r(f1, f2, . . . , fr−1), is defined by

s1,...,r(f1, f2, . . . , fr−1)

= (2π)−k+1
∑

u1,u2,...,ur−1

C1,...,r(u1, u2, . . . , ur−1) exp

⎛
⎝−i

r−1∑
j=1

ujfj

⎞
⎠ ,

f1, f2, . . . , fr−1 ∈ R, r ≥ 2.

For a more detailed discussion of cumulants and their spectra, see [10].

7.4. Fast Fourier Transforms

Let aj(·) : R → R, j = 1, 2, denote tapering functions. The discrete Fourier
transform for the univariate series Xj is defined by

ϕT
j (f) ≡ ϕT

Xj
(f) =

∑
t

aj(t/T )Xj(t) exp(−ift), f ∈ R, j = 1, 2.

For vector-valued series X, it is given by

ϕT (f) ≡ ϕT
X(f) =

(
ϕT

1 (f)
ϕT

2 (f)

)
, d ∈ R.

Set aT
j (t) = aj(t/T ), j = 1, 2. For jm ∈ {1, 2}, m = 1, . . . , M ,

AT
j1,...,jM

(f) =
∑

t

(
M∏

m=1

aT
jm

(t)

)
exp(−ift), f ∈ R.

Condition 1. The tapering function a(·) : R → R has a compact support with
bounded first derivative. Furthermore,∫

a(u) du = 1 and
∫

|a(u)| du < ∞.

Condition 2. The covariance function satisfies∑
u

Cjk(u) < ∞,

and ∑
u1,...,uM −1

Cj1...jM
(u1, . . . , uM −1) < ∞, j1, . . . , jM = 1, 2.
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The second part of the above condition is necessary for establishing the asymp-
totic properties of the estimates to be considered in this section.

Lemma 1. Suppose Conditions 1 and 2 hold. Then

sup
f1,...,fM

∣∣cum(ϕT
j1(f1), . . . , ϕT

jM
(fM ))

− (2π)M −1AT
j1,...,jM

(f1 + · · · + fM ) sj1,...,jM
(f1, . . . , fM )

∣∣ = o(T ).

Condition 3. The covariance function satisfies∑
u

|u|cjk(u) < ∞,

and ∑
u1,...,uM −1

|u1 · · · uM −1|Cj1...jM
(u1, . . . , uM −1) < ∞, j1, . . . , jM = 1, 2.

Lemma 2. Under Conditions 1 and 3,

sup
f1,...,fM

∣∣cum(ϕT
j1(f1), . . . , ϕT

jM
(fM ))

− (2π)M −1AT
j1,...,jM

(f1 + · · · + fM ) sj1,...,jM
(f1, . . . , fM )

∣∣ = O(1).

Proof. We now prove Lemmas 1 and 2. If follows from

|aj(t + u)ak(t + v) − aj(t)ak(t)| ≤ |aj(t + u)ak(t + v) − aj(t + u)ak(t)|
+ |aj(t + u)ak(t) − aj(t)ak(t)|

and Condition 1 that there is a constant K1 such that∣∣∣∣∑
t

aT
j1(t + u1) · · · aT

jM −1
(t + uM −1)aT

jM
(t) exp(−ift) − AT

j1...jM
(f)

∣∣∣∣
≤ K1(|u1| + · · · + |uM −1|).

By the cumulant property,

cum(ϕT
j1(f1), . . . , ϕT

jM
(fM ))

=
∑
t1

· · ·
∑
tM

aT
j1(t1) · · · aT

jM
(tM ) exp

(
−i

M∑
m=1

fmtm

)

× Cj1,...,jM
(t1 − tM , . . . , tM −1 − tM )

=
2(T −1)∑

u1=−2(T −1)

· · ·
2(T −1)∑

uM −1=−2(T −1)

exp

(
−i

M −1∑
m=1

fmtm

)
Cj1,...,jM

(u1, . . . , uM −1)

×
∑

t

aT
j1(t + u1) · · · aT

jM −1
(t + uM −1)aT

jM
(t) exp

(
−i

M∑
m=1

fmt

)

= εT +
2(T −1)∑

u1=−2(T −1)

· · ·
2(T −1)∑

uM −1=−2(T −1)

exp

(
−i

M −1∑
m=1

fmtm

)

× Cj1,...,jM
(u1, . . . , uM −1)AT

j1...jM
(f1 + · · · + fM ),
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where

|εT | ≤ K2

2(T −1)∑
u1=−2(T −1)

· · ·
2(T −1)∑

uM −1=−2(T −1)

(|u1| + · · · + |uM −1|)Cj1,...,jM
(u1, . . . , uM −1).

It now follows from Condition 3,

T −1|εT | ≤ K2

2(T −1)∑
u1=−2(T −1)

· · ·
2(T −1)∑

uM −1=−2(T −1)

T −1(|u1| + · · · + |uM −1|)

Cj1,...,jM
(u1, . . . , uM −1),

T −1(|u1| + · · · + |uM −1|) → 0 and the dominated convergence theorem that

(7.1) |εT | = o(T ).

Lemmas 1 and 2 follow from this and

sj1,...,jM
(f1, . . . , fM −1)

= (2π)M −1
∑

· · ·
∑

exp

(
−i

M −1∑
1

fmum

)
Cj1,...,jM

(u1, . . . , uM −1) + o(1).

7.5. Complex Normal

Let X denote an k-dimensional random vector whose components are complex-
valued random variables. If, for some μ ∈ C

k and k × k Hermitian non-negative
definite matrix Σ (that is, Σ = Σ̄�),(

Re X
Im X

)
∼ N2k

((
Re μ
Imμ

)
, 1

2

(
Re Σ −Im Σ
ImΣ Re Σ

))
,

we say X has a complex normal distribution with mean μ and covariance matrix
Σ, and is abbreviated by X ∼ N c

k(μ, Σ).
The FFT is asymptotically normal with mean specified according to the fre-

quency f as described below.

Theorem 7.1. Under Conditions 1 and 2, ϕT
j (f) is asymptotically

1. N c
1 (0, 2πTsjj(f)Ajj(0)) if f �= 0 mod π,

2. N1(TcjAjj(0), 2πTsjj(0)Ajj(0)) if f = 0, ±2π, . . . ,
3. N1(0, 2πTsjj(π)Ajj(0)) if f = ±π, . . . .

Note that Ajj(0) =
∫

a2
j . The above result implies that the real and the imaginary

part of ϕT
j (f) are approximately independent. Each is approximately normal with

mean and variance πTsjj(f)
∫

a2
j .

Proof. To prove Theorem 7.1, we note that by Condition 1, AT
j1,...,jM

(f) = O(T ).
Recall that the Gaussian distribution has cumulants of order greater than 2 van-
ishes. The desired result now follows from Lemmas 1, 2 and that fact that

T −M/2 cum(ϕT
j1(f1), . . . , ϕT

jM
(fM ))

= T −M/2(2π)M −1AT
j1,...,jM

(f1 + · · · + fM ) sj1,...,jM
(f1, . . . , fM ) + o(T 1−M/2)

→ 0 for M > 2 as T → ∞.
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7.6. Asymptotics for Periodograms

The distributions of the FFT suggests the following statistic:

s̃jj(f) = |ϕT
j (f)|2/

(
2π

∑
t

[aj(t/T )]2
)

, f ∈ R.

This is called a periodogram and is an estimate of the spectral density function
sjj . For more historical remarks, see [10]. Note that if there is no tapering function,
the periodogram is given by

s̃jj(f) = (2πT )−1|ϕT
j (f)|2, f ∈ R.

Let fm = 2πm/T , m = 0, ±1, ±2, . . . , ±T/2 denote the Fourier frequencies. The
result below describes the asymptotic distribution of the periodograms.

Theorem 7.2. Under Conditions 1–3, s̃jj(fm), m = 1, . . . , M = T/2, are as-
ymptotically independent sjj(fm)χ2

2/2. Also s̃jj(f) is asymptotically sjj(f)χ2
1 for

f = ±π, ±3π, . . . , independent of the s̃jj(fm), m = 1, . . . , T/2.

Proof. The proof follows from Theorem 7.1 and the definition of the chi-square
distribution.

The above result shows that the asymptotic variance of the periodogram is ap-
proximately sjj(f)2, which is usually positive. Thus the periodogram is not a con-
sistent estimate of the spectral density function. The following section will present
a class of consistent estimates obtained by smoothing the periodograms.

7.7. Window Estimates — The Smoothed Periodograms

A class of consistent estimates can be obtained by using a running mean or local
average of the periodograms. Specifically, set

ŝ(fm) = (2K + 1)−1
K∑

k=−K

s̃jj

(
2π

T
(m + k)

)
.

It follows from the asymptotic distributional properties of the periodograms (The-
orem 7.2) that ŝ(fm), m = 1, . . . , T/2, are asymptotically independent with ŝ(f) ∼
s(f)χ2

4K+2/(4K +2) if f �= 0, and ŝ(0) ∼ s(0)χ2
2K/(2K). An important implication

of the above result is that consistency can be achieved by letting K → ∞ and
K/T → 0 as T → ∞.

More generally, let W (·) denote a weight function. Set

(7.2) ŝjj′ (f) =
∑
k �=0

b−1
T W

(
b−1
T

(
f − 2πk

T

))
s̃jj′

(
2πk

T

)
,

where
s̃jj′ (f) = (2πT )−1ϕT

j (f)ϕT
j′ (f), f ∈ R,

and bT is referred to as the bandwidth or window width that will be specified
more clearly later. Certain properties of the weight function W (·) will be required
in order to assure that the above estimate is consistent.
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Condition 4. The weight function W (·) : R → R is a symmetric probability
density function with a compact support [−π, π].

Under this condition, the bias of the window estimate is given by

E(ŝjj(f)) =
∫

W (λ)sjj(f − bT λ) dλ + O(T −1b−1
T ).

In fact, more properties can be obtained and are stated in the following result.

Theorem 7.3. Under Conditions 1–3 and suppose that the spectral density function
sjj does not vanish. Let bT → 0 and bT T → ∞ as T → ∞. Then, ŝ(fm), m =
1, . . . , M , are asymptotically normal with mean zero and covariance structure given
by

(7.3) lim
T →∞

bT T cov(ŝ(f1), ŝ(f2)) =

{
0 if f1 �= f2,

2πs(f)2
∫

W 2 otherwise.

Proof. Direct computation shows that

cov(s̃jj(f1), s̃jj(f2))

= sjj(f1)

{(
sin T (f1 + f2)/2
T sin (f1 + f2)/2

)2

+
(

sin T (f1 − f2)/2
T sin (f1 − f2)/2

)2
}

+ O(1/T ).

Moreover,

cov(ŝjj(f1), ŝjj(f2)) = 2πT −1

∫
WT (f1 − λ)WT (f2 − λ)sjj(λ)2 dλ

+ 2πT −1

∫
WT (f1 − λ)WT (f2 + λ)sjj(λ)2 dλ

+ O(b−2
T T −2) + O(T −1),

where

WT (λ) = b−1
T

∞∑
k=− ∞

W (b−1
T (λ + 2πk)).

The indicated covariance structure (7.3) is an easy consequence of these results.
To obtain the asymptotic normality, we need to show that all cumulants of order

higher than 2 tend to zero as T → ∞. This is carried out by directly computing the
cumulants of the window estimates in a manner similar to the proof of Lemma 1.

7.8. Estimating the Transfer Function

Theorem 7.4. Suppose that

1. ε(t), t = 0, 1, . . . satisfy Condition 2 and have mean zero,
2. X(t) is uniformly bounded and s11 �= 0,
3.

∑
u |u|h(u) < ∞,

4. W in Condition 4 is a uniform kernel.

Let bT → 0, bT T → ∞, b5
T T → 0 as T → ∞. Then Ĥ(f1), . . . , Ĥ(fM )) is complex

normal with mean (EĤ(f1), . . . , EĤ(fM )) and covariance matrix whose entries are
given by

cov(Ĥ(f1), Ĥ(f2)) = η(f1 − f2)
2πsεε(f1)

bT Ts11(f1)

∫
W 2,

where η(0) = 1 and η(f) = 0 for f �= 0.
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The weight function W is assumed to be uniform on [−π, π] in order to simplify
the presentation of the above asymptotic properties of the estimate of the transfer
function. A more general approach can be found in [10].

Proof. We begin the proof of Theorem 7.4 with two lemmas.

Lemma 3. Let (Vn) denote a sequence of random vectors converging in distribution
to V. Then there exists a probability space such that Vn converges to V almost
surely.

Proof. The proof can be found in [5].

Lemma 4. Let (Vn) denote a sequence of random vectors in R
p converging in

distribution to N c
p(0, Ip) and (Un) a sequence of p × p unitary matrices. Then

UnVn converges to N c
p(0, Ip) as n → ∞.

Proof. This follows from Lemma 3.

Before proceeding to the proof, we remark that the following argument is sim-
plified by assuming the series X to be non-random. The result nevertheless holds
for general random X. Let ϕT

j , j = 0, 1, be the Fourier transform of Y and X,
respectively. Let 2πk/T denote the Fourier frequency that is nearest to λ. Then

ϕT
0 (2π(k + l)/T )

= H(2π(k + l)/T )ϕT
1 (2π(k + l)/T ) + ϕT

ε (2π(k + l)/T ) + O(1)

= H(λ)ϕT
1 (2π(k + l)/T ) + ϕT

ε (2π(k + l)/T ) + O(1), l = 0, ±1, . . . , ±m,

where O(1) is uniformly in l. Now let D0 denote the 1 × (2m + 1) matrix given by

D0 =
1√
2πT

[
ϕT

0 (2π(k − m)/T ) · · · ϕT
0 (2πk/T ) · · · ϕT

0 (2π(k + m)/T )
]
.

Define D1 and Dε similarly. Then

D0 = H(f)D1 + Dε + O(T −1/2).

Let U ≡ UT = [U1,U0] be a (2m+1) × (2m+1) unitary matrix whose first column
is U1 = DH

1 (D1DH
1 )−1/2, where DH = D

�
is the conjugate transpose of D. Then

D0U = H(f)D1U + DεU + O(T −1/2).

The first and the remaining columns of these matrices yield

[Ĥ(f) − H(f)]ŝ11(f)1/2(2m + 1)1/2 = DεU1 + O(T −1/2),(7.4)

D0U0 = DεU0 + O(T −1/2).(7.5)

By the property of the unitary matrix,

(2m + 1)ŝ00 = D0DH
0 = D0U1UH

1 DH
0 + D0U0UH

0 DH
0

= D0DH
1 (D1DH

1 )−1D1DH
0 + D0U0UH

0 DH
0 .

Thus

(7.6) ŝεε = D0U0UH
0 DH

0 = DεU0UH
0 DH

ε + Op(T −1/2).

Now, according to Theorem 7.1, Dε →d N c
2m+1N(0, sε,ε(f)I) and therefore

sε(f)−1/2Dε →d N c
2m+1N(0, I). By Lemma 4, sε(f)−1/2DεU →d N c

2m+1N(0, I),
or DεU →d N c

2m+1N(0, sε(f)I). This, together with (7.4) and (7.6) yield the de-
sired result. This completes the proof of the theorem.
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7.9. Estimating the Hemodynamic Response Function

From
H(f) =

∑
u

h(u) exp(−iuf),

we see that the hemodynamic response function is given by

h(u) =
1
2π

∫ 2π

0

H(f) exp(iuf) df, u = 0, ±1, ±2, . . . .

Let Ĥ(f) denote an estimate of H(f) given by the last section, and let Q ≡ QT

denote a sequence of positive integers tending to ∞ with T . As an estimate of h(u)
by approximating the integral using finite sums, we define

ĥ(u) =
1
Q

Q∑
q=0

Ĥ

(
2πq

Q

)
exp

(
i
2πuq

Q

)
, u = 0, ±1, ±2, . . . .

Theorem 7.5. Suppose that

1. ε(t), t = 0, 1, . . . satisfy Condition 2 and have mean zero,
2. X(t) is uniformly bounded and s11 �= 0,
3.

∑
u |u|h(u) < ∞,

4. W in Condition 4 is a uniform kernel.

Let Qb → 0 as T → ∞. Then

Eĥ(u) = h(u) +
∑
q �=0

h(u + qQ) + O(b) + O(T −1/2).

In particular, ĥ(u) is asymptotically unbiased. Furthermore, ĥ(u1), . . . , ĥ(uM ) are
asymptotically normal with mean h(u1), . . . , h(uM ) and covariance structure

cov(ĥ(u), ĥ(v)) =
2π

QbT
ΛT (u, v)

∫
W 2 + O

(
T −1

)
, u, v = 0, ±1, ±2, . . . ,

where

ΛT (u, v) =
1
Q

Q∑
q=0

exp
(

i
2π(u − v)q

Q

)
sεε(2πq/Q)/s11(2πq/Q).

Proof. The proof of Theorem 7.5 is tedious and very computational. We outline the
argument here. The proof starts by assuming the X series to be non-random. The
asymptotic normality then follows from the computation of the joint cumulants, it
is shown that cumulants of order greater than 2 of ĥ(u1), . . . , ĥ(uM ) tend to zero
as T → ∞. The desired result for the random X follows by invoking a standard
technique in nonparametric regression for handling ratio of two random variates.
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